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Abstract

Exploring directed acyclic graphs (DAGs) in a Markov equiv-
alence class is pivotal to infer causal effects or to dis-
cover the causal DAG via appropriate interventional data.
We consider counting and uniform sampling of DAGs that
are Markov equivalent to a given DAG. These problems effi-
ciently reduce to counting the moral acyclic orientations of a
given undirected connected chordal graph on n vertices, for
which we give two algorithms. Our first algorithm requires
O(2nn4) arithmetic operations, improving a previous super-
exponential upper bound. The second requires O

(
k! 2kk2n

)
operations, where k is the size of the largest clique in the
graph; for bounded-degree graphs this bound is linear in n.
After a single run, both algorithms enable uniform sampling
from the equivalence class at a computational cost linear in
the graph size. Empirical results indicate that our algorithms
are superior to previously presented algorithms over a range
of inputs; graphs with hundreds of vertices and thousands of
edges are processed in a second on a desktop computer.

1 Introduction
In causal discovery a key task is to learn a directed acyclic
graph (DAG) on the variables of interest. What makes learn-
ing particularly challenging is that different DAGs can repre-
sent the same conditional independence relations among the
variables; such DAGs are Markov equivalent. Every Markov
equivalence class can be represented uniquely by an essen-
tial graph (a.k.a. completed partial DAG), in which an edge
is undirected unless the direction is unique in the class (An-
dersson, Madigan, and Perlman 1997). Purely observational
data are generally sufficient for identifying a unique essen-
tial graph, but not singling out a DAG.

That said, the DAGs within a given equivalence class
are well worth exploring, for instance, to estimate causal
effects between pairs of variables (Maathuis, Kalisch, and
Bühlmann 2009) or to direct some of the undirected edges
in the essential graph based on interventional data (Ghas-
sami et al. 2018). Such tasks call for efficient algorithms for
generating random DAGs from a given equivalence class, as
well as, for studying the related combinatorial problem of
computing the size of the equivalence class. It is well known
that these problems immediately (and efficiently) reduce to
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their restricted variants where the essential graph is an undi-
rected connected chordal graph (UCCG); see Gillispie and
Perlman (2002) and Section 2. Then the DAGs in the equiv-
alence class correspond to what we, in this paper, call moral
acyclic orientations (MAOs).

Two approaches to count and sample MAOs have been
investigated recently. For counting, He, Jia, and Yu (2015)
discovered a recurrence: by guessing the unique source ver-
tex of a MAO (i.e., branching on the options), the orien-
tations of some edges get fixed, leaving some number of
smaller disjoint UCCGs; if a so-encountered UCCG is an
“almost clique,” then a fast special treatment is given. He
and Yu (2016) enhanced the algorithm by extracting at every
level of the recurrence a so-called core graph of the UCCG
in question. Ghassami, Salehkaleybar, and Kiyavash (2018)
observed that the basic recurrence admits a complexity
bound n∆+O(1) on graphs of maximum degree ∆, and read-
ily allows for uniform sampling.1 While these algorithms
can handle sparse graphs with hundreds of vertices, their
best known worst-case complexity bound is O(n!). Bern-
stein and Tetali (2017) took a different approach and consid-
ered sampling MAOs from an almost uniform distribution.
They showed that a simple edge-flip Markov chain mixes
in time that is exponential in the worst case but polynomial
under certain restrictions on the input UCCG.

In this paper we give new exact algorithms. Our algo-
rithms (i) yield improved worst-case complexity bounds and
(ii) also run faster in practice, by several orders of magnitude
in some cases. We begin in Section 2 by introducing more
formally the problem and the basic recurrence. Then, in Sec-
tion 3, we make a simple observation that gives us a dynamic
programming (DP) variant of the recursive algorithm with a
complexity bound ofO

(
2nn4

)
. In Section 4 we derive a bet-

ter bound for sparse graphs. Specifically, we assume that the
largest clique has size k, potentially much smaller than n,
and give another DP algorithm that requires O

(
k! 2kk2n

)
operations. Using standard routines, both algorithms can be
turned into uniform samplers. In Section 5 we report on em-
pirical results and draw conclusions as to which algorithm is
the fastest for what type of instances. We end in Section 6 by
discussing open questions and directions for future research.

