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Abstract

Statistical relational learning models are powerful tools that
combine ideas from first-order logic with probabilistic graph-
ical models to represent complex dependencies. Despite their
success in encoding large problems with a compact set of
weighted rules, performing inference over these models is of-
ten challenging. In this paper, we show how to effectively
combine two powerful ideas for scaling inference for large
graphical models. The first idea, lifted inference, is a well-
studied approach to speeding up inference in graphical mod-
els by exploiting symmetries in the underlying problem. The
second idea is to frame Maximum a posteriori (MAP) infer-
ence as a convex optimization problem and use alternating
direction method of multipliers (ADMM) to solve the prob-
lem in parallel. A well-studied relaxation to the combinato-
rial optimization problem defined for logical Markov random
fields gives rise to a hinge-loss Markov random field (HL-
MRF) for which MAP inference is a convex optimization
problem. We show how the formalism introduced for coloring
weighted bipartite graphs using a color refinement algorithm
can be integrated with the ADMM optimization technique to
take advantage of the sparse dependency structures of HL-
MRFs. Our proposed approach, lifted hinge-loss Markov ran-
dom fields (LHL-MRFs), preserves the structure of the orig-
inal problem after lifting and solves lifted inference as dis-
tributed convex optimization with ADMM. In our empirical
evaluation on real-world problems, we observe up to a three
times speed up in inference over HL-MRFs.

1 Introduction
Statistical relational learning (SRL) frameworks compactly
specify a probability distribution over groups of objects us-
ing first-order logic. Most commonly, the probability dis-
tribution is defined as a template for a graphical model
which is instantiated (or grounded) over the objects in the
domain. A variety of different SRL frameworks have been
developed over the last decade, (see e.g., (De Raedt and
Kersting 2011; Richardson and Domingos 2006; Getoor
and Taskar 2007)). In this paper, we focus on hinge-loss
Markov Random fields (HL-MRFs) (Bach et al. 2017),
a recently introduced SRL framework based on weighted
logical rules which makes inference tractable by defining
a convex inference objective. HL-MRF have been used
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successfully in a wide variety of domains including NLP
tasks (Beltagy, Erk, and Mooney 2014; Wang and Ku
2016), image processing (Aditya, Yang, and Baral 2018;
Gridach, Haddad, and Mulki 2017), bioinformatics (Sridhar,
Fakhraei, and Getoor 2016), search (Alshukaili, Fernandes,
and Paton 2016), recommender systems (Kouki et al. 2017;
Lalithsena et al. 2017) and more (Deng and Wiebe 2015;
Ebrahimi, Dou, and Lowd 2016; Chen, Chen, and Qian
2014), with promising results.

For SRL frameworks, exact inference is often computa-
tionally expensive because inference is performed over large
grounded graphical models. However, this ground represen-
tation is typically derived from a much smaller set of log-
ical rules and, depending on the data, often contains iden-
tical substructures. These identical substructures cause un-
necessary work for the inference algorithm by repeatedly
performing the same operations.

Lifted inference (Kersting 2012; Kimmig, Mihalkova, and
Getoor 2015; den Broeck et al. 2011; Kazemi and Poole
2016) aims to detect common substructures and uses them
to avoid redundant computations.

Lifted inference in SRL is a well-studied problem. A pop-
ular approach is to group objects that are indistinguishable
given evidence, and perform inference by operating on these
groups.

First-order variable elimination (Poole 2003;
de Salvo Braz, Amir, and Roth 2005) extends the standard
variable elimination algorithm by summing over entire
groups of random variables instead of one at a time. Lifted
belief propagation (Singla and Domingos 2008) employs
the same message-passing method as the standard belief
propagation algorithm. It first groups variables and forms
super nodes which are connected via so-called super edges.
Message passing is then performed over the graph with
these super nodes and super edges. A modified version
of belief propagation (BP) called counting BP (Kersting,
Ahmadi, and Natarajan 2009) constructs a compressed
factor graph by creating clusternodes and clusterfactors
and uses a modified BP to perform inference. Some infer-
ence algorithms use the logical structure in a model for
problem decomposition (Dechter and Mateescu 2007;
Chavira and Darwiche 2008). The lifted versions
of these algorithms perform this decomposition at
the first-order level (Gogate and Domingos 2010;
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den Broeck et al. 2011).
The exact lifting methods discussed above assume that

variables in the problem of interest are discrete. This makes
them inapplicable to languages such as PSL, which are de-
fined over continuous random variables. Recently developed
lifted linear programming (Mladenov, Ahmadi, and Kersting
2012; Mladenov, Kersting, and Globerson 2014) and lifted
convex quadratic programming (Mladenov, Kleinhans, and
Kersting 2017) offer a method for finding and exploiting
symmetries in linear programming and quadratic problems.
Lifted linear and quadratic programming groups indistin-
guishable variables using the color refinement algorithm to
produce a smaller linear or quadratic program making infer-
ence faster.

