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Abstract

As a unique biometric feature that can be recognized at a dis-
tance, gait has broad applications in crime prevention, forensic
identification and social security. To portray a gait, existing
gait recognition methods utilize either a gait template, where
temporal information is hard to preserve, or a gait sequence,
which must keep unnecessary sequential constraints and thus
loses the flexibility of gait recognition. In this paper we present
a novel perspective, where a gait is regarded as a set consisting
of independent frames. We propose a new network named
GaitSet to learn identity information from the set. Based on
the set perspective, our method is immune to permutation
of frames, and can naturally integrate frames from different
videos which have been filmed under different scenarios, such
as diverse viewing angles, different clothes/carrying condi-
tions. Experiments show that under normal walking conditions,
our single-model method achieves an average rank-1 accuracy
of 95.0% on the CASIA-B gait dataset and an 87.1% accuracy
on the OU-MVLP gait dataset. These results represent new
state-of-the-art recognition accuracy. On various complex sce-
narios, our model exhibits a significant level of robustness. It
achieves accuracies of 87.2% and 70.4% on CASIA-B under
bag-carrying and coat-wearing walking conditions, respec-
tively. These outperform the existing best methods by a large
margin. The method presented can also achieve a satisfactory
accuracy with a small number of frames in a test sample, e.g.,
82.5% on CASIA-B with only 7 frames. The source code has
been released at https://github.com/AbnerHqC/GaitSet.

1 Introduction
Unlike other biometrics such as face, fingerprint and iris,
gait is a unique biometric feature that can be recognized at a
distance without the cooperation of subjects and intrusion to
them. Therefore, it has broad applications in crime prevention,
forensic identification and social security.

However, gait recognition suffers from exterior factors
such as the subject’s walking speed, dressing and carrying
condition, and the camera’s viewpoint and frame rate. There
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Figure 1: From top-left to bottom-right are silhouettes of a
completed period of a subject in CASIA-B gait dataset.

are two main ways to identify gait in literature, i.e., regarding
gait as an image and regarding gait as a video sequence.
The first category compresses all gait silhouettes into one
image, or gait template for gait recognition (He et al. 2019;
Takemura et al. 2018a; Wu et al. 2017; Hu et al. 2013).
Simple and easy to implement, gait template easily loses
temporal and fine-grained spatial information. Differently,
the second category extracts features directly from the orig-
inal gait silhouette sequences in recent years (Liao et al. 2017;
Wolf, Babaee, and Rigoll 2016). However, these methods are
vulnerable to exterior factors. Further, deep neural networks
like 3D-CNN for extracting sequential information are harder
to train than those using a single template like Gait Energy
Image (GEI) (Han and Bhanu 2006).

To solve these problems, we present a novel perspective
which regards gait as a set of gait silhouettes. As a periodic
motion, gait can be represented by a single period. In a sil-
houette sequence containing one gait period, it was observed
that the silhouette in each position has unique appearance,
as shown in Fig. 1. Even if these silhouettes are shuffled,
it is not difficult to rearrange them into correct order only
by observing the appearance of them. Thus, we assume the
appearance of a silhouette has contained its position informa-
tion. With this assumption, order information of gait sequence
is not necessary and we can directly regard gait as a set to
extract temporal information. We propose an end-to-end deep
learning model called GaitSet whose scheme is shown in
Fig. 2. The input of our model is a set of gait silhouettes.
First, a CNN is used to extract frame-level features from
each silhouette independently. Second, an operation called
Set Pooling is used to aggregate frame-level features into
a single set-level feature. Since this operation is applied on
high-level feature maps instead of the original silhouettes, it
can preserve spatial and temporal information better than gait
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template. This will be justified by the experiment in Sec. 4.3.
Third, a structure called Horizontal Pyramid Mapping is used
to map the set-level feature into a more discriminative space
to obtain the final representation. The superiorities of the
proposed method are summarized as follows:

• Flexible Our model is pretty flexible since there are no
any constraints on the input of our model except the size
of the silhouette. It means that the input set can contain
any number of non-consecutive silhouettes filmed under
different viewpoints with different walking conditions.
Related experiments are shown in Sec. 4.4

• Fast Our model directly learns the representation of gait
instead of measuring the similarity between a pair of gait
templates or sequences. Thus, the representation of each
sample needs to be calculated only once, then the recog-
nition can be completed by calculating the Euclidean dis-
tance between representations of different samples.

