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Abstract

In this paper, we propose a novel conditional-generative-
adversarial-nets-based image captioning framework as an
extension of traditional reinforcement-learning (RL)-based
encoder-decoder architecture. To deal with the inconsistent
evaluation problem among different objective language met-
rics, we are motivated to design some “discriminator” net-
works to automatically and progressively determine whether
generated caption is human described or machine generated.
Two kinds of discriminator architectures (CNN and RNN-
based structures) are introduced since each has its own ad-
vantages. The proposed algorithm is generic so that it can
enhance any existing RL-based image captioning framework
and we show that the conventional RL training method is just
a special case of our approach. Empirically, we show consis-
tent improvements over all language evaluation metrics for
different state-of-the-art image captioning models. In addi-
tion, the well-trained discriminators can also be viewed as
objective image captioning evaluators.

1 Introduction
Generating natural language descriptions of given images,
known as image captioning, has attracted great academic
and industrial interest since it can be widely used in image-
text cross-searching, early childhood education and eye-
handicapped people assistance. Compared with other com-
puter vision tasks, e.g. image classification, object detection
and semantic segmentation, image captioning is a more chal-
lenging and comprehensive task — as it requires a fine-grain
understanding of image objects as well as their attributes and
relationships. Therefore, image captioning can be viewed as
an interdisciplinary research domain of computer vision and
natural language processing (NLP).

Inspired by the successful application of the encoder-
decoder paradigm in neural machine translation (NTM) with
RNNs, some pioneer works (Mao et al. 2014; Vinyals et al.
2015) creatively proposed to replace an RNN with a CNN to
encode image features. Since then, the CNN-RNN structure
has become a standard configuration of image captioning al-
gorithms. Most prior works used maximum likelihood esti-
mation (MLE) for training. However, as pointed out in (Ran-
zato et al. 2015), this approach suffers from error accumula-
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tion, namely a bias exposure problem (Bengio et al. 2015),
which creates a mismatch between training and testing —
since at test-time, the model uses the previously generated
words from the model distribution to predict the next word
while directly uses ground-truth during training.

In order to address the exposure bias issue, many
works incorporated reinforcement learning (RL) into the
training stage to directly optimize language metrics such
as BLEU (Papineni et al. 2002), METEOR (Banerjee
and Lavie 2005), ROUGE (Lin 2004), CIDEr (Vedantam,
Lawrence Zitnick, and Parikh 2015) and SPICE (Anderson
et al. 2016). A policy-gradient (Sutton et al. 2000)-based
RL method was first employed in image captioning, such
as REINFORCE with a baseline (Rennie et al. 2017) and
Monte-Carlo rollouts (Liu et al. 2017). Then, the so-called
actor-critic RL algorithm was applied in (Ren et al. 2017;
Zhang et al. 2017), which trains a second “critic” network to
estimate the expected future reward during the intermediate
state when generating each word given the policy of an actor
network.

Recently, the most popular generative model–generative
adversarial nets (GANs) (Goodfellow et al. 2014)–has
achieved great success in computer vision tasks. But un-
like the deterministic continuous mapping from random vec-
tors to the image domain, many NLP tasks are discrete do-
main generation issues. Inspired by the idea of reinforce-
ment learning, a SeqGAN algorithm (Yu et al. 2017) was
proposed to bypass the generator differentiation problem
by directly performing the gradient policy update and suc-
cessfully applied the result to text and music generation.
In (Dai et al. 2017) and (Shetty et al. 2017), the authors con-
ducted the first study that explores the use of conditional
GANs (Mirza and Osindero 2014) or adversarial training in
combination with an approximate Gumbel sampler in gener-
ating image descriptions. However, what these papers con-
cern about most is naturalness and diversity of descriptions
while sacrificing the fidelity, which results in much lower
language metrics scores compared with other image caption-
ing algorithms.

In order to achieve high evaluation scores over objective
automatic metrics, many prior works chose to directly opti-
mize one metric (BLEU, CIDEr, SPICE, etc.) or combina-
tion of them. However, optimizing one metric cannot ensure
consistent improvements over all metrics. Therefore, in or-
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der to simultaneously improve all language evaluation met-
rics and generate more human-like descriptions, we are mo-
tivated to design a “discriminator” network to judge whether
the input sentence is human described or machine generated
based on the idea of conditional GANs (Mirza and Osin-
dero 2014). In this paper, we propose to employ an adver-
sarial training method to alternatively improve the genera-
tor (caption generation network) and the discriminator (sen-
tence evaluation network).