The inference algorithm in HL-MRFs relies on alternat-
ing direction method of multipliers (ADMM). ADMM is an
iterative optimization method (Boyd et al. 2011) that pro-
vides an elegant approach for finding the saddle point in aug-
mented Lagrangian. The ADMM algorithm for HL-MRFs
use the structure in the objective function and solves the sub-
problems in each iteration using closed-form solutions.

Our work integrates the concept of lifting using the color
refinement algorithm with ADMM to perform a more effi-
cient inference in HL-MRFs. Using ADMM for HL-MRFs
(Bach et al. 2017) shows exponential performance gains
over traditional LP/QP solvers. To our best knowledge this is
the first approach that combines ADMM with color refine-
ment to perform lifting for probabilistic inference.

Our contributions are as follows: 1) we propose the first
method for detecting and eliminating the symmetries in HL-
MRFs inference problems using the color refinement algo-
rithm, By applying this method to the real-world datasets,
we observe significant reductions (up to 66%) in the size
of problems; 2) we show how the lifted problem can be
cast back into the same form as the original inference prob-
lem and solved using the specialized inference algorithm
of HL-MRFs. The proposed integration of lifted inference
and ADMM is essential to our goal. We compare solving
the lifted problem with existing off-the-shelf solvers and the
ADMM method, and demonstrate that lifting has a better
pay off when the latter is employed; 3) we run a series of ex-
periments on synthetically generated data, analyze the com-
plicated relationships graph structures have with lifting, and
show the effectiveness of LHL-MRFs on varied levels of
symmetry.

2 Background
In this section, we review several key topics on which our
proposed approach for lifted HL-MRFs (Section 3) relies
upon. We begin by reviewing probabilistic modeling and
templating languages for logical MRFs, in particular HL-
MRFs and PSL. Next, we review the color refinement algo-
rithm which we use to perform lifting.

2.1 Markov Random Field, HL-MRFs & PSL
Markov random fields are an expressive formalism for defin-
ing probability distributions. A number of recent SRL ap-
proaches, notably Markov Logic (Richardson and Domin-
gos 2006), use logic to define the potentials associated with

a Markov random field. These languages translate weighted
logical rules into potential functions, which are in turn used
to define the Markov random field. We refer to these Markov
random fields as Logical Markov Random Fields.

Definition 1 (Markov random field). Let yyy = y1, y2, ..., yn
be set of n random variables, φ = {φ1, φ2, ..., φm} bem po-
tentials describing different logical relations between vari-
ables. φi(yyy) is real valued scalar representing compliance
of yyy with φi. Also, let www = w1, w2, . . . , wm be real valued
weights associated with each potential. Then, a Markov ran-
dom field can be defined as: P (yyy) ∝ exp

(
wwwTφφφ(yyy)

)
and a

logical Markov random field is the same with its potentials
defined through logical statements and hence, φi ∈ 0, 1.

The potentials of the MRF define how the domain be-
haves. These potentials can be defined using logic state-
ments for logical MRFs. An expressive way of representing
logical statements is as weighted rules, where each rule can
be converted into clausal form (disjunctions of positive or
negated literals). Every logical clause can be written as:( ∨

j∈I+
yj
)
∨
( ∨
j∈I−

¬yj
)

(1)

where I+ is set of positive literals that participate in the
clause and I− is a set of literals that participate in the
cause with a negation (Bach et al. 2017). The most prob-
able assignment for the variables can be found by finding
the maxiumum apostieri (MAP) estimate for the distribution
argmaxy∈{0,1}n P (yyy) as:

argmax
y∈{0,1}n

wwwT min

∑
i∈I+

yi +
∑
j∈I−

(1− yj), 1

 (2)

However, this is a combinatorial optimization problem, and
finding the assignment that maximizes the probability for bi-
nary random variables is equivalent to weighted MAX-SAT,
a well-known NP-hard problem.

Hinge-loss MRFs A hinge-loss Markov random field
(HL-MRF) is a logical MRF in which random variables
are relaxed to take value in the range of [0, 1]n instead of
{0, 1}n as in logical MRFs. In order to convert a logical
MRF to a HL-MRF, we first introduce definitions for log-
ical statements over these continuous values. Conjunction
(∧̃), disjunction (∨̃) and negation (¬̃) are defined y1∧̃y2 =
max{y1 + y2 − 1, 0}, y1∨̃y2 = min{y1 + y2, 1} and
¬̃y = 1 − y. The ˜ indicates the relaxation over Boolean
values. With the above relaxations the objective function in
Equation 2, can be written as:

argmin
y∈[0,1]n

i=m∑
i=1

wimax {li, 0} (3)

where li = 1−∑j∈I+ yj −
∑
j∈I−(1− yj) = yTxi − ci,

and xi ∈ {0, 1,−1}n is a vector that determines which vari-
ables participate in the specific potential i. xi,j = 0 implies
variable yj does not participate, xi,j = 1 implies variable
yj ∈ I− and needs to be added, and xi,j = −1 implies
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variable yj ∈ I+ and needs to be subtracted. ci is the con-
stant associated with the potential. The constant is computed
based on the variables that are observed and other constants
in the equation.