• Effective Our model greatly improves the performance
on the CASIA-B (Yu, Tan, and Tan 2006) and the OU-
MVLP (Takemura et al. 2018b) datasets, showing its strong
robustness to view and walking condition variations and
high generalization ability to large datasets.

2 Related Work
In this section, we will give a brief survey on gait recognition
and set-based deep learning methods.

2.1 Gait Recognition
Gait recognition can be grouped into template-based and
sequence-based categories. Approaches in the former cate-
gory first obtain human silhouettes of each frame by back-
ground subtraction. Second, they generate a gait template
by rendering pixel level operators on the aligned silhou-
ettes (Han and Bhanu 2006; Wang et al. 2012). Third,
they extract the representation of the gait by machine
learning approaches such as Canonical Correlation Anal-
ysis (CCA) (Xing et al. 2016), Linear Discriminant Anal-
ysis (LDA) (Bashir, Xiang, and Gong 2010) and deep
learning (Shiraga et al. 2016). Fourth, they measure the sim-
ilarity between pairs of representations by Euclidean dis-
tance or some metric learning approaches (Wu et al. 2017;
Takemura et al. 2018a). Finally, they assign a label to the
template by some classifier, e.g., nearest neighbor classifier.

Previous works generally divides this pipeline into two
parts, template generation and matching. The goal of gen-
eration is to compress gait information into a single image,
e.g., Gait Energy Image (GEI) (Han and Bhanu 2006) and
Chrono-Gait Image (CGI) (Wang et al. 2012). In template
matching approaches, View Transformation Model (VTM)
learns a projection between different views (Makihara et al.
2006). (Hu et al. 2013) proposed View-invariant Discrimina-
tive Projection (ViDP) to project the templates into a latent
space to learn a view-invariance representation. Recently, as
deep learning performs well on various generation tasks, it
has been employed on gait recognition task (Yu et al. 2017a;
He et al. 2019; Takemura et al. 2018a; Shiraga et al. 2016;
Yu et al. 2017b; Wu et al. 2017).

As the second category, video-based approaches directly
take a sequence of silhouettes as input. Based on the way
of extracting temporal information, they can be classified
into LSTM-based approaches (Liao et al. 2017) and 3D
CNN-based approaches (Wolf, Babaee, and Rigoll 2016;
Wu et al. 2017). The advantages of these approaches are
that 1) focusing on each silhouette, they can obtain more
comprehensive spatial information. 2) They can gather more
temporal information because specialized structures are uti-
lized to extract sequential information. However, The price
to pay for these advantages is high computational cost.

2.2 Deep learning on Unordered set
Most works in deep learning focus on regular input represen-
tations like sequence and images. The concept of unordered
set is first introduced into computer vision by (Charles
et al. 2017) (PointNet) to tackle point cloud tasks. Using
unordered set, PointNet can avoid the noise and the extension
of data caused by quantization, and obtain a high perfor-
mance. Since then, set-based methods have been wildly used
in point cloud field (Wang et al. 2018c; Zhou and Tuzel 2018;
Qi et al. 2017). Recently, such methods are introduced
into computer vision domains like content recommenda-
tion (Hamilton, Ying, and Leskovec 2017) and image cap-
tioning (Krause et al. 2017) to aggregate features in a form
of a set. (Zaheer et al. 2017) further formalized the deep
learning tasks defined on sets and characterizes the permuta-
tion invariant functions. To the best of our knowledge, it has
not been employed in gait recognition domain up to now.

3 GaitSet
In this section, we describe our method for learning discrimi-
native information from a set of gait silhouettes. The overall
pipeline is illustrated in Fig. 2.

3.1 Problem Formulation
We begin with formulating our concept of regarding gait as
a set. Given a dataset of N people with identities yi, i ∈
1, 2, ..., N , we assume the gait silhouettes of a certain person
subject to a distribution Pi which is only related to its iden-
tity. Therefore, all silhouettes in one or more sequences of a
person can be regarded as a set of n silhouettesXi = {xji |j =
1, 2, ..., n}, where xji ∼ Pi.