1Our complexity bounds assume that two O(n logn)-bit inte-
gers can be added and multiplied with one (unit-cost) operation.
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Figure 1: Illustration of some key concepts. (a) A DAG, (b) its essential graph, (c) the UCCG components of the essential graph.
(d) The e-orientation of the larger UCCG. In addition to orienting the edges between vertices at different distances from e, we
also orient c→ d and c→ f because otherwise we would get new immoralities b→ c← d and b→ c← f , respectively. (e) The
remaining subproblem after removing directed edges.

2 Preliminaries
We will need a number of concepts and terminology, some
of which are rather standard in graph theory, and others
that are more specific and developed in the literature on
Markov equivalence classes (Andersson, Madigan, and Perl-
man 1997). This section also reviews the basic recurrence
discovered by He, Jia, and Yu (2015).

Basic Graph Terminology
A graph is a pair G = (V,E) with a finite vertex set V and
an edge set E ⊆ V × V \ {vv : v ∈ V }. Between two
vertices u, v there is an undirected edge, called line u− v,
if uv, vu ∈ E, and a directed edge, called arrow u→ v, if
uv ∈ E but vu 6∈ E. The graph is undirected (directed) if
all its edges are undirected (resp. directed).

A graph (S, F ) is a subgraph of G and contained in G if
S ⊆ V and F ⊆ E∩ (S×S); it is spanning (induced) if the
former (resp. latter) inclusion is an equality. We write G[S]
for the subgraph of G induced by S.

A graph is a directed cycle (undirected cycle) of length `
if its vertices can be ordered as v0, v1, . . . , v`−1 such that its
edges are vi−1→ vi (resp. vi−1− vi) for 1 ≤ i ≤ `, where
v` = v0. A graph is an immorality (a.k.a. v-structure) if its
vertices can be labeled as u, v, w such that the edge set is
{uv,wv}, i.e., the graph is u→ v←w (“the parents of v are
unmarried”). A graph is a flag if its vertices can be labeled as
u, v, w such that the edge set is {uv, vw,wv}, i.e., the graph
is u→ v−w.

A graph is acyclic if it contains no directed cycle of length
larger than two, moral if no induced subgraph is an immoral-
ity, and chordal if it is undirected and no subset of four or
more vertices induces an undirected cycle.

A graph G is a chain graph if it does not contain a semi-
directed cycle, that is, a subgraph that is a directed cycle
with at least one arrow u→ v such that u− v is a line in G.
A chain component (CC) of a chain graph is a connected
component of the undirected graph obtained by removing
all directed edges.

Markov Equivalence Classes
Let D = (V,A) be a DAG. The essential graph of D is the
graph E = (V,E), where E is the union of the edge sets
of the DAGs that are Markov equivalent to D (Andersson,

Madigan, and Perlman 1997). Thus the essential graph is a
unique representation of the Markov equivalence class. The
essential graph can be constructed efficiently (Meek 1995).

It is known that an essential graph is a chain graph where
each CC is an undirected and connected chordal graph
(UCCG) (Andersson, Madigan, and Perlman 1997). The ver-
tex sets of the CCs, V1, V2, . . . , Vc, partition V . Denoting by
µ(E) the size of the Markov equivalence class represented
by E , we thus have that (Gillispie and Perlman 2002)

µ(E) =

c∏
i=1

µ(E [Vi]) . (1)

In other words, the equivalence class represented by E and a
Cartesian product of the equivalence classes represented by
each chain component are in one-to-one correspondence.

Figure 1(a–c) shows an example of a DAG, the corre-
sponding essential graph, and its UCCG components.

Moral Acyclic Orientations
The above observations motivate focusing on the problems
of counting and sampling DAGs that belong to the equiva-
lence class represented by a given UCCG C. Each such DAG
is an orientation of C, that is, a spanning subgraph that con-
tains exactly one of the arrows u→ v and v→u for every
line u− v in C; furthermore, the orientation must be moral.
It is easy to see that the moral acyclic orientations (MAOs)
are exactly the members of the equivalence class (He, Jia,
and Yu 2015). Our key problem is thus the following:
#MAO

Input: An n-vertex UCCG C = (V,E).
Output: The number of MAOs of C, i.e., µ(C).