Definition 2 (Hinge-loss energy function). Let yyy =
{y1, y2, ..., yn} be n random variables, lll = {l1, l2, ..., lm}
be m linear constraints, and φφφ = {φ1, φ2, ..., φm} be m po-
tentials such that, φi = (max{li, 0})di , where di ∈ {1, 2}
provides a choice of two different loss functions, di = 1
(i.e., linear) and di = 2 (i.e, quadratic). For weights www ∈
{w1, w2, ..., wm} a hinge-loss energy function can be de-
fined as:

f(yyy) =

m∑
i=1

wiφi(y) =

m∑
i=1

wimax(

n∑
j=1

xijyj − ci, 0)di

(4)
where 000 ≤ yyy ≤ 111, and the HL-MRF is defined as:
P (yyy) = 1

Z(yyy)exp(−f(yyy)), where Z(yyy) =
∫
yyy
exp(−f(yyy))

is a normalization factor.

A key advantage of using HL-MRFs is that by using
the continuous approximation for the logic statements, in-
ference of random variables turns into a convex optimiza-
tion problem from a combinatorial problem. Additionally,
this reformulation enables us to use the alternating direc-
tion method of multipliers (ADMM) (Boyd et al. 2011) to
infer the variables. With ADMM, inference in HL-MRFs is
scalable which allows us to perform inference on real-world
datasets. The first step in solving the problem with ADMM
is to form the augmented Lagrangian function of the prob-
lem as:

L(y, yl) = min
y,yl

m∑
i=1

wiφi(yl,i) +

n∑
j=1

X[0,1][yj ]

s.t., yl,i = y ∀i ∈ {1, ...,m} (5)

where X[0,1][yj ] is an indicator function which produces
zero if yi ∈ [0, 1] and infinity otherwise, and yl is
a matrix with m rows and n columns and yl,i repre-
sents ith row of the matrix. The augmented Lagrangian
form of this is: L(y, yl, α) = miny,yl

∑m
i=1 wiφi(yl,i) +∑n

j=1 X[0,1][yj ]+
∑m
i=1 α

T
i (yl,i−y)+ ρ

2

∑m
i=1 ||yl,i−y||22,

where ρ > 0 is step size and α is a matrix of same di-
mension as yl and represents the dual variables. The up-
date equations for ADMM at iteration t are αti = αt−1i +

ρ(yt−1l,i − yt−1), ytl = argminyl L(yl, α
t, yt−1), and yt =

argminy L((yl, α
t, yt−1). The ADMM updates ensure that

y converges to the MAP state.

Probabilistic Soft Logic Probabilistic soft logic (PSL) is
a declarative language for specifying HL-MRFs. A PSL
model consists of a set of weighted logical rules, e.g. Horn
clauses of the form wr : B1∧ . . .∧Bm → H where Bi and
H are predicates or negated predicates.

We ground a rule r by replacing the variables with con-
stants from data. Each wr ∈ R+ ∪ {∞} is the weight of the
rule r. And each ground predicate x is coupled to an inter-
pretation function I(x) ∈ [0, 1] representing its truth value.

Using the relaxation of logical operators, we define the
notion of distance to satisfaction for each ground rule in a
PSL model, which for example in the Horn clause above
is equal to I(

∧m
i=1Bi) − I(H). A grounded PSL model

induces a HL-MRF in which distance to satisfaction of each
grounded rule forms a hinge-loss potential in Equation 4.

Example 1. Consider the following PSL model with one
rule that represents a transitive Knows relationship among
people:

w1 : Knows(P1, P2) ∧Knows(P2, P3) → Knows(P1, P3)

Assume that in our data we have three individu-
als: Bob, Dan, and Elsa, and the weight of w1 =
5. Given the observations I(Knows(Ben,Elsa)) =
1, I(Knows(Elsa,Dan)) = 1, and assuming that
I(Knows(X,X)) = 0 for every individual X , our aim
is to infer truth values for the remaining atoms. The
grounded model consists of four atoms that participate in
four grounded rules. Let us denote the unknown truth values
by variables y1 . . . y4. The hinge-loss energy function will
be: f(yyy) = 5max(y1 − y2, 0)2 + 5max(−y1 + y2 + y4 −
1, 0)2 + 5max(y1 − y4, 0)2 + 5max(−y3 + 1, 0)2.