Under this assumption, we tackle the gait recognition task
through 3 steps, formulated as

fi = H(G(F (Xi))) (1)
where F is a convolutional network aims to extract frame-
level features from each gait silhouette. The function G is a
permutation invariant function used to map a set of frame-
level feature to a set-level feature (Zaheer et al. 2017). It is
implemented by an operation called Set Pooling (SP) which
will be introduced in Sec. 3.2. The function H is used to
learn the discriminative representation of Pi from the set-
level feature. This function is implemented by a structure
called Horizontal Pyramid Mapping (HMP) which will be
discussed in Sec. 3.3. The input Xi is a tensor with four
dimensions, i.e. set dimension, image channel dimension,
image hight dimension, and image width dimension.
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Figure 2: The framework of GaitSet. ’SP’ represents Set Pooling. Trapezoids represent convolution and pooling blocks and those
in the same column have the same configurations which are shown by rectangles with capital letters. Note that although blocks in
MGP have same configurations with those in the main pipeline, parameters are only shared across blocks in the main pipeline
but not with those in MGP. HPP represents horizontal pyramid pooling (Fu et al. 2018).

3.2 Set Pooling
The goal of Set Pooling (SP) is to aggregate gait information
of elements in a set, formulated as z = G(V ), where z
denotes the set-level feature and V = {vj |j = 1, 2, ..., n}
denotes the frame-level features. There are two constraints
in this operation. First, to take set as an input, it should be a
permutation invariant function which is formulated as:

G({vj |j = 1, 2, ..., n}) = G({vπ(j)|j = 1, 2, ..., n}) (2)

where π is any permutation (Zaheer et al. 2017). Second,
since in real-life scenario the number of a person’s gait sil-
houettes can be arbitrary, the function G should be able to
take a set with arbitrary cardinality. Next, we describe sev-
eral instantiations of G. It will be shown in the experiments
that although different instantiations of SP do have sort of
influence on the performances, they do not differ greatly and
all of them exceed GEI-based methods by a large margin.

Statistical Functions To meet the requirement of
invariant constraint in Equ. 2, a natural choice of SP is to
apply statistical functions on the set dimension. Considering
the representativeness and the computational cost, we studied
three statistical functions: max(·), mean(·) and median(·).
The comparison will be shown in Sec. 4.3.

Joint Functions We also studied two ways to join 3
statistical functions mentioned above:

G(·) = max(·) + mean(·) + median(·) (3)
G(·) = 1 1C(cat(max(·),mean(·),median(·))) (4)

where cat means concatenate on the channel dimension,
1 1C means 1× 1 convolutional layer, and max, mean and
median are applied on set dimension. Equ. 4 is an enhanced
version of Equ. 3 where the 1 × 1 convolutional layer can
learn a proper weight to combine information extracted by
different statistical functions.

Attention Since visual attention was successfully applied
in lots of tasks (Wang et al. 2018b; Xu et al. 2015; Li, Zhu,

and Gong 2018), we use it to improve the performance of SP.
Its structure is shown in Fig. 3. The main idea is to utilize
the global information to learn an element-wise attention
map for each frame-level feature map to refine it. Global
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Figure 3: The structure of Set Pooling (SP) using attention.
1 1C and cat represents 1× 1 convolutional layer and con-
catenate respectively. The multiplication and the addition are
both pointwise.

information is first collected by the statistical functions in
the left. Then it is fed into a 1× 1 convolutional layer along
with the original feature map to calculate an attention for the
refinement. The final set-level feature z will be extracted by
employing MAX on the set of the refined frame-level feature
maps. The residual structure can accelerate and stabilize the
convergence.

3.3 Horizontal Pyramid Mapping
In literature, splitting feature map into strips is commonly
used in person re-identification task (Wang et al. 2018a;
Fu et al. 2018). The images are cropped and resized into
uniform size according to pedestrian size whereas the dis-
criminative parts vary from image to image. (Fu et al. 2018)
proposed Horizontal Pyramid Pooling (HPP) to deal with it.
HPP has 4 scales and thus can help the deep network focus
on features with different sizes to gather both local and global
information. We improve HPP to make it adapt better for gait
recognition task. Instead of applying a 1× 1 convolutional
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layer after the pooling, we use independent fully connect
layers (FC) for each pooled feature to map it into the dis-
criminative space, as shown in Fig. 4. We call it Horizontal
Pyramid Mapping (HPM).
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Figure 4: The structure of Horizontal Pyramid Mapping.