The Sum–Product Recurrence
It is known that every MAO of a UCCG has a unique source
vertex. He, Jia, and Yu (2015) observed that the MAOs with
a fixed source vertex s agree on the orientation of some
edges, while the remaining edges again leave an undirected
chordal subgraph. They call the union of the MAOs an s-
rooted essential graph; we use the term s-orientation for
brevity and because the graph may not be an essential graph.
Definition 1. Let C be a UCCG with vertex s. The s-
orientation of C, denoted by Cs, is the union of all MAOs
of C whose (unique) source vertex is s.
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Since an s-orientation is a chain graph whose chain com-
ponents are UCCGs (He, Jia, and Yu 2015, Thm. 7),

µ(C) =
∑
s∈V

µ(Cs) ,

where each µ(Cs) admits again the product rule (1).
To construct an s-orientation of a UCCG C, He, Jia, and

Yu (2015) give the following algorithm (sligthly modified):

Algorithm Orient: (C, s) 7→ Cs

O1 Create C′ by orienting each line u− v of C as u→ v if s
is closer to u than v in C (in the shortest-path distance).

O2 As long as C′ has a flag u→ v−w as an induced sub-
graph, update C′ by orienting v−w as v→w.

O3 Output C′.
Figure 1(d–e) shows an example of an s-orientation and

the resulting subproblems.

3 Dynamic Programming
We will make a simple but crucial observation, which shows
that the number of distinct subproblems encountered by the
sum–product recurrence is at most 2n, where n = |V | is the
number of vertices of the input UCCG. We will do this by
showing that every subproblem corresponds to an induced
subgraph of the input UCCG.

Let us first consider a single step in the recurrence.

Lemma 1. Let C be a UCCG with a vertex s. Let I be a
chain component of Cs. Then I is an induced subgraph of C.

Proof. We have that I is an induced subgraph of Cs and a
UCCG (He, Jia, and Yu 2015, Thm. 7). Since Cs is a sub-
graph of C (obtained by removing some edges), it suffices to
show that two vertices u and v are non-adjacent in I only if
they are non-adjacent in C. But this is immediate, as in C the
two vertices are either non-adjacent or connected by a line,
which is either unchanged or directed in Cs.

Encouraged by this observation we let µC(S) := µ(C[S])
for S ⊆ V . In particular, µC(V ) is the number of MAOs of
C. We next show that this function satisfies a sum–product
recurrence analogous to the one for UCCGs.

Proposition 2. Let C be a UCCG and S its vertex subset
that induces an UCCG C̃ := C[S]. We have that

µC(S) =
∑
s∈S

∏
T

µC(T ) ,

where T runs through the vertex sets of the CCs of C̃s, the
s-orientation of C[S].

Proof. By the recurrence of He, Jia, and Yu (2015) we have
that

µ(C̃) =
∑
s∈S

∏
T

µ(C̃s[T ]) ,

where T ranges as in the statement. By Lemma 1, we have
that C̃s[T ] = C̃[T ]. It remains to observe that C̃[T ] = C[T ],
for T ⊆ S (by basic properties of induced subgraphs).

Proposition 2 suggests a dynamic programming algorithm
that computes and stores the value µC(S) using the recur-
rence at most once for each S. Because potentially only a
small fraction of all subsets need be evaluated, we propose a
top-down, recursive implementation with memoization:
Algorithm MemoMao: C 7→ µ(C)
M1 Let a[·] be a storage indexed by S ⊆ V ; initially a[S]

returns 1 if S is a singleton, and NULL otherwise.
M2 Output Sum-Product(V ).
Function Sum-Product(S)

S1 If a[S] 6= NULL, return a[S]; else let a[S]← 0.
S2 For each vertex s ∈ S:
• Run Orient to get C′, the s-orientation of C[S].
• Let (Si)

c
i=1 be the vertex sets of the CCs of C′.

• Let a[S]← a[S] +
∏c

i=1 Sum-Product(Si).
S3 Return a[S].

The main result of this section now follows.
Theorem 3. The complexity of #MAO is O(2nn4).

Proof. Clearly it suffices to estimate the cost of step S2 of
Function Sum-Product. Consider an arbitrary subset S of V .
By step S1 we have that S2 is run at most once for each S.
One S2 needsO(|S|) additions andO(|S|2) multiplications.

To bound the number of other operations, required for
constructing each s-orientation and its component UCCGs,
consider a fixed s ∈ S. The lengths of the single-source
shortest paths and thus step O1 of Algorithm Orient can
be computed with O(n2) operations. Step O2 is seen to re-
quireO(n3) operations, by the following argument: for each
line v−w oriented as v→w, it suffices to consider once the
neighboring O(n) lines of the form w−x and test whether
v and x are adjacent (by v→x).