2.2 Color refinement
Color refinement is a simple algorithm to identify simi-
lar nodes in a graph (Ramana, Scheinerman, and Ullman
1994). This algorithm has efficient implementations that run
in quasilinear time (Codenotti et al. 2013) and has been used
in practical graph isomorphism tools and for lifted infer-
ence (Grohe et al. 2017). Color refinement is an iterative
algorithm that assigns colors to nodes in a sequence of re-
finement rounds. For a graph G = (V,E), it first initial-
izes all nodes in V with the same color. In every refinement
round, any two nodes v, w ∈ V with the same color are re-
assigned to different colors if there is some color c such that
v and w have a different number of neighbors with color
c; otherwise no change is made. The refinement stops when
the colors of all nodes before and after the refinement round
remain the same. This state of the graph where the colors
of nodes do not change across refinement rounds is called
a stable coloring of the graph. Let A be the adjacency ma-
trix of G. Then the nodes u and v have the same color in
the stable coloring of G iff it holds for every color C that∑
w∈C Avw =

∑
w∈C Av′w .

The color refinement algorithm can be generalized to
weighted graphs by refining the colors based on weighted
sum of the edges instead of degree. This generalization can
then be extended to weighted bipartite graphs, where each
part is initialized with a different color. In a stable stable bi-
coloring of a weighted bipartite graph, the condition men-
tioned above holds for the weighted adjacency matrix of G.

3 Method
Graphical models generated from logical templates can
manifest degrees of symmetry. In this section we introduce a
method based on the color refinement algorithm to find and
eliminate such symmetries in an HL-MRF energy function.
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Figure 1: The factor graph of the HL-MRF model presented in Example 1. The labels of the factor nodes appear on their right
side. Edge weights are represented by line style (solid: 1, dashed: -1, thick: 2).

The function obtained by this method is also a HL-MRF en-
ergy function. Preserving this form is crucial, since the effi-
cient ADMM method introduced earlier is tailored for func-
tions of this form. At the end of this section, we show that
we can obtain the solution of the original problem by solv-
ing the lifted problem and mapping its solution back to the
original space.

3.1 Lifted HL-MRFs (LHL-MRFs)
Our lifting method operates on a factor graph, which is a
graphical representation of a HL-MRF energy function.

Definition 3 (Factor Graph). The factor graph of an HL-
MRF energy function is a graph G = (U, V,E) in which
there is a node uj ∈ U for each variable yj ( j = 1, . . . , n)
and a node vi ∈ V for each potential φi ( i = 1, . . . ,m).
For each nonzero coefficient xij of variable yj in poten-
tial φi there is an edge eij ∈ E between uj and vi with
the weight xij . Each node vi ∈ V is labeled by the tuple
(wi, ci, di).

Example 2. The energy function of the HL-MRF in Example
1 can be represented by the factor graph in Fig. 1a.

We will now describe a method that given the factor graph
G of an energy function f , produces a potentially smaller
factor graph G′. Instead of solving the MAP inference prob-
lem for f , one can solve the MAP inference problem for the
function f ′ represented by G′ and map the solution back to
the variables in f .

We first assign the initial colors to the nodes of G =
(U, V,E). The nodes in V receive different colors based
on their labels: Two nodes with labels (w1, c1, d1) and
(w2, c2, d2) receive the same initial color iff c1 = c2, w1 =
w2 and d1 = d2. All nodes in U receive the same color,
which is different from the colors of the nodes in V . We
then run the color-refinement algorithm on G, which out-
puts a stable bi-coloring CU1 , . . . , C

U
p for the nodes in U

and CV1 , . . . , C
V
q for the nodes in V . To create the lifted

factor graph G′ = (U ′, V ′, E′), we first create a lifted vari-
able node u′k for every color class CUk and a lifted factor
node v′l for every color class CVl . Each lifted variable node
u′k and lifted factor node v′l corresponds to a set of edges
in G, namely Ekl = {eij ∈ E : vi ∈ CVl , uj ∈ CUk }.

If Ekl is non-empty, we connect the nodes u′k and v′l in
G′ by an edge with the weight (

∑
(i,j):eij∈Ekl

xij)/|CVl |.
Let I = {i : vi ∈ CVl } and (w, c, d) be the label of
some v ∈ CVl . We label the node v′l ∈ V ′ by the tuple
(
∑
i∈I wi, c, d).

Example 3. The output coloring of the color refine-
ment algorithm is shown in Fig. 1b. According to
this coloring, the variables are partitioned into sets{
{y1}, {y2, y4}, {y3}

}
and the factors are partitioned into

sets
{
{φ2}, {φ1, φ3}, {φ4}

}
. From the color classes of Ex-

ample 2, we obtain the lifted factor graph of Fig. 1c which
represents the function: f(y∗y∗y∗) = 5max(−y∗1 + 2y∗2 −
1, 0)2 + 10max(y∗1 − y∗2 , 0)2 + 5max(−y∗3 + 1, 0)2.