Specifically, HPM has S scales. On scale s ∈ 1, 2, ..., S,
the feature map extracted by SP is split into 2s−1 strips
on height dimension, i.e.

∑S
s=1 2

s−1 strips in total. Then
a Global Pooling is applied to the 3-D strips to get 1-D fea-
tures. For a strip zs,t where t ∈ 1, 2, ..., 2s−1 stands index
of the strip in the scale, the Global Pooling is formulated
as f ′s,t = maxpool(zs,t) + avgpool(zs,t), where maxpool
and avgpool denote Global Max Pooling and Global Average
Pooling respectively. Note that the functions maxpool and
avgpool are used at the same time because it outperforms
applying anyone of them alone. The final step is to employ
FCs to map the features f ′ into a discriminative space. Since
strips in different scales depict features of different receptive
fields, and different strips in each scales depict features of dif-
ferent spatial positions, it comes naturally to use independent
FCs, as shown in Fig. 4.

3.4 Multilayer Global Pipeline
Different layers of a convolutional network have different
receptive fields. The deeper the layer is, the larger the recep-
tive field will be. Thus, pixels in feature maps of a shallow
layer focus on local and fine-grained information while those
in a deeper layer focus on more global and coarse-grained
information. The set-level features extracted by applying SP
on different layers have analogical property. As shown in the
main pipeline of Fig. 2, there is only one SP on the last layer
of the convolutional network. To collect various-level set
information, Multilayer Global Pipeline (MGP) is proposed.
It has a similar structure with the convolutional network in the
main pipeline and the set-level features extracted in different
layers are added to MGP. The final feature map generated by
MGP will also be mapped into

∑S
s=1 2

s−1 features by HPM.
Note that the HPM after MGP does not share parameters with
the HPM after the main pipeline.

3.5 Training And Testing
Training Loss As aforementioned, the output of the net-
work is 2×

∑S
s=1 2

s−1 features with dimension d. The cor-
responding features among different samples will be used
to compute the loss. In this paper, Batch All (BA+) triplet

loss is employed to train the network (Hermans, Beyer, and
Leibe 2017). A batch with size of p× k is sampled from the
training set where p denotes the number of persons and k
denotes the number of training samples each person has in
the batch. Note that although the experiment shows that our
model performs well when it is fed with the set composed by
silhouettes gathered from arbitrary sequences, a sample used
for training is actually composed by silhouettes sampled in
one sequence.

Testing Given a queryQ, the goal is to retrieve all the sets
with the same identity in gallery set G. Denote the sample in
G as G. The Q is first put into GaitSet net to generate multi-
scale features, followed by concatenating all these features
into a final representations FQ as shown in Fig. 2. The same
process is applied on each G to get FG . Finally, FQ is com-
pared with every FG using Euclidean distance to calculate
Rank 1 recognition accuracy.

4 Experiments
Our empirical experiments mainly contain three parts.
The first part compares GaitSet with other state-of-the-art
methods on two public gait datasets: CASIA-B (Yu, Tan,
and Tan 2006) and OU-MVLP (Takemura et al. 2018b). The
Second part is ablation experiments conducted on CASIA-B.
In the third part, we investigated the practicality of GaitSet
in three aspects: the performance on limited silhouettes, mul-
tiple views and multiple walking conditions.

4.1 Datasets and Training Details
CASIA-B dataset (Yu, Tan, and Tan 2006) is a popular
gait dataset. It contains 124 subjects (labeled in 001-124),
3 walking conditions and 11 views (0◦, 18◦, ..., 180◦). The
walking condition contains normal (NM) (6 sequences per
subject), walking with bag (BG) (2 sequences per subject)
and wearing coat or jacket (CL) (2 sequences per subject).
Namely, each subject has 11× (6+ 2+ 2) = 110 sequences.
As there is no official partition of training and test sets
of this dataset, we conduct experiments on three settings
which are popular in current literatures. We name these
three settings as small-sample training (ST), medium-sample
training (MT) and large-sample training (LT). In ST, the first
24 subjects (labeled in 001-024) are used for training and the
rest 100 subjects are leaved for test. In MT, the first 62 sub-
jects are used for training and the rest 62 subjects are leaved
for test. In LT, the first 74 subjects are used for training and
the rest 50 subjects are leaved for test. In the test sets of all
three settings, the first 4 sequences of the NM condition (NM
#1-4) are kept in gallery, and the rest 6 sequences are divided
into 3 probe subsets, i.e. NM subsets containing NM #5-6,
BG subsets containing BG #1-2 and CL subsets containing
CL #1-2.

