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Abstract

Visual place recognition is essential for large-scale simulta-
neous localization and mapping (SLAM). Long-term robot
operations across different time of the days, months, and
seasons introduce new challenges from significant environ-
ment appearance variations. In this paper, we propose a novel
method to learn a location representation that can integrate
the semantic landmarks of a place with its holistic represen-
tation. To promote the robustness of our new model against
the drastic appearance variations due to long-term visual
changes, we formulate our objective to use non-squared `2-
norm distances, which leads to a difficult optimization prob-
lem that minimizes the ratio of the `2,1-norms of matrices. To
solve our objective, we derive a new efficient iterative algo-
rithm, whose convergence is rigorously guaranteed by theory.
In addition, because our solution is strictly orthogonal, the
learned location representations can have better place recog-
nition capabilities. We evaluate the proposed method using
two large-scale benchmark data sets, the CMU-VL and Nord-
land data sets. Experimental results have validated the effec-
tiveness of our new method in long-term visual place recog-
nition applications.

During visual simultaneous localization and mapping
(SLAM), especially in large-scale loopy environments,
place recognition is essential to detect and close loops to re-
duced uncertainty for constructing maps and to improve lo-
calization accuracy (Lowry et al. 2016). Recently, driven by
several critical applications of SLAM, such as self-driving,
long-term place recognition has attracted increased atten-
tions to improve outdoor localization when a robot (or an
autonomous vehicle) needs to operate in a dynamic environ-
ment for long periods of time. Besides traditional perception
difficulties, long-term place recognition introduces addi-
tional challenges mainly caused by significant visual appear-
ance changes of the environment over time (Sünderhauf and
Protzel 2011; Zhang, Han, and Wang 2016; Latif et al. 2017;
Han et al. 2018). For example, when an autonomous vehi-
cle drives through the same place at different time of the
day (e.g., noon vs. midnight), the same place can look very
different due to dramatic illumination changes. Similarly,
at different time and seasons, the changing weather (e.g.,
sunny vs. snowy) and vegetation (e.g., trees with or with-
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out leaves) during long-term autonomy cause the same chal-
lenge to place recognition.

Over the past several years, a number of methods have
been proposed to address this critical problem of long-term
place recognition (Lowry et al. 2016). From the perspective
of features, these methods are based either on local (e.g.,
SIFT) or global (e.g., HOG or deep features) features; from
the perspective of localization cues, these methods can be
generally grouped into two categories, based on either holis-
tic layouts or landmarks, respectively. The holistic layout of
the environment is typically represented using global fea-
tures (Han et al. 2017; Wu and Rehg 2011) that are learned
or manually constructed to encode long-term changes. Very
recently, several techniques take advantages of semantic
landmarks (e.g., traffic lights and buildings) within the
environment as an intermediate representation to address
long-term place recognition (Yuan, Chan, and Lee 2011;
Sunderhauf et al. 2015). Although these methods using ei-
ther holistic layouts or landmarks have shown promising
place recognition capability, the research problem of how
to integrate these two localization cues in a principled way
has not yet been well addressed.

In this paper, we present a novel method to learn location
representations. It first learns a projection from the seman-
tic landmarks in a place image. Then it projects the holis-
tic image representation of the same place into the learned
subspace. As a result, the learned location representation
simultaneously captures the information from both the se-
mantic landmarks of the place and its holistic character-
ization. In the proposed objective to learn the projection
from the landmarks of a place image, we aim to preserve
both global and local consistencies of the landmarks in the
projected subspace, which leads to an optimization prob-
lem that minimizes the ratio of the matrix traces. By taking
into account the drastic visual variations at the same place
over long period of time, we further develop the proposed
objective by replacing the squared `2-norm distances used
in most traditional learning models by the non-squared `2-
norm distances, such that the robustness of the learned loca-
tion representations against outlying visual characterizations
is promoted (Gao 2008; Wright et al. 2009; Nie et al. 2011;
Wang, Nie, and Huang 2013b; Nie et al. 2013; Wang, Nie,
and Huang 2014b; Liu and Wang 2015; Liu et al. 2017;
2018; Liu and Wang 2018). The contributions of this paper
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can be summarized as follows:

• We propose a new representation learning method to in-
tegrate semantic landmarks and holistic layouts, which is
more descriptive and robust for place recognition. To ex-
plicitly address significant appearance changes over long
periods of time, we formulate a new objective function to
minimize the ratio of the `2,1-norms of matrices.