As noted before, the expression in the above example is
essentially a weighted sum of hinge functions which has the
exact same form as (4). This implies that the function rep-
resented by the lifted factor graph can also be solved using
ADMM. To map the solution of lifted problem back to the
original space, we only need to assign the value of the repre-
sentative variables of each lifting color class to all the vari-
ables in that color class.

3.2 Correctness of the method
We now show that optimizing over the lifted function pro-
duces the same objective value as optimizing the original
function, and the optimal values of the variables in the orig-
inal problem can be derived from their lifted counterparts.
Our proof is based on an existing procedure for lifting the
Quadratic Programming (QP) problems (Mladenov, Klein-
hans, and Kersting 2017). We show that the MAP inference
problem in HL-MRFs can be cast as a QP problem and that
lifting this problem produces another QP which is equivalent
to the function produced by our lifting method.

To write the objective function of the MAP inference in
Equation 4 as a QP, we replace the max functions by con-
straints over auxiliary variables ψi:

min
∑
i

wiψ
di
i s.t., ψi ≥

∑
j

xijyj − ci ∀i, yyy,ψψψ ≥ 000

(6)
QP problems are lifted by performing the color refinement

algorithm on a graph called the coefficient graph. We will
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now explain how to construct the coefficient graph for (6)
(for further details we refer to Mladenov, Kleinhans, and
Kersting (2017)). The coefficient graph of (6) is the 4-tuple
(U, V, Z,E) where the nodes uj ∈ U , vi ∈ U , and zi ∈ Z
correspond to variable yj , constraint i, and variable ψi, re-
spectively. For each nonzero coefficient xij there is an edge
with weight xij between the nodes uj and vi. For each
constraint i, the nodes vi ∈ V and zi ∈ Z are connected
by an edge with weight −ci, and if di = 2 then there is a
self-loop edge on zi with the weight wi.

Initially all nodes in U ∪ Z have the same color, which
is not shared by any node in Z. Two nodes vi1 , vi2 ∈ V
receive the same initial color iff ci1 = ci2 .

After performing the color refinement algorithm on this
coefficient graph, the coefficient graph of the lifted QP
problem is constructed by grouping the variables and con-
straints of each color class together. The edge weights are
aggregated in the same way as previously described in our
method. The optimal value of a variable in the original QP
is equal to the optimal value of its lifted counterpart.

y1

y2

y3

y4

0

−1

0

1

variable constraint

ψ1

ψ2

ψ3

ψ4

variable

Figure 2: The colored coefficient graph of the HL-MRF
model presented in Example 1. Edge weights are represented
by line style (solid: 1, dashed: -1, dotted: 5).

Example 4. The coefficient graph of the QP corresponding
to Example 1 and the coloring assigned to it by the color
refinement algorithm is presented in Fig. 2.

Assume that a function f is lifted to another function f ′
using our proposed method. We demonstrate the correctness
of our method by showing that the QP of f can be lifted to
the QP of f ′.
Theorem 1. Let G = (UG, V G, EG) be the factor
graph of an energy function of an HL-MRF, and Q =
(UQ, V Q, ZQ, EQ) be the coefficient graph of its QP. Then
in the stable bi-colorings of G and Q, the color classes of U
and V are the same.

Proof. Assume that in the stable bi-coloring CG of fac-
tor graph G, the nodes are partitioned into disjoint colors
CG1 , . . . , C

G
q ⊆ V G and CGq+1, . . . , C

G
q+p ⊆ UG. Let us de-

note by uGj and vGi the nodes in G corresponding to variable
yj and factor φi in the HL-MRF energy function. Also let
uQj , vQi and zQi denote the nodes corresponding to variable
yj , constraint i, and auxiliary variable ψi in the correspond-
ing QP problem. We will now construct a stable bi-coloring
CQ of the coefficient graph Q with the following properties:

1) Variable nodes have the same color classes in CQ and CG
and constraint nodes in CQ have the same color classes as
factor nodes in CG, 2) CQ is consistent with the initial color-
ing of Q, and 3) CQ is the coarsest stable bi-coloring of the
graph Q. We first construct the coloring CQ and then show
how the above conditions hold for it. Let C(u) denote the
color class of u in the coloring C. In CQ we assign the
colors to the nodes in UQ, V Q, and ZQ based on the color
classes of UG and V G in CG as follows:

uQj1 ∈ C
Q(uQj2)⇔ uGj1 ∈ CG(uGj2) (7)

vQi1 ∈ C
Q(vQi2)⇔ vGi1 ∈ CG(vGi2) (8)

zQi1 ∈ C
Q(zQi2)⇔ vGi1 ∈ CG(vGi2) (9)

The first property holds by definition. By definition, the
nodes uQj1 , u

Q
j2
∈ UQ have the same initial color iff the initial

colors of the nodes uGj1 , u
G
j2
∈ UG are the same. Similarly,

vQi1 , v
Q
i2
∈ V Q receive the same initial color iff the nodes

vGi1 , v
G
i2
∈ V G have the same initial color. Additionally, all

nodes in ZQ receive the same initial color. Hence CQ is
consistent with the initial coloring of Q.