The main contributions of our proposed image captioning
framework are listed as follows:
• Our proposed algorithm is generic so that it can enhance

any existing RL-based image captioning framework and
we show consistent improvements over all evaluation
metrics by experiments.

• The well-trained discriminators can also be viewed as
evaluators for image captioning learned by neural network
instead of the traditional handcrafted evaluation metrics.

• Based on the up-down (Anderson et al. 2018) image cap-
tioning model, the improved results trained by our ap-
proach are uploaded to MSCOCO online test server and
achieve the state-of-the-art performance.

2 Image Captioning Via Reinforcement
Learning

As described in the introduction, the traditional RNN model
training method is MLE. That is, the model parameters θ of
the caption generator are trained to maximize

JG(θ) =
1

N
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logGθ(x
j |Ij)
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) is the
ground truth caption of the j-th image, Tj is the caption
length of the j-th image, N is the total number of training
examples, and Gθ(·) is the probability of generated words
given an image or previous words, parameterized by θ (or
we can directly call Gθ the generator).

By using the RL terminologies as described in (Sutton
and Barto 1998), in an encoder-decoder image captioning
paradigm, the decoder can be viewed as an “agent” that in-
teracts with an external “environment” (input words and im-
age features extracted by the encoder). The “policy” is the
caption generator Gθ, that results in an “action” that is the
prediction of the next word. After taking each “action”, the
“agent” updates its internal “state” (weights of decoder, at-
tention models, etc.). Upon generating the end-of-sequence
(EOS) token, the “agent” returns a “reward”, denoted by
r, that is, for instance, a language evaluation metric score
(CIDEr, BLEU, SPICE, etc.) calculated by comparing gen-
erated sentences and the corresponding ground truth. So, the
goal of RL training is to maximize the final expected reward
of the generator:

LG(θ) = Exs∼Gθ
[r(xs)] , (2)

where xs = (xs
1,x

s
2, · · · ,xs

T ) is a sample sequence from
generator Gθ. In practice, the expected value is approxi-
mated by a Monte-Carlo sample (Sutton and Barto 1998):

LG(θ) ≈ r(xs), xs ∼ Gθ. (3)

Typically, the gradient ∇θLG(θ) can be calculated by a
policy gradient approach such as REINFORCE (Williams
1992) algorithm with a baseline function b to effectively re-
duce the variance of the gradient estimate:

∇θLG(θ) ≈
Ts∑
t=1

(r(xs
1:t)− b)∇θ logGθ(xs

t |xs
1:t−1). (4)

The baseline b can be an arbitrary function, as long as it
does not depend on the “action” xs. A self-critical sequence
training (SCST) (Rennie et al. 2017) method employs the re-
ward r(xg) obtained by the current model under the greedy
decoding algorithm used at test time as the baseline function.
Then, the gradient function can be written as

∇θLG(θ) =

Ts∑
t=1

(r(xs)− r(xg))∇θ logGθ(xs
t |xs

1:t−1).

(5)
Since the reward of the sample sequence xs

1:Ts
and the

greedy-decoded sequence xg
1:T are the same during each

time step t, we omit the subscripts of xs and xg in Eq. (5).

3 Proposed Conditional Generative
Adversarial Training Method

3.1 Overall Framework
As described in the introduction, the most commonly used
image captioning model is the so-called encoder-decoder
framework. Typically, a CNN is employed as the encoder
and an RNN is utilized as the decoder. Together with the
attention mechanism and reinforcement learning method, a
general caption generation framework is shown in the left
part of Fig. 1, denoted as the generator. Inspired by the well-
known generative adversarial nets (Goodfellow et al. 2014),
a discriminator can be embedded into the image captioning
framework to further improve the performance of the gener-
ator, which is the initial design spirit of our proposed adver-
sarial training method. Notice that our proposed framework
is generic and can enhance any existing RL-based encoder-
decoder model so the attention mechanism may be unnec-
essary. In addition, the CNN encoder can be pre-trained on
other datasets so that its weights can be fixed during decoder
training (see the dashed lines and squares in Fig. 1).