• To solve the challenging optimization problem, we derive
an efficient iterative algorithm with theoretically guaran-
teed convergence. It is worth noting that, the solution ob-
tained by our algorithm is strictly orthogonal. As a result,
our solution has a better data representation capability that
leads to improved long-term place recognition results.

Problem Formulation and Our New Method
In this section, we propose to learn the location representa-
tion that is robust to visual appearance variations in long-
term place recognition by integrating the holistic informa-
tion and the semantic landmarks at a place.

We first introduce the notations used in the following of
our paper. Given a matrix M = [mij ] ∈ <d×n, its Frobenius
norm is denoted as ‖M‖F and its `2,1-norm is defined as

‖M‖2,1 =
∑
i

∥∥mi
∥∥
2

=
∑
i(
√∑

jm
2
ij). If M is a square

matrix, its trace is defined as tr (M) =
∑n
i=1mii.

Suppose that we have a set of training images for varied
scenarios (e.g., different seasons, months, angles, etc.). We
denote each image in the training set as X = {x,X}, where
x ∈ <d is the holistic representation of the image and X =
[x1, . . . ,xn] ∈ <d×n denotes the n semantic landmarks in
the same image. Here, xi ∈ <d denotes the feature vector of
one semantic landmark.

Given the training images {X}, our goal is to learn an
integrated representation of y = f (X ) for each image X ,
which captures both holistic and landmark information in
the image and then can be used for place recognition in the
test. Ideally, different images of the same place should have
similar representations, although they could be captured
from various scenarios over a long duration. To achieve this,
we look for a projection to map similar places into similar
representations in a new subspace. Meanwhile, we also hope
that different scenarios can still be discriminated. Because
semantic landmarks have shown promising performance to
improve long-term place recognition, we learn the projection
g(·) from landmarks within the scenes. Then the learned pro-
jection will be used to project the holistic representation of
an image to obtain its integrated representation by comput-
ing y = f (X ) = h (g(X),x), which is expected to capture
both holistic and landmark information. To begin with, we
learn the projection g(·) to retain both global and local con-
sistencies of semantic landmarks.

Learn to Integrate Holism and Landmarks
Our goal is to learn a projection from the original feature
space to a subspace while preserving as much information
as possible. To achieve this, we use the Globally and Locally
consistent Unsupervised Projection (GLUP) method pro-
posed in our previous work (Wang, Nie, and Huang 2014a).

This method learns a linear projection W ∈ <d×r from
the landmarks X in a training image, which will project
the holistic representation x of the same image in high d-
dimensional space into a vector y in a lower r-dimensional
space by computing y = WTx where r < d, such that the
geometrical structures of the input data will be preserved
after the projection. We present some details of the GLUP
method (Wang, Nie, and Huang 2014a) as follows.

Mathematically, suppose we have x̄ = 1
n

∑n
i=1 xi, we

can learn the projection W by maximizing the following ob-
jective to retain as much information as possible following
principal component analysis (Jolliffe 1986):

JGlobal (W) = tr
(
WTSGW

)
=

n∑
i=1

∥∥WT (xi − x̄)
∥∥2
2
,

s.t. WTW = I , (1)

where SG =
∑n
i=1 (xi − x̄) (xi − x̄)

T measures the co-
variance of X. Here, we remove the constant factor 1

n for
brevity. Maximizing JGlobal enforces geometrical structures
of data in projected subspace to be close to that in the origi-
nal space. Thus W helps preserve geometrical data distribu-
tion when we perform the projection.

On the other hand, landmarks with close semantics should
be close to each other in the projected subspace. To this end,
we minimize the local variance around every landmark in
the learned subspace for better local consistency. We useNi
to denoteK-nearest neighborhood of xi to define its locality
and use x̄i = 1

K+1

∑
xj∈Ni∪{xi} xj to represent the mean

vector of the neighborhood of xi. Then we can achieve the
local consistency by minimizing the following objective:

JLocal (W) = tr
(
WTSLW

)
=

n∑
i=1

∑
xj∈Ni∪{xi}

∥∥WT (xj − x̄i)
∥∥2
2
,

s.t. WTW = I ,

(2)

where SL =
∑n
i=1 SLi and

SLi =
∑

xj∈Ni∪{xi}

(xj − x̄i) (xj − x̄i)
T
. (3)

Again, the constant factor 1
K+1 is omitted here for brevity.