To show that the coloring is stable, we need to show that
the sum of edge weights connecting to the nodes in each
color class is the same among all the nodes having the same
color. So for each pair of variable nodes uQj1 , u

Q
j2
∈ UQ

and color class CQl it should hold that uQj1 ∈ CQ(u
Q
j2
) ⇔∑

i:vQi ∈C
Q
l
xij1 =

∑
i:vQi ∈C

Q
l
xij2 . Since CG is a stable col-

oring of G we have uGj1 ∈ CG(uGj2) ⇔
∑
i:vGi ∈CG

l
xij1 =∑

i:vGi ∈CG
l
xij2 which together with equation 7 proves this

property. Similarly, for each pair of constraints i1, i2 and
color class CQk it should hold that vQi1 ∈ CQ(v

Q
i2
) ⇔∑

j:uQ
j ∈C

Q
k
xi1j =

∑
j:uQ

j ∈C
Q
k
xi2j which can be concluded

from equation 8 and the fact that vGi1 ∈ CG(vGi2) ⇔∑
j:uG

j ∈CG
k
xi1j =

∑
j:uG

j ∈CG
k
xi2j . Note that the weights

of edges connecting to nodes of ψi are not included in these
equations since ψi variables appear with the same coeffi-
cient in all constraints. For a pair of nodes zQi1 , z

Q
i2
∈ ZQ

where di1 = di2 = 1, we should have zQi1 ∈ CQ(z
Q
i2
) ⇔

vQi1 ∈ CQ(v
Q
i2
) which trivially holds according to equa-

tion 9. Finally, when di1 = di2 = 2, it should hold that
zQi1 ∈ CQ(z

Q
i2
) ⇔ vQi1 ∈ CQ(v

Q
i2
) ∧ wi1 = wi2 which holds

according to equation 9 and the fact that if wi1 6= wi2 then
the nodes vQi1 , v

Q
i2
∈ V Q are initialized with different colors.

Now what remains is to show that CQ is the coarsest sta-
ble coloring of graph Q, i.e., there is not another stable
bi-coloring respecting the previous conditions that assigns
fewer number of colors than CQ to the nodes of Q. Assume
that there is a stable bi-coloring C′Q of Q with fewer colors
than CQ. Then we can construct a stable bi-coloring C′G for
the factor graph G that respects its initial coloring, by par-
titioning the UG and V G according to the color classes of
UQ and V Q in C′Q. Since partitions of UQ and ZQ are in
one-to-one correspondence, the reduction in the number of
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color classes in C′Q can not be limited to color classes of the
nodes in ZQ. This means that C′G has fewer color classes
than CG, which is a contradiction.

4 Empirical Evaluation
In this section, we evaluate our proposed lifted inference al-
gorithm, LHL-MRF, on various real and synthetic datasets.
We investigate three research questions in our experiments:
Q1: How does lifting affect performance on real world
datasets? Q2: How does the graph structure influence the
impact of lifting? Q3: How much symmetry is required for
lifting HL-MRFs to be effective? All experiments were run
on a machine with 16GB RAM and an i5 processor. The im-
plementations are all single-threaded. We implemented our
models using the PSL open-source Java library1. We ground
the rules using the PSL library and then run inference us-
ing our own implementation of ADMM in C++2. Note that
PSL removes a large number of trivial symmetries during
the grounding process by removing trivially satisfied rules
(for further information see (Augustine and Getoor 2018)).
Removing these simple symmetries ensures the extra sym-
metries that are obtained during our approach are non-trivial.
We use Saucy3 from the RELOOP library to perform color
refinement (Mladenov et al. 2016).

Experiments on Real-world Data
We selected three real world datasets from different domains
for which the corresponding PSL models have been used
with promising results.
-Citeseer: This dataset includes 3312 papers in six cate-
gories, and 4591 citation links. The goal is to classify doc-
uments in a citation network. The original data comes from
Citeseer . The details about the model and data can be found
in Bach et al. (2017).
-Cora: This dataset includes includes 2708 papers in seven
categories, and 5429 citation links. The goal is to classify
documents in a citation network. The original data comes
from Cora . The details about the model and data can be
found in Bach et al. (2017).
-Wikidata: The dataset contains 419 families and 1,844
family trees. The goal is to perform entity-resolution on a
family graph obtained form wikidata by crawling the site
for familial relations. The details about the model and data
can be found in Kouki et al. (2017).

To address Q1, we measure the effects of lifting on the
three datasets. Figure 3 presents the number of variables and
potentials of these datasets before and after lifting. We ob-
serve that there is a varying amount of symmetry in these
datasets, the reduction in number of variables and potentials
is about 20% in the Wikidata, 46% in the Cora, and 66% in
the Citeseet dataset.