As shown in Fig. 1, after generating a sentence x̃1:T , two
modules will compute two scores based on different crite-
rions: a discriminator Dφ with parameters φ will produce
a probability p ∈ [0, 1] that indicates a given sentence is
human generated rather than machine generated, and a lan-
guage evaluator module will calculate an objective score
s based on some predefined evaluation metrics Q such as
BLEU, CIDEr and SPICE. Notice that the discriminator will
be improved together with the generator alternatively during
training while the language evaluator module is a predefined
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Figure 1: The overall framework of our proposed generative adversarial training method. The generator contains a CNN encoder,
a RNN decoder and an unnecessary attention mechanism. The discriminator cooperated with the language evaluator provides
feedback reward to update generator parameters by the reinforcement learning method (notice that CNN weights can be pre-
trained and fixed).

Table 1: Kernel sizes and number of CNN discriminators

(window size, kernel numbers)

(1,100), (2,200), (3,200), (4,200), (5,200), (6,100),
(7,100), (8,100), (9,100), (10,100), (15,160), (16,160)

function and is strictly fixed during training. Therefore, the
two modules are cooperated together to obtain a criterion
that balances the fidelity (achieves a high score under objec-
tive evaluation metrics) and naturalness (a human-like lan-
guage style).

Finally, the obtained reward for reinforcement learning af-
ter generating a full sentence x̃ given image I and ground-
truth sentence x is calculated as

r(x̃|I,x) = λ·p+(1−λ)·s = λ·Dφ(x̃|I)+(1−λ)·Q(x̃|x),
(6)

where λ is a hyper-parameter between 0 and 1.
In the following subsections, we will introduce two kinds

of discriminators–CNN-based and RNN-based structures–in
detail.

3.2 CNN-based Discriminator Model
Recently, many CNN-based algorithms have shown great ef-
fectiveness in complicated NLP tasks such as sentence clas-
sification (Kim 2014) and text classification (Zhang and Le-
Cun 2015). Therefore, in this subsection, we first present
the conditional CNN as our discriminator for real or fake
sentence classification.

Following the discriminator design of SeqGAN (Yu et al.
2017), as illustrated in Fig. 2(a), first, we should build a fea-
ture map that consists of image features and sentence fea-
tures, such as

ε = v̄ ⊕E · x1 ⊕E · x2 ⊕ · · · ⊕E · xT , (7)

where v̄ = CNN(I) is the d-dimensional image feature pre-
processed by a CNN for input image I , E ∈ Rd×U is the

embedding matrix to map a U -dimensional one-hot word
vector xi (i = {1, 2, · · · , T}) into a d-dimensional token
embedding, and ⊕ is the horizontal concatenation opera-
tion to build the matrix ε ∈ Rd×(T+1). In order to extract

Algorithm 1 Image Captioning Via Generative Adversarial
Training Method

Require: caption generator Gθ; discriminator Dφ; lan-
guage evaluator Q, e.g. CIDEr-D; training set Sr =
{(I,x1:T )} and Sw = {(I, x̂1:T )}.

Ensure: optimal parameters θ, φ.
1: Initial Gθ and Dφ randomly.
2: Pre-train Gθ on Sr by MLE.
3: Generate some fake samples based on Gθ to form Sf =
{(I, x̃1:T )}.

4: Pre-train Dφ on Sr ∪ Sf ∪ Sw by Eq. (12).
5: repeat
6: for g-steps=1 : g do
7: Generate a mini-batch of image-sentence pairs

{(I, x̃1:T )} by Gθ.
8: Calculate p based on Eqs. (7)-(9) or Eqs. (10)-(11).
9: Calculate s based on Q.

10: Calculate reward r according to Eq. (6).
11: Update generator parameters θ by SCST method

via Eq. (5).
12: end for
13: for d-steps=1 : d do
14: Generate negative image-sentence pairs

{(I, x̃1:T )} by Gθ, together with negative
samples {(I, x̂1:T )} ⊆ Sw and positive samples
{(I,x1:T )} ⊆ Sr.

15: Update discriminator parameters φ via Eq. (12).
16: end for
17: until generator and discriminator converge

different features, we apply m group convolution kernels
with different window sizes d × li (i = {1, 2, · · · ,m}),
each of which consists of ni (i = {1, 2, · · · ,m}) ker-
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(a) CNN-based discriminator (b) RNN-based discriminator

Figure 2: CNN and RNN-based discriminator architectures. Best viewed in colour.