In light of the two objectives above that capture the global
and local consistencies separately, we now turn to learn the
projection by simultaneously capturing the consistencies of
both by using following GLUP objective (Wang, Nie, and
Huang 2014a):

min
WT W=I

tr
(
WTSLW

)
tr (WTSGW)

=

∑n
i=1

∑
xj∈Ni∪{xi}

∥∥WT (xj − x̄i)
∥∥2
2∑n

i=1 ‖WT (xi − x̄)‖22

=

∥∥WTA
∥∥2

F

‖WTB‖2F
,

(4)
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where each column of B is one (xi − x̄) and each column
of A is one (xj − x̄i).

Despite its success in a variety of real-world applications,
the GLUP objective in Eq. (4) uses squared `2-norm dis-
tances, which is notoriously know to be sensitive to outlying
features and samples. However, in long-term autonomy, the
scene at the same location could change drastically in dif-
ferent scenarios, which motivate us to further develop the
GLUP objective in Eq. (4) to make it more robust against
significant scene changes as follows.

First, we notice that the following equality holds when the
constraint of WTW = I is given:∥∥bi −WWTbi

∥∥2
2

=
(
bi −WWTbi

)T (
bi −WWTbi

)
= bTi bi − 2bTi WWTbi + bTi WWTbi

= ‖bi‖22 −
∥∥WTbi

∥∥2
2
,

(5)

by which we can write the objective in Eq. (4) as following:

min
WT W=I

∥∥WTA
∥∥2

F

‖B‖2F − ‖B−WWTB‖2F
(6)

=

∑s
i=1

∥∥WTai
∥∥2
2∑d

i=1 ‖bi‖
2
2 −

∑d
i=1 ‖bi −WWTbi‖22

.

Then, motivated by prior works that to promote the ro-
bustness of our model against sample (data) outliers us-
ing not squared `2-norm distances (Gao 2008; Wright et al.
2009; Nie et al. 2011; 2013; Wang, Nie, and Huang 2013b;
2014b; Liu and Wang 2015; Liu et al. 2017; 2018; Liu and
Wang 2018), we develop our new objective as following:

min
WT W=I

∑s
i=1

∥∥WTai
∥∥
2∑d

i=1 ‖bi‖2 −
∑d
i=1 ‖bi −WWTbi‖2

=

∥∥∥(WTA
)T∥∥∥

2,1∥∥∥(B)
T
∥∥∥
2,1
−
∥∥∥(B−WWTB)

T
∥∥∥
2,1

.

(7)

In Eq. (7), we replace the squared errors in Eq. (6) by not
squared errors for better robustness. Here we note that we
proposed a similar objective to Eq. (7) in our previous work
(Han, Wang, and Zhang 2018) that uses the `1-norm dis-
tances in its objective, which can tolerate the compromise
between feature outliers and data outliers. However, in the
real-world applications, in contrast to visual occlusions or
image corruptions that happen rarely, long-term place recog-
nition uses images with drastic scene variances thereby data
outliers by nature. Thus, in this paper we propose our new
objective in Eq. (7) to focus on alleviating the impacts of
outlying data samples.

Visual Place Recognition via Integrated Image
Representations
Upon solving the optimization problem in Eq. (7) (using
optimization algorithm in the next section), we can obtain

the new representation of an input image by computing
y = WTx, such that the holistic information is integrated
with the semantic landmarks.

After obtaining the learned representation which inte-
grates landmark and holistic information, we can calcu-
late the matching scores by using cosine similarity between
query image and each template image in the projected sub-
space (Naseer et al. 2014; 2015; Han et al. 2017), and then
determine whether two locations are matched by comparing
the score with a user-defined threshold. Compared with ex-
isting long-term place recognition methods that use either
holistic information or semantic landmarks only, our new
method is more advantageous since it learns an integrated
representation that can capture both insights. Due to the
non-squared `2-norm distances, our method is more robust
against drastic visual appearance changes caused by outliers
or long-term appearance variations, which hence improves
the accuracy of place recognition. It is worth noting that,
though in this work we use image-based place recognition,
our proposed method for integrated representation learning
can be readily applied in more sophisticated long-term place
recognition methods, such as sequence-based matching.

Optimization Algorithm
Our new objective in Eq. (7) can be seen as a special case of
the following general optimization problem:

min
v∈C

f(v)

g(v)
, where g(v) ≥ 0 (∀ v ∈ C) , (8)

which has been studied in our previous works (Wang, Nie,
and Huang 2014a; 2014b). The algorithm to solve Eq. (8)
was also presented, which is summarized in Algorithm 1 1

(Wang, Nie, and Huang 2014a; 2014b). Theorem 1 and The-
orem 2 guarantees the convergence of Algorithm 1 and that
it converges fast.