Table 1 shows the time to solve the original problem, i.e.,
HL-MRF, the time to solve the lifted problem, i.e., LHL-
MRF (solving), the time to lift HL-MRF with the color re-
finement algorithm, i.e., LHL-MRF (lifting), and the end

1https://github.com/linqs/psl
2https://github.com/linqs/srinivasan-aaai19
3http://vlsicad.eecs.umich.edu/BK/SAUCY

Datasets HL-MRF LHL-MRF LHL-MRF LHL-MRF
(solving) (lifting) (total)

(in sec) (in sec) (in sec) (in sec)

Citeseer 57.4 19.8 0.39 20.19
Cora 47.7 17.5 0.53 18.03

Wikidata 636.0 463.7 112.7 576.4

Table 1: Time taken to perform inference on different
datasets.

Citeseer Cora Wikidata

102

103

104

105

106

107

8.76

10.54

15.21

4.41

9.92

14.98

N
um

be
r

of
po

te
nt

ia
ls

+
va

ria
bl

es Before Lifting
After Lifting

Figure 3: The number of variables and rules reduce in dif-
ferent amount after lifting in real-world datasets.

to end inference time for the lifted approach, i.e., LHL-
MRF (total) or LHL-MRF in short.

As expected, due to the large amount of reduction in the
number of variables and potentials, there is a significant
difference between the time taken for HL-MRF and LHL-
MRF (solving) on all subsets. Even with a small 20% re-
duction in number of variables and potentials in Wikidata,
we see that LHL-MRF (Solving) is 27% faster than HL-
MRF and due to much higher reduction in other datasets,
we see three-fold speed-ups in both the Cora and the Cite-
seer datasets.

However, lifting time (LHL-MRF (lifting)) must also be
considered. After accounting for this, we still see that LHL-
MRF is about a 10% faster in the Wikidata dataset and al-
most three times faster for the Cora and the Citeseer datasets
when compared to HL-MRF.

Experiments on Synthetic Data To address Q2 and Q3
and better understand how symmetry is affected by graph
density, we generate five different synthetic graphs. We also
generate three sets of possible continuous values that the
edges of the graph can take to generate different structure of
neighbors in the graph. We generate the graphs for the task
of node labeling with varying levels of density. We used a
PSL model for the commonly used smoker example as intro-
duced in Richardson and Domingos (2006), which describes
smoking behavior among friends with the following rules:
1.0 : Friend(A,B) ∧ Smokes(A)→ Smokes(B)
1.0 : Friend(A,B)∧¬Smokes(A)→ ¬Smokes(B) This
model states that if two people are friends, then either both
of them smoke or neither of them do.
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(a) For binary values, as the graph density in-
creases, the total amount of lifting increases.
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(b) For varying numbers of values, as graph
density increases, the ratio of lifting varies.
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Figure 4: Comparison of inferences times and size of the problem for HL-MRF and LHL-MRF as graph density varies

We fix the number of users to 1000, and randomly create
friendship links between these users by varying the number
of edges from 10k to 500k. In practice friendship is not nec-
essarily a black-and-white matter, i.e., people can be friends
to varying degrees. Hence, we consider three cases for the
values of the friendship links: 1) binary values, 2) values
between zero to one with one decimal point, 3) values be-
tween zero to one with four decimal points. This means that
friendship links can take only two values in the first case
({0, 1}), 10 values in the second ({0.0, 0.1, . . . , 1.0}) and
10,000 in the third case ({0.0000, 0.0001, . . . , 1.000}). We
randomly assign a label to users and keep 50% of the labels
as evidence and another 50% as unknowns to be inferred.
Figure 4a shows the total number of variables and poten-
tials before and after lifting for the binary case. Figure 4b
shows the ratio between the number of variables and poten-
tials before and after lifting, for varying value ranges. We
see that for the binary case, the amount of lifting is maxi-
mized and the ratio increases as the graph density increases.
However, as the value range increases, the amount of lifting
drops significantly, and eventually there are no symmetries
to be exploited. Finally, Figure 4c presents the processing
time to solve the binary case. The results indicate that us-
ing LHL-MRF gives a significant performance improvement
over HL-MRF as the graph becomes denser. These results
imply that there are complex trade-offs between the struc-
ture of the graph and the range of the values in the data.
We utilize exact lifting and therefore, we observe that LHL-
MRF performs well for finding symmetries in datasets with
denser structures and smaller range of values.

Finally, to further understand how the amount of sym-
metry affects the overall inference time in a slightly more
complex and realistic setting (yet still a synthetic dataset),
we study the social affiliation dataset and the PSL model
used by Bach et al. (2017) for scalability analysis. We use a
dataset that contains 22k nodes and 130k edges 4.