Table 2: λ selection

fixed parameters: g=1; d=1; Metric=CIDEr-D

λ BLEU-4 METEOR ROUGE-L CIDEr SPICE

0 0.363 0.277 0.569 1.201 0.214
0.3 0.383 0.286 0.586 1.232 0.221
0.5 0.368 0.285 0.581 1.215 0.220
0.7 0.353 0.280 0.565 1.169 0.215
1 0.341 0.268 0.555 1.116 0.205

nels. The detailed design of kernel window sizes and num-
ber is presented in Table 1 (slightly different from (Yu et
al. 2017)). Without loss of generality, a kernel w ∈ Rd×l

with window size d × l applied to the concatenated feature
map of the input image and sentence will produce a feature
map c = [c1, c2, · · · , cT−l+2]. Concretely, a specific fea-
ture is calculated as ci = ReLU(w ∗ εi:i+l−1 + b), where
i = {1, 2, · · · , T − l + 2}, ∗ is the convolution operation, b
is a bias term, and ReLU(·) is the Rectified Linear Unit.

Then we apply a max-over-time pooling operation over
the feature map c̃ = max{c} and concatenate all the pooled
features from different kernels to form a feature vector c̃ ∈
Rn (n =

∑m
i=1 ni). Following the instruction of (Yu et al.

2017), to enhance the performance, we also add the high-
way architecture (Srivastava, Greff, and Schmidhuber 2015)
before the final fully connected layer:

τ = σ(WT · c̃+ bT )
H = ReLU(WH · c̃+ bH)

C̃ = τ �H + (1− τ )� c̃,
(8)

where WT ,WH ∈ Rn×n and bT , bH ∈ Rn are high way
layer weights and bias, respectively, σ is the sigmoid func-
tion and � is the piece-wise multiplication operation.

Finally, a fully connected layer and sigmoid transforma-
tion are applied to C̃ to get the probability that a given sen-
tence is real under a given image:

p = σ(Wo · C̃ + bo), (9)

where Wo ∈ R2×n and bo ∈ R2 are output layer weights
and bias, respectively.

3.3 RNN-based Discriminator Model
Since the most commonly used sequence modeling net-
work is an RNN, in this subsection, we present the RNN-
based discriminator architecture that consists of the standard
LSTM structure, a fully connected linear layer and a softmax
output layer.

For the first time step, the image feature vector v̄ is
fed into the LSTM as an input with the randomly initial-
ized hidden state h0 ∈ Rd. Then, for the following time
steps, the input vectors will be changed to token embeddings
E · xt (t = {1, 2, · · · , T}). The mathematical expressions
are shown as follows:

ht+1 =

{
LSTM(v̄,ht) t = 0

LSTM(E · xt,ht) t = 1, 2, · · · , T . (10)

Then, after a fully connected layer and softmax layer, the
probability that a given sentence is real under a given image
can be calculated as:

p = σ(WR · hT+1 + bR), (11)

where WR ∈ R2×n and bR ∈ R2 are linear layer weights
and bias, respectively.

3.4 Algorithm
In order to incorporate the conditional GAN idea into
the reinforcement learning method, the necessary back-
propagated signal is the final reward r, as depicted in Fig. 1.
Since the language evaluation score s is calculated by stan-
dard metric criterions (CIDEr, SPICE, etc.), the most im-
portant issue is the computation of discriminator probabil-
ity output p. One straightforward way to train a conditional
GAN is to train the discriminator to judge pairs (image, sen-
tence) as real or fake. This type of conditioning is naive in
the sense that the discriminator has no explicit notion of
whether real training sentences match the extracted image
features.