Algorithm 1: The algorithm to solve problem (8)
(Wang, Nie, and Huang 2014a, Algorithm 1)(Wang, Nie,
and Huang 2014b, Algorithm 2).

1 1. Set t = 1 and initialize v ∈ C;
2 while not converge do
3 2. Calculate λt = f(vt)

g(vt)
;

4 3. Update vt+1 by solving the following problem:

vt+1 = argmin
v∈C

f(v)− λtg(v) . (9)

4. t = t+ 1.;
5 end

Theorem 1 (Wang, Nie, and Huang 2014a; 2014b, Theo-
rem 2) Algorithm 1 decreases the objective value of the prob-
lem in Eq. (8) in each iteration till converges.

1It can be verified that the denominator in Eq (7) is always
greater than 0 which satisfies the constraint in Eq. (8).
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Theorem 2 (Wang, Nie, and Huang 2014a; 2014b, Theo-
rem 3) Algorithm 1 is a Newton’s method to find the global
solution of Eq. (8).

Now we turn to solve our objective in Eq. (7). According
to Step 3 of Algorithm 1, we need to solve the following
optimization problem in every iteration (Here we drop the
subscript of λ for brevity.):

min
WT W=I

∥∥∥(WTA
)T∥∥∥

2,1
(10)

− λ
(∥∥∥(B)

T
∥∥∥
2,1
−
∥∥∥(B−WWTB

)T∥∥∥
2,1

)
,

which is equivalent to the following optimization problem:

min
WT W=I

∥∥∥(WTA
)T∥∥∥

2,1
+ λ

∥∥∥(B−WWTB
)T∥∥∥

2,1
,

(11)
because

∥∥∥(B)
T
∥∥∥
2,1

is a constant for a given training data

set.
In the following, we derive the solution algorithm of the

optimization problem in Eq. (11) using the Alternating Di-
rection Method of Multipliers (ADMM) (Boyd et al. 2011).
ADMM was originally proposed for convex problems and
was extended to nonseparable, nonconvex problems. Given
the following constrained optimization problem:

min
X,Z

f(X,Z), s.t. h(X,Z) = 0 , (12)

ADMM gives the solution through the updating procedures
described in Algorithm 2 (Boyd et al. 2011).

Algorithm 2: ADMM Method to solve Eq. (12).
1 Initialize µ > 0 and set ρ > 1;
2 while not converge do
3 1. Update X by solving Xk+1 =

arg minX(f(X,Zk) + µ
2 ‖h(X,Zk) + 1

µYk‖2F );
4 2. Update Z by solving

Zk+1 = arg minZ(f(Xk+1,Z) +
µ
2 ‖h(Xk+1,Z) + 1

µYk‖2F );
5 3. Update Y by Yk+1 = Yk + µh(Xk+1,Zk+1);
6 4. Update µ by µ = ρµ;
7 end

We first rewrite Eq. (11) as the following equivalent opti-
mization problem:

min
W,F,G,H

‖F‖2,1 + λ ‖G‖2,1 ,

s.t. F =
(
WTA

)T
,G =

(
B−WWTB

)T
,

H = W,HTH = I ,

(13)

in which the orthonormal constraint on W is implicitly im-
posed through to the constraints of H = W and HTH = I.

According to Algorithm 2, we need to solve the following
optimization problem:

min
W,F,G,H,Λ,Σ,Θ

‖F‖2,1 + λ ‖G‖2,1

+
µ

2

∥∥∥∥F− (WTA
)T

+
1

µ
Λ

∥∥∥∥2
F

+
µ

2

∥∥∥∥G− (B−HWTB
)T

+
1

µ
Σ

∥∥∥∥2
F

+
µ

2

∥∥∥∥W −H +
1

µ
Θ

∥∥∥∥2
F

s.t. HTH = I , (14)

where Λ ∈ <s×r is the Lagrangian multiplier for the con-
straint of F =

(
WTA

)T
, Σ ∈ <s×d is the Lagrangian

multiplier for the constraint of G =
(
B−WWTB

)T
, and

Θ ∈ <p×r is the Lagrangian multiplier for the constraint of
H = W.

Step 1. Initialization.
Step 2. We solve F, when we fix the other variables:

min
F
‖F‖2,1 +

µ

2
‖F−M‖2F , (15)

where we denote M =
(
WTA

)T − 1
µΛ for brevity.