We begin by lifting this dataset to remove all symmetry
(the original dataset has less than 1% symmetry). To induce

4https://github.com/stephenbach/admm-speed-test

symmetry, we systematically inject the same structure to the
data. This is done by duplicating every grounded rule and
shuffling the data. We duplicate the grounded rules up to 10
times creating 10 subsets (named 1x, 2x, 3x..., 10x), where
the 10x subset has 10 times as many potentials created by
duplicating the original data i.e., the 1x subset.
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Figure 5: As symmetry increases, the gap between time solv-
ing HL-MRF and LHL-MRF increases.

Figure 5 shows the results of HL-MRF and LHL-
MRF (split into LHL-MRF (solving), LHL-MRF (lifting),
and LHL-MRF on all 10 subsets. For the smallest dataset
(which contains no symmetry), the time required for LHL-
MRF is higher than HL-MRF due to the time taken to per-
form lifting. However, increasing the size of the dataset from
two to ten, we observe that the amount of time taken by
LHL-MRF to solve the problem is getting much lower than
HL-MRF. It is noticeable that as the symmetry increases,
the gap between solving HL-MRF problem and LHL-MRF
problems widens. Note that the inference time in LHL-MRF
for all 10 subsets is the same (equal to 1x dataset), which is
the flat line in Figure 5 for LHL-MRF (solving).

For the sake of completeness and to compare against other
lifted inference methods, in Figure 6, we compare the per-
formance of HL-MRF and LHL-MRF using ADMM with
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Figure 6: As symmetry increases, the gap between time
solving HL-MRF and HL-MRF(Gurobi) increases expo-
nentially. The difference between LHL-MRF and LHL-
MRF(Gurobi) remains the same as the 1x dataset.

versions which use Gurobi– an off-the-shelf commercial QP
solver–. We denote these methods which use Gurobi HL-
MRF (Gurobi) and LHL-MRF (Gurobi). For all 10 subsets,
we observe that using HL-MRF and LHL-MRF consistently
and significantly outperforms HL-MRF (Gurobi) and LHL-
MRF (Gurobi) respectively. We also see that this difference
increases as the size of the data increases. Note that the time
taken to solve using LHL-MRF (Gurobi) is similar to other
lifting methods such as belief propagation. For most of the
lifting methods, the time complexity grows cubicly with the
number of variables in the data. However, our approach is
unique and desirable as it maintains the original form of the
function allowing us to use ADMM which is known to be
much more scalable than other approaches (Forouzan and
Ihler 2013).

To our best knowledge, the size of datasets used in other
lifted inference papers are in order of 1000s of variables and
potentials, whereas using ADMM in our approach allow us
to easily scale to problems with millions of variables and
potentials.

5 Discussion and Future Directions
We have shown that there are significant opportunities for
lifted inference, even in the case where we have continuous-
valued variables defined by HL-MRFs. Through empirical
evaluation on real datasets, we show that the inference task
for HL-MRF models can run up to three times faster by us-
ing LHL-MRFs. However, it is important to note that LHL-
MRFs cannot guarantee speed-ups for all types of problems.
We investigate the effects of graph density and range of real
values on lifting in HL-MRFs. However, studying the char-
acteristics of the optimization problem after lifting is left for
future work. We also notice that on small sized problem,
in which inference takes less than one second to finish in
HL-MRFs, the overhead of lifting is noticeable, and there-
fore even with a huge amount of reduction in the number
of variables and potentials, we cannot necessarily reduce the
solving time of LHL-MRFs.

This work suggests other interesting directions for future

work. First, in this work we only exploit exact symmetries,
which may be hard to find in some applications. Previous
work indicates approximate lifted inference can improve the
performance without compromising on other metrics like
precision (Sen, Deshpande, and Getoor 2009). In our setting,
approximate lifting could also lead to a greater reduction in
number of variables and speed up the task of inference. Sec-
ond, two of the most challenging tasks in MRFs are learning
the weights and the structure of the logical rules from the
data. Structure learning and weight learning are often per-
formed using a scoring function that iteratively uses a MAP
state. An interesting path to explore is to employ lifted in-
ference to make such systems more efficient.

6 Conclusion
In this paper, we introduced LHL-MRF, a novel approach to
lifted inference in HL-MRFs. LHL-MRF marries the pow-
erful ideas of lifted inference with the color refinement al-
gorithm of Grohe et al. (2017) with the convex inference
approach proposed by Bach et al. (2017), to solve large-
scale graphical models described by HL-MRFs. By combin-
ing these two ideas, our method is able to reduce the num-
ber of variables and potentials in a model and perform infer-
ence efficiently on a significantly smaller optimization prob-
lem. Through empirical evaluation, we show that the infer-
ence task for HL-MRF models on relatively small real world
problems can be made to run three times faster. Further, in
our experiments, we investigated how varying symmetry af-
fects the performance of LHL-MRF and we explored the im-
pact of both structure and domain values on the efficiency of
LHL-MRF.
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