Typically, the discriminator observes three kinds of input
pairs (one kind of positive samples and two kinds of nega-
tive samples): ground-truth sentences with matched images
(real pairs (I,x1:T )), generated sentences with matched im-
ages (fake pairs (I, x̃1:T )) and ground-truth sentences with
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Table 3: Metric selection

fixed parameters: g=1; d=1; λ=0.3

Metric BLEU-4 METEOR ROUGE-L CIDEr SPICE

CIDEr 0.381 0.280 0.580 1.248 0.213
CIDEr-D 0.383 0.286 0.586 1.232 0.221
BLEU-4 0.383 0.279 0.574 1.182 0.209

ROUGE-L 0.368 0.283 0.585 1.195 0.217
METEOR 0.377 0.287 0.576 1.180 0.214

Table 4: Step size combination selection

fixed parameters: λ=0.3; Metric=CIDEr-D

Step Sizes BLEU-4 METEOR ROUGE-L CIDEr SPICE

g=1; d=5 0.378 0.284 0.582 1.209 0.220
g=1; d=1 0.383 0.286 0.586 1.232 0.221
g=5; d=1 0.383 0.285 0.585 1.231 0.220
g=10; d=1 0.381 0.284 0.583 1.228 0.220

mismatched images (wrong pairs (I, x̂1:T )). For the conve-
nience of mathematical expression, we denote three sets as
Sr,Sf ,Sw, which respectively consist of the three kinds of
samples mentioned above.

Therefore, we slightly modify the traditional GAN train-
ing loss function (Goodfellow et al. 2014) to separate the
two error sources. The model parameters φ of caption dis-
criminator are trained to maximize

LD(φ) = E(I,x1:T )∈Sr [logDφ(I,x1:T )]

+ 0.5 · E(I,x̃1:T )∈Sf [log(1−Dφ(I, x̃1:T ))]

+ 0.5 · E(I,x̂1:T )∈Sw [log(1−Dφ(I, x̂1:T ))] .
(12)

Algorithm 1 describes the image captioning algorithm via
the generative adversarial training method in detail. Notice
that our proposed algorithm needs pre-training for both the
generator and discriminator first. Then, we fine-tune the gen-
erator and discriminator alternatively based on the standard
GAN training process.

4 Experiments
4.1 Dataset
The most widely used image captioning training and evalua-
tion dataset is the MSCOCO dataset (Lin et al. 2014) which
contains 82,783, 40,504, and 40,775 images with 5 captions
each for training, validation, and test, respectively. For of-
fline evaluation, following the Karpathy splits from (Karpa-
thy and Fei-Fei 2015), we use a set of 5K images for val-
idation, 5K images for test and 113,287 images for train-
ing. We adopt five widely used automatic evaluation met-
rics: BLEU, ROUGE-L, METEOR, CIDEr and SPICE, to
objectively evaluate the performance of different algorithms.
For online evaluation on the MSCOCO evaluation server, we
add the 5K validation set and 5K testing set into the training
set to form a larger training set.

All the sentences in the training set are truncated to ensure
the longest length of any sentence is 16 characters. We fol-
low standard practice and perform some text pre-processing,
converting all sentences to lower case, tokenizing on white
space, and filtering words that do not occur at least 5 times,
resulting in a model vocabulary of 9,487 words.

4.2 Implementation Details
The LSTM hidden dimension for the RNN-based discrim-
inator is 512. The dimension of image CNN feature and
word embedding for both CNN-based and RNN-based dis-
criminators is fixed to 2048. We initialize the discriminator
via pre-training the model for 10 epochs by minimizing the
cross entropy loss in Eq. (12) using the ADAM (Kingma
and Ba 2014) optimizer with a batch size of 16, an ini-
tial learning rate of 1 × 10−3 and momentum of 0.9 and
0.999. Similarly, the generator is also pre-trained by MLE
for 25 epochs. We use a beam search with a beam size
of 5 when validating and tesing. Notice that our proposed
generative-adversarial-nets-based image captioning frame-
work is generic so that any existing encoder-decoder model
can be employed as the generator. In our experiments, the
Resnet101 (He et al. 2016) and bottom-up mechanism (An-
derson et al. 2018) based on fastar R-CNN are chosen as en-
coders, the top-down attention model (Anderson et al. 2018),
att2in and att2all model (Rennie et al. 2017) are chosen as
decoders to conduct controlled experiments. In addition, the
SCST (Rennie et al. 2017) reinforcement learning method is
adopted by all experiments. Therefore, all the generator and
reinforcement learning hyper-parameters are identical with
those of original referenced papers.