The optimization problem in Eq. (15) can be decoupled
row by row to solve the following subproblems:

min
f i

1

µ

∥∥f i∥∥
2

+
1

2

∥∥f i −mi
∥∥2
2
. (16)

The solution of Eq. (16) can be derived as:

f i =

{(
1− 1

µ‖mi‖2

)
mi,

∥∥mi
∥∥
2
> 1/µ ,

0
∥∥mi

∥∥
2
≤ 1/µ .

(17)

Step 3. We solve G, when we fix the other variables:

min
G

λ ‖G‖2,1 +
µ

2
‖F−N‖2F , (18)

where we denote N =
(
B−HWTB

)T − 1
µΣ for brevity.

Similarly, the optimization problem in Eq. (18) can be de-
coupled row by row to solve the following subproblems:

min
gi

λ

µ

∥∥gi∥∥
2

+
1

2

∥∥gi − ni
∥∥2
2
. (19)

Thus, the solution of Eq. (19) can be derived as:

gi =

{(
1− λ

µ‖ni‖2

)
ni,

∥∥ni∥∥
2
> λ/µ ,

0
∥∥ni∥∥

2
≤ λ/µ .

(20)

Step 4. We solve H, when we fix the other variables:

max
H

tr
(
HTZ

)
s.t. HTH = I , (21)

where we denote Z = (BT −G− 1
µΘ)TBTW+W+ 1

µΘ

for brevity. According to (Wang, Nie, and Huang 2013a,
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Theorem 1), the problem in Eq. (21) can be solved by com-
puting the SVD of Z: if svd (Z) = UAVT , the solution of
Eq. (21) is given by UVT .

Step 5. We solve W, when we fix the other variables:

min
W

∥∥∥∥F− (WTA
)T

+
1

µ
Λ

∥∥∥∥2
F

+

∥∥∥∥W −H +
1

µ
Θ

∥∥∥∥2
F

+

∥∥∥∥G− (B−HWTB
)T

+
1

µ
Σ

∥∥∥∥2
F
.

(22)

Because there is no constraint in Eq. (22), we can solve it by
taking the derivative of it w.r.t. W and setting the derivative
to be equal to 0, which leads to the following solution:

W =
(
AAT + BBT + I

)−1
Q . (23)

where Q = A
(
F + 1

µΛ
)

+ B(BT − G − 1
µΘ)H +(

H− 1
µΘ
)

.
Step 6. Update Λ, Σ, Θ and µ as step 3 and 4 in Algo-

rithm 2.

Experimental Results
In this section, we evaluate the proposed method for long-
term visual place recognition by experimenting with two
large-scale public data sets: the CMU-VL data set with dif-
ferent month scenarios and the Nordland data set with dif-
ferent season scenarios.

In our experiments, different feature extraction methods
are used for extracting visual features from the video frames
including: (1) color features (Lee, Kim, and Myung 2013),
(2) Local Binary Patterns (LBP) visual features (Qiao, Cap-
pelle, and Ruichek 2015), (3) Speeded Up Robust Fea-
tures (SURF) (Badino, Huber, and Kanade 2012), (4) Deep
features learned by Convolutional Neural Network (CNN)
(Sunderhauf et al. 2015), and (5) Histogram of Oriented Gra-
dients (HOG) features (Naseer et al. 2014). Compared to
these raw visual featurs, our method can improve the repre-
sentation capability by incorporating landmark relationships
and preserving their global and local consistencies.

We test the performance of our method by conducting
both quantitative and qualitative evaluations. Baseline and
recent methods, including the BRIEF-GIST (Sünderhauf and
Protzel 2011), Normalized Gradients (NormG) of grayscale
images (used in SeqSLAM (Milford and Wyeth 2012)), and
the methods that simply based upon color, LBP, SURF, CNN,
HOG features, are compared in our experiments.

Study of the Hyperparameter K of Our New
Method
To begin with our experiments, we first study the impacts of
the hyperparameter K of our method. We first experiment
with the Nordland data set. Since K denotes the number of
nearest neighbors of a semantic landmark xi, we vary it from
2 to 5 and report the objective value in Eq. (7) over iterations
in the top panel of Fig. 1. We can see that, the objective value
converges fastest (from 1.05 to 0.0027) when K = 2, while
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Figure 1: Top: Objective value changes with different K
value on the Nordland data set. Bottom: Objective value up-
dates with K = 2 on the CMU-VL data set.

the objective value converges slower when K is selected as
other values. The same observation can be seen on the CUM-
VL data set. Thus, we empirically select K = 2 in all our
following experiments.