Thus O(n4) operations suffice for any fixed S, and
O(2nn4) operations in total.

Remark 1 (Bit complexity). The proof shows that other
operations than additions and multiplications dominate the
complexity bound, implying that the bit complexity of
#MAO is at most 2nn4 up to a factor logarithmic in n.
Remark 2 (Uniform sampling). In order to support efficient
uniform sampling of MAOs, for each encountered set S,
we store the constructed s-orientations and associate each
with the respective weight (i.e., the product) in the sum–
product formula. To enable constant-time sampling of an
s-orientation with a probability proportional to its weight,
we use the alias method (Walker 1977; Vose 1991). Starting
from S = V and proceeding recursively into the component
UCCGs, we can draw a random DAG in O(|V |+ |E|) time.

4 Using Tree Decomposition
We next present another DP algorithm that is fast if the max-
imal cliques of the input UCCG are small. The idea is to or-
ganize the cliques into a tree structure and tabulate the solu-
tions of subproblems at each clique for configurations whose
number is bounded by the clique size—this is the standard
paradigm of tree decomposition based DP.
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Cliques and Tree Decomposition
A tree decomposition (TD) of a graph (V,E) is a tree T
where each node x is labelled by a bag Bx ⊆ V such that (i)
the endpoints of each edge uv ∈ E occur in one of the bags,
and (ii) for each vertex v ∈ V the nodes whose bag contains
v induce a non-empty connected subtree of T . The width of
the tree decomposition is size of the largest bag minus one.

Chordal graphs are special in that they admit a TD, called
clique tree, whose bags are exactly the maximal cliques of
the graph (Blair and Peyton 1993). Such a decomposition
is optimal in the sense that no TD can have a smaller width.
Furthermore, one can construct a clique tree in time linear in
the graph size (Blair and Peyton 1993). Another useful prop-
erty of a clique tree is that the underlying graph is obtained
as its intersection graph, that is, by connecting two vertices
by an edge if and only if they both appear in same bag. We
will use this property to relate a MAO of C to a collection of
linear orders on the bags of a TD of C.
Definition 2. Let C be a UCCG and T its TD where the bag
Bx of each node x is a clique of C. Assign each node x of T
a linear order ≺x on Bx. The assignment is friendly to T if
the following holds for all adjacent nodes x, y:
(f1) The orders ≺x and ≺y are compatible, i.e., they are

equal when restricted to Bx ∩By .
(f2) Let X 3 x and Y 3 y be the components of T that

remain after disconnecting x and y. For any vertex v ∈
Bx ∩By , at most one of the following cases holds:
• For some node z ∈ X the bag Bz contains v and an-

other vertex u such that u ≺z v and u 6∈ By .
• For some node z ∈ Y the bag Bz contains v and an-

other vertex u such that u ≺z v and u 6∈ Bx.
Lemma 4. The MAOs of C are in one-to-one correspon-
dence with the linear order assignments friendly to T .

Proof. Consider first a MAO A of C. For each node x of
T , let ≺x be the edge set of the induced subgraph A[Bx].
Clearly, the assignment (≺x)x is unique. We need to show
that conditions (f1) and (f2) are satisfied. The former is ob-
vious. To check the latter condition, let x, y be adjacent
nodes and X,Y as in the statement of the condition. Let
v ∈ Bx ∩By . Now, if both cases of (f2) hold, then there ex-
ist vertices u and u′ suchA has the arrows u→ v and v←u′

even if u are u′ are not adjacent in C. ThusA contains an im-
morality, which is a contradiction, as desired.