OU-MVLP dataset (Takemura et al. 2018b) is so far
the world’s largest public gait dataset. It contains 10,307
subjects, 14 views (0◦, 15◦, ..., 90◦; 180◦, 195◦, ..., 270◦) per
subject and 2 sequences (#00-01) per view. The sequences
are divided into training and test set by subjects (5153 sub-
jects for training and 5154 subjects for test). In the test set,
sequences with index #01 are kept in gallery and those with
index #00 are used as probes.
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Table 1: Averaged rank-1 accuracies on CASIA-B under three different experimental settings, excluding identical-view cases.
Gallery NM#1-4 0°-180°

mean
Probe 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°

ST
(24)

NM#5-6

ViDP (Hu et al. 2013) − − − 59.1 − 50.2 − 57.5 − − − −
CMCC (Kusakunniran et al. 2014) 46.3 − − 52.4 − 48.3 − 56.9 − − − −

CNN-LB (Wu et al. 2017) 54.8 − − 77.8 − 64.9 − 76.1 − − − −
GaitSet(ours) 64.6 83.3 90.4 86.5 80.2 75.5 80.3 86.0 87.1 81.4 59.6 79.5

BG#1-2 GaitSet(ours) 55.8 70.5 76.9 75.5 69.7 63.4 68.0 75.8 76.2 70.7 52.5 68.6
CL#1-2 GaitSet(ours) 29.4 43.1 49.5 48.7 42.3 40.3 44.9 47.4 43.0 35.7 25.6 40.9

MT
(62)

NM#5-6

AE (Yu et al. 2017b) 49.3 61.5 64.4 63.6 63.7 58.1 59.9 66.5 64.8 56.9 44.0 59.3
MGAN (He et al. 2019) 54.9 65.9 72.1 74.8 71.1 65.7 70.0 75.6 76.2 68.6 53.8 68.1

GaitSet(ours) 86.8 95.2 98.0 94.5 91.5 89.1 91.1 95.0 97.4 93.7 80.2 92.0

BG#1-2

AE (Yu et al. 2017b) 29.8 37.7 39.2 40.5 43.8 37.5 43.0 42.7 36.3 30.6 28.5 37.2
MGAN (He et al. 2019) 48.5 58.5 59.7 58.0 53.7 49.8 54.0 61.3 59.5 55.9 43.1 54.7

GaitSet(ours) 79.9 89.8 91.2 86.7 81.6 76.7 81.0 88.2 90.3 88.5 73.0 84.3

CL#1-2

AE (Yu et al. 2017b) 18.7 21.0 25.0 25.1 25.0 26.3 28.7 30.0 23.6 23.4 19.0 24.2
MGAN (He et al. 2019) 23.1 34.5 36.3 33.3 32.9 32.7 34.2 37.6 33.7 26.7 21.0 31.5

GaitSet(ours) 52.0 66.0 72.8 69.3 63.1 61.2 63.5 66.5 67.5 60.0 45.9 62.5

LT
(74)

NM#5-6
CNN-3D (Wu et al. 2017) 87.1 93.2 97.0 94.6 90.2 88.3 91.1 93.8 96.5 96.0 85.7 92.1

CNN-Ensemble (Wu et al. 2017) 88.7 95.1 98.2 96.4 94.1 91.5 93.9 97.5 98.4 95.8 85.6 94.1
GaitSet(ours) 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0

BG#1-2
CNN-LB (Wu et al. 2017) 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4

GaitSet(ours) 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2

CL#1-2
CNN-LB (Wu et al. 2017) 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0