Study of the Convergence of Our New Method
The proposed algorithm to solve our new objective is an iter-
ative algorithm. Thus, we study its convergence empirically.
Fig. 1 shows our algorithm does converge on the both ex-
perimental data sets. In addition, the bottom panel of Fig. 1
shows the variation of the objective value of our method
over iterations on the CMU-VL data set. We can see that 1):
the objective value monotonically decreases over iterations
and 2): the objective value converges very fast (from 5.78 to
0.04). These observations clearly demonstrate the correct-
ness and effectiveness of our new method.

Study of the Orthogonality of the Solutions of Our
New Method
In our algorithm, W is optimized by approximating H,
where H = UVT is strictly orthogonal. Thus the opti-
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Figure 2: The heatmaps of WTW by a competing method
(top) and our new method (bottom).

mized W should also be orthogonal. Although many ex-
isting methods tried to solve the orthogonal constraint so-
lution, most of them indeed cannot get strictly orthogonal
solution, such as (Xiang, Nie, and Zhang 2008; Wang, Nie,
and Huang 2013b). Fig. 2 shows the heatmaps of WTW
obtained by (Xiang, Nie, and Zhang 2008) and by our new
method. We can see that our method can get a strictly or-
thogonal W while the counterpart fails.

Results on the CMU-VL (Different Months) and
Nordland (Different Seasons) Datasets
The CMU Visual Localization (CMU-VL) data set (Badino,
Huber, and Kanade 2012) was recorded by two cameras in-
stalled on a vehicle traveling the same route five times in
different months, while the Nordland data set (Sünderhauf,
Neubert, and Protzel 2013) was obtained from a ten-hour
long train journey in different seasons.

There are many challenges in visual place recognition
in both data sets, such as new buildings and dynamic ob-
jects (cars, pedestrians, etc.). Views change due to possi-
ble route deviations, and above all, as well as long-term
appearance variations due to vegetation, illumination and

weather changes in different seasons or months. To train our
proposed model, the same semantic objects and landmarks
recorded in different scenarios are utilized to learn the opti-
mal projection matrix W, such as stop signs, trees, houses,
etc. in CMU-VL and railroad tracks, trees, houses, among
others in Nordland.

For quantitative evaluation and comparison, we use
precision-recall curves as a metric following (Sunderhauf et
al. 2015; Zhang, Han, and Wang 2016), where high area un-
der the curve means both high recall (relates to a low false
positive rate) and high precision (relates to a low false neg-
ative rate). Inspired by the conclusion drawn by (Han et al.
2017) that HOG features perform the best among other types
of raw visual features, we extract HOG features from land-
marks as the input to generate the integrated representation
by the proposed method. As is shown in Fig. 4 and Fig. 5,
our new method outperforms the previous HOG-based fea-
tures, which again demonstrates that the holism-landmark
integration by our method can improve representation capa-
bility.

The qualitative results obtained by our method are re-
ported in Fig. 3. The first half shows the examples of
matched frames between October (top row) and December
(bottom row) of the CMU-VL data set and the bottom half
shows the matched frames between Winter (top row) and
Spring (bottom row) of the Nordland data set, respectively.
The matched frames are determined by the maximum simi-
larity score between two compared frames. From Fig. 3 we
see that scenes in same location exhibit significant appear-
ance variations in various scenarios, yet our new method can
still recognize correctly.

Conclusion
In this paper, we proposed a novel method to combine the
holistic information with landmarks of a place to construct
an integrative representation, which can help improve long-
term visual place recognition. Our method is implemented
by minimizing the ratio objective with the `2,1-norm of ma-
trices that enforces both global and local consistency of the
input data in the projected subspace while staying robust-
ness to sample outliers. To solve the challenging ratio ob-
jective, we proposed a new optimization algorithm which
can theoretically guarantee a sequence decreasing solution.
We conducted experiments on two large-scale public bench-
mark data sets collected for long-term place recognition and
promising results demonstrated the effectiveness and supe-
riority of our proposed method.
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Figure 3: The matched scenes by our proposed method on CMU-VL (upper) and Nordland (lower) data set.
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Figure 4: The Precision-Recall curve of our proposed
method compared with other methods on CMU-VL data set.
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Figure 5: The Precision-Recall curve of our proposed
method compared with other methods on Nordland data set.
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