For the other direction, let (≺x)x be a linear order assign-
ment that is friendly to T . Because of the property (ii) of the
definition of TD, friendliness condition (f1) also holds for
non-adjacent nodes x, y. Thus the linear orders determine
a unique orientation D of C: orient an edge uv as u→ v if
u, v ∈ Bx and u ≺x v for some x. It remains to show that
D is moral and acyclic. For the former, assume the contrary,
i.e., there is an immorality u→ v←u′. Then there must be
adjacent nodes x, y such that v ∈ Bx ∩ By , u ∈ Bx \ By ,
u′ ∈ By \ Bx. This violates (f2), implying D is moral. To
show acyclicity, assume the contrary:D contains a cycle. We
can assume that u→ v→w→u is the cycle, because if it is
longer, by the chordality of C we know that there is a short-
cut edge, and we can shorten the cycle. Let x, y, z be nodes

of T such that {v, w} ⊂ Bx, {w, u} ⊂ By , {u, v} ⊂ Bz .
Because T is a tree, the three unique simple paths from x
to y, y to z, and z to x all pass through a common node c.
By the definition of TD, we have that {u, v, w} ⊂ Bc. Thus
it holds that u ≺c v ≺c w ≺c u, which is a contradiction
because ≺c is a linear order. Thus D is acyclic.

The Algorithm
Lemma 4 allows us to formulate the DP algorithm in the
space of (friendly) assignments of linear orders on the bags
of a TD. For writing the DP steps, it will be convenient to
assume that T is a nice TD, that is, when rooted at some
node r, each node x is of one of the following types:

Leaf : no children.

Introduce: one child y, introduces a v ∈ V \ Bx, i.e.,
By = Bx ∪ {v}.
Forget: one child y, forgets a v ∈ Bx, i.e.,By = Bx\{v}.
Join: two children y, z, with Bx = By = Bz .

On a high level, the algorithm employs DP over the sub-
trees of a nice TD. For each subtree rooted at node x, it com-
putes a table Fx based on the tables Fy of the children y of
x. Finally, µ(C) is extracted from the table Fr at the root.

Define the table Fx for each node x as follows. Let X be
the set of nodes in the subtree rooted at x. For every linear
order ≺ on Bx and subset P ⊆ Bx, define Fx(≺, P ) as
the number of assignments of linear orders ≺y on By , for
y ∈ X , such that the following conditions hold:

• The assignment (≺y)y∈X is friendly to T [X].

• The linear order ≺x is equal to ≺.

• The set P consists of exactly those vertices in Bx that
have a predecessor in some node of the subtree that is not
present in Bx (a lost predecessor), i.e.,

P =
⋃
y∈X

{
v ∈ By ∩Bx : u ≺y v for some u ∈ By\Bx

}
.

We will need P to satisfy the friendliness condition (f2).

By Lemma 4, µ(C) is the sum of the values in the table
Fr. It remains to show how each table Fx is computed from
the tables of the child nodes. In the description, we include
derivations that prove the correctness of the algorithm, i.e.,
that the computed values, we denote by Fx[≺, P ], equal the
corresponding values, Fx(≺, P ). See Figure 2 for an illus-
tration of the algorithm.

Algorithm TreeMao: C 7→ µ(C)
T1 Let T be a nice TD of C, rooted at r.

T2 For each node x of T , from the leaves towards the root,
initialize the table Fx[·, ·] to zero, and then populate it:

• If x is a leaf node: Since the subtree has only one clique,
Bx, all linear orders are possible and there are no lost
predecessors. Thus we let Fx[≺, ∅] ← 1 for all linear
orders ≺ on Bx.
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• If x introduces vertex v: Let y be the child of x, and
consider all the elements Fy(≺, P ). The only way to
extend the assignment of linear orders from X \ {x} to
X , satisfying condition (f1), is by the linear order ≺′
obtained from ≺ by removing vertex v. Condition (f2)
cannot be violated by this extension. After the removal
of v, we need to add all of its successors in ≺ to the set
of vertices with lost predecessors, and thus we increase
Fx[≺′, P ∪ {u ∈ Bx : v ≺ u} \ {v})] by Fy[≺, P ].
• If x forgets vertex v: Let y be the child of x, and con-

sider all the elements Fy(≺, P ). To extend the assign-
ment of linear orders from X \ {x} to X , by condi-
tion (f1), we only need to consider the |Bx| possible
linear orders ≺′ obtained from ≺ by adding vertex v.
To satisfy condition (f2), it must hold that there is no
predecessor u ∈ By such that u ≺′ v that is also in P .
Thus we increase Fx[≺′, P ] by Fy[≺, P ].

• If x joins nodes y and z: Let Y and Z the nodes sets
of the subtrees rooted at y and z, respectively. Because
Bx = By = Bz , every assignment of linear orders
to X is obtained by combining assignments (≺w)w∈Y
and (≺w)w∈Z where ≺y = ≺z , and letting ≺x ← ≺y .
To satisfy condition (f2), we only need to ensure that
the sets of vertices with lost predecessors from Y andZ
are disjoint, and in the combined assignment, the set of
lost predecessors is obtained as the disjoint union. Thus
we let Fx[≺, P ]←

∑
S⊆P Fy[≺, S] · Fz[≺, P \ S].