Finally, the parameters that are unique and need to be de-
termined in our algorithm setting are the balance factor λ in
Eq. (6), g-steps g and d-steps d during adversarial training
in Algorithm 1, and the language evaluator Q. All the above
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Table 5: Performance comparisons on MSCOCO Karpathy test set. The baseline algorithms are using resnet101 or bottom-up
mechanism as the image feature extractor and SCST as the training method. Results of algorithms denoted by * are provided
by original papers and the remaining experimental results are implemented by us for comparison. “None” means RL training
method without discriminator. “CNN-GAN” and “RNN-GAN” mean training with our proposed approach by CNN-based and
RNN-based discriminator, respectively. “Ensemble” indicates an ensemble of 4 CNN-GAN and 4 RNN-GAN models with
different initializations. All values are reported in percentage (%).

Generator Discriminator BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE CNN-D RNN-D

none* - - - 33.3 26.3 55.3 111.4 - - -
resnet101+att2in CNN-GAN 78.1 61.3 46.4 34.4 26.6 56.1 112.3 20.3 47.9 45.8
(Rennie et al. 2017) RNN-GAN 78.0 61.4 46.3 34.3 26.5 56.0 112.2 20.4 46.0 48.1

ensemble 78.5 61.8 47.1 35.0 27.1 56.6 114.8 20.5 48.0 48.2

none 79.0 62.1 48.2 35.5 27.0 56.3 117.0 20.9 45.6 44.5
bottom-up+att2in CNN-GAN 80.1 63.8 49.0 37.0 27.9 57.7 118.0 21.4 51.2 49.7
(Rennie et al. 2017) RNN-GAN 80.0 63.9 49.1 36.8 27.8 57.6 118.1 21.3 49.5 51.9

ensemble 80.5 64.8 50.0 37.9 28.4 58.2 119.5 21.5 51.4 51.5

none* - - - 34.2 26.7 55.7 114.0 - -
resnet101+att2all CNN-GAN 78.4 62.6 47.6 35.4 27.4 56.8 115.2 20.6 49.0 47.2
(Rennie et al. 2017) RNN-GAN 78.3 62.5 47.6 35.2 27.3 56.9 115.1 20.6 47.1 48.8

ensemble 79.0 62.8 48.2 35.8 27.7 57.6 117.8 20.9 49.5 49.1

none 79.6 63.5 49.1 36.1 27.8 56.7 119.8 21.2 46.3 45.9
bottom-up+att2all CNN-GAN 80.7 64.7 50.1 38.0 28.4 58.4 122.1 21.9 53.5 50.8
(Rennie et al. 2017) RNN-GAN 80.6 64.8 50.0 38.1 28.3 58.3 122.0 21.8 50.6 53.2

ensemble 81.1 65.7 50.8 39.0 28.6 58.7 124.1 22.0 53.7 53.5

none* 76.6 - - 34.0 26.5 54.9 111.1 20.2 - -
resnet101+top-down CNN-GAN 78.5 62.7 48.0 35.6 27.3 56.7 113.0 20.6 49.5 47.6
(Anderson et al. 2018) RNN-GAN 78.4 62.7 48.0 35.5 27.2 56.6 112.7 20.5 47.0 49.2

ensemble 79.3 63.2 48.6 36.0 27.6 57.1 115.5 20.8 50.0 49.3

none* 79.8 - - 36.3 27.7 56.9 120.1 21.4 - -
bottom-up+top-down CNN-GAN 81.1 65.0 50.4 38.3 28.6 58.6 123.2 22.1 53.6 51.1
(Anderson et al. 2018) RNN-GAN 81.0 64.8 50.2 38.2 28.5 58.4 122.2 22.0 50.9 54.0

ensemble 81.8 66.1 51.6 39.6 28.9 59.1 125.9 22.3 54.3 54.5

Average CNN-GAN 1.71 2.31 1.85 4.44 2.59 2.53 1.50 2.75 13.93 11.17
Improvements RNN-GAN 1.59 2.47 1.85 4.15 2.22 2.38 1.28 2.27 8.92 16.26

hyper-parameters are empirical values and will be clarified
in the following subsection.

4.3 Parameters Determination
In order to determine a group of optimal hyper-parameters
as mentioned in the above subsection, we design a series of
experiments with a variable-controlling approach. We adopt
the bottom-up image feature extractor together with top-
down attention model as our fixed generator, SCST as our
RL optimization method and the CNN structure as our dis-
criminator.