GaitSet(ours) 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4

Training Details In all the experiments, the input is a
set of aligned silhouettes in size of 64 × 44. The silhou-
ettes are directly provided by the datasets and are aligned
based on methods in (Takemura et al. 2018b). The set car-
dinality in the training is set to be 30. Adam is chosen as
an optimizer (Kingma and Ba 2015). The number of scales
S in HPM is set as 5. The margin in BA+ triplet loss is
set as 0.2. The models are trained with 8 NVIDIA 1080TI
GPUs. 1) In CASIA-B, the mini-batch is composed by the
manner introduced in Sec. 3.5 with p = 8 and k = 16.
We set the number of channels in C1 and C2 as 32, in C3
and C4 as 64 and in C5 and C6 as 128. Under this set-
ting, the average computational complexity of our model
is 8.6GFLOPs. The learning rate is set to be 1e − 4. For
ST, we train our model for 50K iterations. For MT, we train
it for 60K iterations. For LT, we train it for 80K iterations.
2) In OU-MVLP, since it contains 20 times more sequences
than CASIA-B, we use convolutional layers with more chan-
nels (C1 = C2 = 64, C3 = C4 = 128, C5 = C6 = 256)
and train it with larger batch size (p = 32, k = 16). The
learning rate is 1e− 4 in the first 150K iterations, and then is
changed into 1e− 5 for the rest of 100K iterations.

4.2 Main Results
CASIA-B Tab. 1 shows the comparison between the state-
of-the-art methods 1 and our GaitSet. Except of ours, other
results are directly taken from their original papers. All the
results are averaged on the 11 gallery views and the identical
views are excluded. For example, the accuracy of probe view
36◦ is averaged on 10 gallery views, excluding gallery view
36◦. An interesting pattern between views and accuracies can
be observed in Tab. 1. Besides 0◦ and 180◦ , the accuracy
of 90◦ is a local minimum value. It is always worse than
that of 72◦ or 108◦. The possible reason is that gait informa-

1Since (Wu et al. 2017) proposed more than one model, the most
competitive results under different experimental settings are cited.

tion contains not only those parallel to the walking direction
like stride which can be observed most clearly at 90◦, but
also those vertical to the walking direction like a left-right
swinging of body or arms which can be observed most clearly
at 0◦ or 180◦. So, both parallel and vertical perspectives lose
some part of gait information while views like 36◦ or 144◦
can obtain most of it.

Small-Sample Training (ST) Our method achieves a
high performance even with only 24 subjects in the training
set and exceed the best performance reported so far (Wu et al.
2017) over 10 percent on the views they reported. There are
mainly two reasons. 1) As our model regards the input as a
set, images used to train the convolution network in the main
pipeline are dozens of times more than those models based
on gait templates. Taking a mini-batch for an example, our
model is fed with 30× 128 = 3840 silhouettes while under
the same batch size models using gait templates can only
get 128 templates. 2) Since the sample sets used in training
phase are composed by frames selected randomly from the
sequence, each sequence in the training set can generate
multiple different sets. Thus any units related to set feature
learning like MGP and HPM can also be trained well.

Medium-Sample Training (MT) & Large-Sample
Training (LT) Tab. 1 shows that our model obtains very
nice results on the NM subset, especially on LT where results
of all views except 180◦ are over 90%. On the BG and CL
subsets, although the accuracies of some views like 0◦ and
180◦ are still not high, the mean accuracies of our model
exceed those of other models for at least 18.8%.

OU-MVLP Tab. 2 shows our results. As some of the pre-
vious works did not conduct experiments on all 14 views,
we list our results on two kinds of gallery sets, i.e. all 14
views and 4 typical views (0◦, 30◦, 60◦, 90◦). All the results
are averaged on the gallery views and the identical views
are excluded. The results show that our methods can gener-
alize well on the dataset with such a large scale and wide
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Table 2: Averaged rank-1 accuracies on OU-MVLP,
excluding identical-view cases. GEINet: (Shiraga et al. 2016).
3in+2diff: (Takemura et al. 2018a)

.
Probe Gallery All 14 Views Gallery 0◦, 30◦, 60◦, 90◦

GEINet Ours GEINet 3in+2diff Ours
0◦ 11.4 79.5 8.2 25.5 77.7
15◦ 29.1 87.9 - - 86.3
30◦ 41.5 89.9 32.3 50.0 86.9
45◦ 45.5 90.2 - - 89.1
60◦ 39.5 88.1 33.6 45.3 85.3
75◦ 41.8 88.7 - - 87.6
90◦ 38.9 87.8 28.5 40.6 83.5
180◦ 14.9 81.7 - - 80.5
195◦ 33.1 86.7 - - 82.8
210◦ 43.2 89.0 - - 87.2
225◦ 45.6 89.3 - - 86.8
240◦ 39.4 87.2 - - 85.4
255◦ 40.5 87.8 - - 85.7
270◦ 36.3 86.2 - - 85.0
mean 35.8 87.1 - - 85.0

view variation. Further, since representation for each sample
only needs to be calculated once, our model can complete
the test (containing 133780 sequences) in only 7 minutes
with 8 NVIDIA 1080TI GPUs. It is note worthy that since
some subjects miss several gait sequences and we did not
remove them from the probe, the maximum of rank-1 accu-
racy cannot reach 100%. If we ignore the cases which have
no corresponding samples in the gallery, the average rank-1
accuracy of all probe views is 93.3% rather than 87.1%.