T3 Output
∑
≺,P Fr[≺, P ].

We are ready to prove the main result of this section: a
parameterized complexity bound for #MAO:
Theorem 5. TreeMao requires O(k! 2kk2n) operations,
where k is the size of the largest clique in the input graph.

Proof. Constructing a clique tree requires O(nk2) opera-
tions, linear in the size of the input. The clique tree hasO(n)
nodes and width k − 1. It is transformed in O(nk2) opera-
tions into a nice TD with O(n) nodes and width k−1 (Bod-
laender, Bonsma, and Lokshtanov 2013). Thus the complex-
ity of step T1 is dominated by the bound being proven.

Each table Fx contains O(k! 2k) elements. It is easy to
see that for leaf, introduce and forget nodes, the computa-
tions take O(k2) operations per element. For a join node x,
we get the subtable Fx[≺, ·] from the subtables Fy[≺, ·]
and Fz[≺, ·] as the so-called subset convolution. Using fast
subset convolution it also costs k2 operations per element
(Björklund et al. 2007, Thm. 1). Now, because there are
O(n) nodes, we get the claimed complexity bound.

Practical Tricks
The DP algorithm described above was designed to optimize
the upper bound for the worst-case asymptotic complexity.
In applications, however, we care more about the actual run-
ning time. We next describe some optimizations in our im-
plementation that improve the running time in practice.

While a nice TD simplifies the description of the algo-
rithm, for practical performance it is better to implement in-
troducing, forgetting and joining in a single operation one

ab

abc

acf

ac

abc

abc

ac

acd

abe

forget

introduce introduce

forget

join

forget

introduce

acd

abc

abe acf

(ac, ∅) → 1
(ac, {c}) → 1

(acf, ∅) → 1
(afc, ∅) → 1

(abe, ∅) → 1
(aeb, ∅) → 1

(ab, ∅) → 1
(ab, {b}) → 1

(abc, ∅) → 1
(abc, {b}) → 1

(acb, ∅) → 1

(abc, ∅) → 1
(acb, ∅) → 1

(acb, {c}) → 1

(abc, ∅) → 1
(abc, {b}) → 1

(acb, ∅) → 1
(acb, {c}) → 1

(ac, ∅) → 1
(ac, {c}) → 3

(acd, ∅) → 1
(acd, {c}) → 3

(adc, ∅) → 1

Figure 2: A tree decomposition and a nice tree decomposi-
tion for the larger UCCG in Figure 1(c). For each node, the
portion of the dynamic programming table where a is the
first vertex of the linear order is shown.

a clique tree. This way the TD has the minimum number
of nodes and the tables can be kept as small as possible by
forgetting vertices that do not appear outside the subtree.

To obtain the complexity bound in Theorem 5, fast subset
convolution was crucial in join operations. Our preliminary
experiments showed that, in practice, the subtables Fx[≺, ·]
are often so sparse that a simple enumeration of all pairs of
nonzero elements in the child subtables Fy[≺, ·] and Fz[≺, ·]
and filtering out the cases where the arguments (i.e., vertex
subsets) intersect is faster than fast subset convolution. For
this to work, we store the tables in a way that allows for
sparsity, e.g., with balanced binary trees or hash tables.

In dense graphs some vertices tend to be symmetric: they
appear in the bags of exactly the same nodes, at least in sub-
trees. Symmetric vertices are interchangeable in the DP ta-
bles, and we save space and computation time by storing the
symmetric elements in the table only once.

Remark 3 (Sampling). The computed tables enable effi-
cient sampling of MAOs (cf. Remark 2). The only difficulty
is that for join nodes, the counting algorithm uses fast subset
convolution, which we cannot directly use for sampling the
partition of the set P of lost predecessors for the two chil-
dren. However, by enumerating all partitions, we obtain a
sample inO(2kn) time. We can also sample inO(|V |+ |E|)
time by a variant of the counting algorithm without fast sub-
set convolution, yielding a complexity of O(k!3kk2n).