First, we fix the g-steps g = 1, d-steps d = 1 and lan-
guage metric Q as CIDEr-D (a smooth modification version
of CIDEr). The objective results on the test split with differ-
ent λ values are shown in Table 2. Notice that when λ = 0,
our algorithm exactly degenerates into the conventional RL
method. Statistics reveal that all the metrics evaluation re-
sults achieve their optimal scores when λ = 0.3.

Second, we fix the g-steps g = 1, d-steps d = 1 and
λ = 0.3. The test results while RL optimizing by different
language evaluator Q are shown in Table 3. Notice that here
we do not choose SPICE as evaluator since the computa-
tion of SPICE is extremely slow and is too time-consuming.
When the evaluator is chosen as CIDEr-D, even though
some scores (CIDEr and METEOR) are not the highest, the

comprehensive performance still outperforms other evalua-
tors.

Third, we fix λ = 0.3 and language evaluatorQ as CIDEr-
D. We try different step-size combinations and list the test
results in Table 4. Experimental results demonstrate that the
best step-size combination is g = 1 and d = 1.

Overall, based on the experimental results explained
above, the final optimal hyper-parameters of our proposed
algorithm are λ = 0.3, g = 1, d = 1 and Q = CIDEr-D.

4.4 Comparisons
We compare our framework with some state-of-the-art
encoder-decoder models (att2in (Rennie et al. 2017),
att2all (Rennie et al. 2017) and top-down attention (Ander-
son et al. 2018)) with SCST (Rennie et al. 2017) to study the
effectiveness of our proposed algorithm. For fair compar-
isons, we chose Resnet101 (He et al. 2016) and bottom-up
mechanism (Anderson et al. 2018) as the CNN feature ex-
tractors for all the models mentioned above and the identical
decoder parameters as reported in the original papers. Statis-
tics reported in Table 5 reveal that by using our proposed
generative adversarial training method, the performance of
all the objective evaluation metrics is improved for all three
models. Specifically, the relative improvements range from
1.3% to 4.4% on average. Notice that the well-trained CNN-
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Table 6: Performance of different models on the MSCOCO evaluation server. All values are reported in percentage (%), with the
highest value of each entry highlighted in boldface. It is worth pointing out that almost all the metrics of our method (ensemble
of 4 CNN-GAN and 4 RNN-GAN models in the last row) ranked in top two at the time of submission (5 Sep., 2018).

Algorithms BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

NIC (Vinyals et al. 2015) 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6 18.2 63.6
PG-BCMR (Liu et al. 2017) 75.4 91.8 59.1 84.1 44.5 73.8 33.2 62.4 25.7 34.0 55.0 69.5 101.3 103.2 18.7 62.2
Adaptive (Lu et al. 2017) 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9 19.7 67.3
Actor-Critic (Zhang et al. 2017) 77.8 92.9 61.2 85.5 45.9 74.5 33.7 62.5 26.4 34.4 55.4 69.1 110.2 112.1 20.3 68.0
Att2all (Rennie et al. 2017) 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7 20.7 68.9
Stack-Cap (Gu et al. 2017) 77.8 93.2 61.6 86.1 46.8 76.0 34.9 64.6 27.0 35.6 56.2 70.6 114.8 118.3 - -
LSTM-A3 (Yao et al. 2017) 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0 - -
Up-down (Anderson et al. 2018) 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5 21.5 71.5
CAVP (Liu et al. 2018) 80.1 94.9 64.7 88.8 50.0 79.7 37.9 69.0 28.1 37.0 58.2 73.1 121.6 123.8 - -
RFNet (Jiang et al. 2018) 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1 - -

Ours 81.9 95.6 66.3 90.1 51.7 81.7 39.6 71.5 28.7 38.2 59.0 74.4 123.1 124.3 - -

Table 7: This table shows some caption examples by different algorithms. The first line is generated by the Up-Down model
with SCST. The second and third lines are caption results by adding CNN-GAN and RNN-GAN traing, respectively. The last
line is the results of ensemble of CNN-GAN and RNN-GAN.