4.3 Ablation Experiments
Tab. 3 shows the thorough results of ablation experiments.
The effectiveness of every innovation in Sec. 3 is studied.

Set VS. GEI The first two lines of Tab. 3 show the
effectiveness of regarding gait as a set. With fully identical
networks, the result of using set exceeds that of using GEI
by more than 10% on NM subset and more than 25% on CL
subset. The only difference is that in GEI experiment, gait sil-
houettes are averaged into a single GEI before being fed into
the network. There are mainly two reasons for this phenom-
enal improvement. 1) Our SP extracts the set-level feature
based on high-level feature map where temporal information
can be well preserved and spatial information has been suf-
ficiently processed. 2) As mentioned in Sec. 4.2, regarding
gait as a set enlarges the volume of training data.

Impact of SP In Tab. 3, the results from the third line
to the eighth line show the impact of different SP strategies.
SP with attention, 1 × 1 convolution (1 1C) joint function
and max(·) obtain the highest accuracy on the NM, BG, and
CL subsets respectively. Considering SP with max(·) also
achieved the second best performance on the NM and BG
subset and has the most concise structure, we choose it as SP
in the final version of GaitSet.

Impact of HPM and MGP The second and the third
lines of Tab. 3 compare the impact of independent weight in
HPM. It can be seen that using independent weight improves
the accuracy by about 2% on each subset. In the experiments,
we also find out that the introduction of independent weight

helps the network converge faster. The last two lines of Tab. 3
show that MGP can bring improvement on all three test
subsets. This result is consistent the theory mentioned in
Sec. 3.4 that set-level features extracted from different layers
of the main pipeline contain different valuable information.

4.4 Practicality
Due to the flexibility of set, GaitSet has great potential in
more complicated practical conditions. In this section, we
investigate the practicality of GaitSet through three novel
scenarios. 1) How will it perform when the input set only
contains a few silhouettes? 2) Can silhouettes with different
views enhance the identification accuracy? 3) Whether can
the model effectively extract discriminative representation
from a set containing silhouettes shot under different walking
conditions. It is worth noting that we did not retrain our model
in these experiments. It is fully identical to that in Sec. 4.2
with setting LT. Note that, all the experiments containing
random selection in this section are ran for 10 times and the
average accuracies are reported.
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Figure 5: Average rank-1 accuracies with constraints of sil-
houette volume on CASIA-B using setting LT. Accuracies
are averaged on all 11 views excluding identical-view cases,
and the final reported results are averaged across 10 times
experiments.

Limited Silhouettes In real forensic identification sce-
narios, there are cases that we do not have a continuous
sequence of a subject’s gait but only some fitful and sporadic
silhouettes. We simulate such a circumstance by randomly
selecting a certain number of frames from sequences to com-
pose each sample in both gallery and probe. Fig. 5 shows the
relationship between the number of silhouettes in each input
set and the rank-1 accuracy averaged on all 11 probe views.
Our method attains an 82% accuracy with only 7 silhouettes.
The result also indicates that our model makes full use of
the temporal information of gait. Since 1) the accuracy rises
monotonically with the increase of the number of silhouettes.
2) The accuracy is close to the best performance when the
samples contain more than 25 silhouettes. This number is
consistent with the number of frames that one gait period
contains.

Multiple Views There are conditions that different views
of one person’s gait can be gathered. We simulate these sce-
narios by constructing each sample with silhouettes selected
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Table 3: Ablation experiments conducted on CASIA-B using setting LT. Results are rank-1 accuracies averaged on all 11 views,
excluding identical-view cases. The numbers in brackets indicate the second highest results in each column.