5 Experiments
We have evaluated four exact algorithms for #MAO:

• MemoMao: The DP algorithm based on the sum–product
recurrence (Section 3).

• TreeMao: The DP algorithm based on tree decomposition
(Section 4), with all the practical optimizations.
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Figure 3: Running times of the four algorithms as functions of n and r on random UCCGs with n vertices and rn edges. The
box is between percetiles 25% and 75%; the whiskers are at 1% and 99%.

• He et al. 2015: The algorithm based on the sum–product-
recurrence without DP due to He, Jia and Yu (2015).

• He & Yu 2016: Improved version of the previous method
based on core graphs (He and Yu 2016).

We implemented all four algorithms in C++2, using only a
single thread of execution and exact integer computations.

Extending on the experimental setup from He, Jia and Yu
(2015), we run all the algorithms on randomly generated
UCCGs with n vertices and rn edges, where 16 ≤ n ≤ 1024
and 2 ≤ r ≤ 12. The random generation works in two
phases: First we generate a tree by starting from a single
vertex and repeatedly adding a vertex as a neighbor of a ran-
domly chosen vertex in the current tree until the tree has n
vertices. After this, we add edges between pairs of vertices
chosen uniformly at random, while on each step maintaining
the chordality of the graph, until the graph has rn edges.

For each r and n, we generated 1000 UCCGs and ran each
algorithm for every UCCG with time limit of 10 minutes and
memory limit of 4 GB. Figure 4 shows the median running
times of the algorithm, and Figure 3 shows the ranges of the
running times for slices r = 4 and n = 32.

From the results we see that MemoMao is the fastest al-
gorithm in most cases, but TreeMao is faster in sparse in-
stances. In the median running times in Figure 4, MemoMao
is faster than TreeMao when n ≤ 2r+4. The growth of the
running time of MemoMao as a function of r is remarkably
slow, and the improvement over He et al. 2015 on which
it is based is multiple orders of magnitude for large r. The
random fluctuations in the running times of MemoMao are
also very small. He & Yu 2016 does not do particularly well
except for very dense instances such as n = 32, r = 12.

6 Concluding Remarks
We have presented two new exact algorithms to count and
uniformly sample DAGs that are Markov equivalent to a
given DAG. We focused on the core case where the equiv-
alence class is represented by an undirected, connected,

2github.com/ttalvitie/count-mao

and chordal essential graph. Common to both algorithms,
MemoMao and TreeMao, is a systematic exploitation of the
overlapping subproblems structure using dynamic program-
ming. The experiments confirmed that the algorithms not
only lower the known asymptotic worst-case complexity up-
per bounds, but also are faster than previously presented al-
gorithms over a range of inputs.

To enhance the DP algorithms, one could seek more effi-
cient ways to exploit symmetries, similar to those by He, Jia,
and Yu (2015) and He and Yu (2016). Another direction is to
implement hybrid methods, for instance, by letting TreeMao
solve sparse subproblems encountered by MemoMao.

Some fundamental theoretical questions remain open.
Can one solve #MAO in polynomial time; is it #P-hard?
Does the problem admit a fully polynomial randomized ap-
proximation scheme (FPRAS)? We find these questions in-
triguing, since the related problem of counting acyclic ori-
entations is polynomial time for chordal graphs, but hard in
general (Vertigan and Welsh 1992), and an FPRAS is only
known for some special cases (Bordewich 2004).

We may ask whether, in practice, computing the size of
a Markov equivalence class is actually easy. This viewpoint
is supported by the typical size of equivalence classes, i.e.,
the ratio of the number of all DAGs to the number of essen-
tial graphs on the same vertices. While the exact number of
essential graphs is only known for small n (Steinsky 2013;
Radhakrishnan, Solus, and Uhler 2017), we know that about
every 14th DAG is in itself an essential graph and thus
the only member of the equivalence class (Steinsky 2003;
2004). Even more strikingly, the average equivalence class
size appears to be asymptotically less than four (Gillispie
and Perlman 2002). As most graphs are dense, these ra-
tios mainly concern properties of dense graphs—we do not
know whether the ratios are significantly larger or smaller
for sparse graphs, which are more relevant for practical ap-
plications (Gillispie and Perlman 2002, p. 152). Fortunately,
in a sparse essential graph, we may expect that the chain
components typically are either large and sparse, or small
and potentially dense. In either case, one or the other of the
presented two DP algorithms scales well.
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