Up-Down a bag of items and other items a man with a beard and tie wearing a desk with two laptops and a a group of zebras and a zebra
on a table a tie laptop standing in the water

CNN-GAN a purse and personal items laid out a man in a suit and tie looking at a desk with a laptop computer and a group of zebras and other
on a wooden table the camera a desktop on it animals in the water

RNN-GAN a purse and other items laid out on a man in a suit and tie is smiling a desk with a laptop computer and a group of zebras and other
a wooden table books on it animals standing in the water

ensemble a purse and other personal items a man in a suit and tie looking at the a desk with a laptop and a desktop a group of zebras and other
laid out on a wooden table camera with smile sitting on top of it animals standing near the water

Up-Down a woman holding an umbrella a woman standing in front of a two giraffes standing next to a a group of people standing on top of
in a brick wall cell phone city in the water a clock

CNN-GAN a woman in a yellow jacket a woman standing in front of a two giraffes standing next to a a group of people standing on a
holding an umbrella newspaper sign large city in the background building with a clock

RNN-GAN a woman standing in front of a woman standing in front of a two giraffes standing next to a a group of people standing on a
a brick wall holding an umbrella store holding a cell phone city in the background balcony looking at a clock

ensemble a woman in a yellow jacket near a woman standing in front of a new- two giraffes standing next to a a group of people standing on a
a brick wall holding an umbrella spaper sign holding a cell phone city near water in the background balcony with a clock

based and RNN-based discriminators (CNN-D and RNN-
D in the last two columns of Fig. 5) can also be viewed
as two learned evaluators. The experimental results demon-
strate that our proposed adversarial training approach can
significantly boost the scores compared with traditional RL
training method (improvements range from 8.9% to 16.3%).

In terms of CNN-based and RNN-based generative ad-
versarial training framework (called CNN-GAN and RNN-
GAN in Table 5), each has its own advantages. Experi-
mental results show that CNN-GAN can improve the per-
formance of image captioning frameworks slightly more as
compared with RNN-GAN. However, during training stage,
using RNN-GAN can save 30% training time according to

our experimental experience. The most important issue is
that the ensemble results of 4 CNN-GAN and 4 RNN-GAN
models can largely enhance the performance of a single
model as shown in Table 5.

For online evaluation, we use the ensemble of 4 CNN-
GAN and 4 RNN-GAN models with different random ini-
tializations whose generator structure exactly follows the
Up-Down model (Anderson et al. 2018) and the compar-
isons are provided in Table 6. We can see that our ap-
proach achieves the best results compared with some state-
of-the-art algorithms with publicly published papers. For all
submissions online, almost all the metrics of our method
ranked in top two at the time of submission (5 Sep., 2018).
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Specifically, when compared with the results of Up-Down
model, by using our proposed generative adversarial train-
ing method, it can obtain significant improvements.

4.5 Examples
To better understand the CNN-GAN and RNN-GAN frame-
work, Table 7 provides some representative examples for
comparisons. The baseline algorithm is the Up-Down model
with SCST, whose results are shown in the first line. Our
generated captions by CNN-GAN and RNN-GAN training
approach with the same generator are listed in the second
and third line, respectively. The last row is the results of en-
semble of 4 CNN-GAN and 4 RNN-GAN models.

The four cases appearing above in Table 7 indicate that
the original model will generate some duplicate words or
phrase. Even without any grammar or description errors,
these sentences seem rigid and machine generated. After
generative adversarial training, the generated sentences are
much more like a human style. The four cases appearing be-
low in Table 7 present some logical errors which are incon-
sistent with given images when using traditional RL train-
ing method, e.g. “in a brick wall”, “in front of a cell phone”,
“city in the water”, “on top of a clock”, while such error will
be avoided when employing our proposed method.

5 Conclusion
This paper proposes a novel architecture combining gen-
erative adversarial nets and reinforcement learning to im-
prove existing image captioning frameworks. Current RL-
based image captioning algorithms directly optimize lan-
guage evaluation metrics such as CIDEr, BELU and SPICE;
however, simply optimizing one metric or combination of
these metrics will not consistently improve all evaluation
metrics and will also result in some logical errors or un-
natural styles when generating descriptions. Therefore, we
are motivated to design a discriminator network to judge
whether the input sentence is human described or ma-
chine generated. Alternatively, the caption generator and the
evaluation discriminator are improved by adversarial train-
ing. We experimentally show consistent improvements over
all language evaluation metrics for different state-of-the-art
encoder-decoder based image captioning models optimized
by conventional RL training, demonstrating the effective-
ness of our proposed generative adversarial training method.
In addition, the well-trained CNN and RNN-based discrim-
inators can also be utilized as image captioning evaluators
leaned by neural networks.
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