GEI Set Set Pooling HPM weight MGP NM BG CLMax Mean Median Joint sum 3 Joint 1 1C 4 Attention Shared Independent√ √
80.4 68.1 40.8√ √ √
91.3 82.3 67.1√ √ √
93.2 84.7 (70.2)√ √ √
90.0 79.5 57.1√ √ √
89.5 78.1 53.5√ √ √
92.4 82.8 63.4√ √ √
93.3 (85.7) 66.3√ √ √

(93.7) 84.2 69.4√ √ √ √
95.0 87.2 70.4

from two sequences with the same walking condition but dif-
ferent views. To eliminate the effects of silhouette number, we
also conduct an experiment in which the silhouette number
is limited to 10. Specifically, in the contrast experiments of
single view, an input set is composed by 10 silhouettes from
one sequence. In the two-view experiment, an input set is
composed by 5 silhouettes from each of two sequences. Note
that in this experiment, only probe samples are composed by
the way discussed above, whereas sample in the gallery is
composed by all silhouettes from one sequence.

Table 4: Multi-view experiments conducted on CASIA-B
using setting LT. Cases where the probe contains the view of
the gallery are excluded.

View
difference

18◦/
162◦

36◦/
144◦

54◦/
126◦

72◦/
108◦ 90◦

Single
view

All silhouettes 97.0 97.9 98.7 99.1 99.0 95.0
10 silhouettes 87.9 90.6 92.7 93.7 93.7 87.7

Tab. 4 shows the results. As there are too many view
pairs to be shown, we summarize the results by averaging
accuracies of each possible view difference. For example,
the result of 90◦ difference is averaged by accuracies of 6
view pairs (0◦&90◦, 18◦&108◦, ..., 90◦&180◦). Further, the
9 view differences are folded at 90◦ and those larger than
90◦ are averaged with the corresponding view differences
less than 90◦. For example, the results of 18◦ view difference
are averaged with those of 162◦ view difference. It can be
seen that our model can aggregate information from different
views and boost the performance. This can be explained by
the pattern between views and accuracies that we have dis-
cussed in Sec. 4.2. Containing multiple views in the input set
can let the model gather both parallel and vertical informa-
tion, resulting in performance improvement.

Multiple Walking Conditions In real life, it is highly
possible that gait sequences of the same person are under
different walking conditions. We simulate such a condition
by forming input set with silhouettes from two sequences
with same view but different walking conditions. We con-
duct experiments with different silhouette number constraints.
Note that in this experiment, only probe samples are com-
posed by the way discussed above. Any sample in the gallery
is constituted by all silhouettes from one sequence. What’s
more, the probe-gallery division of this experiment is dif-

ferent. For each subject, sequences NM #02, BG #02 and CL
#02 are kept in the gallery and sequences NM #01, BG #01
and CL #01 are used as probe.

Table 5: Multiple walking condition experiments conducted
on CASIA-B using setting LT. Results are rank-1 accuracies
averaged on all 11 views, excluding identical-view cases.
The numbers in brackets indicate the constraints of silhouette
number in each input set.

NM(10) 81.5 NM(10)+BG(10) 87.9 NM(20) 89.8
BG(10) 77.1 NM(10)+CL(10) 85.8 BG(20) 84.1
CL(10) 74.4 BG(10)+CL(10) 84.6 CL(20) 82.6

Tab. 5 shows the results. First, the accuracies will still be
boosted with the increase of silhouette number. Second, when
the number of silhouettes are fixed, the results reveal rela-
tionships between different walking conditions. Silhouettes
of BG and CL contain massive but different noises, which
makes them complementary with each other. Thus, their com-
bination can improve the accuracy. However, silhouettes of
NM contain few noises, so substituting some of them with
silhouettes of other two conditions cannot bring extra infor-
mation but only noises and can decrease the accuracies.

5 Conclusion
In this paper, we presented a novel perspective that regards
gait as a set and thus proposed a GaitSet approach. The
GaitSet can extract both spatial and temporal information
more effectively and efficiently than those existing methods
regarding gait as a template or sequence. It also provide a
novel way to aggregate valuable information from different
sequences to enhance the recognition accuracy. Experiments
on two benchmark gait datasets has indicated that compared
with other state-of-the-art algorithms, GaitSet achieves the
highest recognition accuracy, and reveals a wide range of
flexibility on various complex environments, showing a great
potential in practical applications. In the future, we will inves-
tigate a more effective instantiation for Set Pooling (SP) and
further improve the performance in complex scenarios.
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