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Abstract

It is well believed that video captioning is a fundamental
but challenging task in both computer vision and artificial
intelligence fields. The prevalent approach is to map an in-
put video to a variable-length output sentence in a sequence
to sequence manner via Recurrent Neural Network (RNN).
Nevertheless, the training of RNN still suffers to some de-
gree from vanishing/exploding gradient problem, making the
optimization difficult. Moreover, the inherently recurrent de-
pendency in RNN prevents parallelization within a sequence
during training and therefore limits the computations. In this
paper, we present a novel design — Temporal Deformable
Convolutional Encoder-Decoder Networks (dubbed as TD-
ConvED) that fully employ convolutions in both encoder and
decoder networks for video captioning. Technically, we ex-
ploit convolutional block structures that compute interme-
diate states of a fixed number of inputs and stack several
blocks to capture long-term relationships. The structure in en-
coder is further equipped with temporal deformable convolu-
tion to enable free-form deformation of temporal sampling.
Our model also capitalizes on temporal attention mechanism
for sentence generation. Extensive experiments are conducted
on both MSVD and MSR-VTT video captioning datasets,
and superior results are reported when comparing to con-
ventional RNN-based encoder-decoder techniques. More re-
markably, TDConvED increases CIDEr-D performance from
58.8% to 67.2% on MSVD.

Introduction
The recent advances in deep neural networks have convinc-
ingly demonstrated high capability in learning vision mod-
els particularly for recognition. The achievements make a
further step towards the ultimate goal of video understand-
ing, which is to automatically describe video content with a
complete and natural sentence or referred to as video cap-
tioning problem. The typical solutions (Pan et al. 2016;
Venugopalan et al. 2015a; 2015b; Yao et al. 2015; Yu et al.
2016) of video captioning are inspired by machine transla-
tion and equivalent to translating a video to a text. As illus-
trated in Figure 1 (a), the basic idea is to perform sequence to
sequence learning, where a Convolutional Neural Network
(CNN) or Recurrent Neural Network is usually exploited to
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Figure 1: An illustration of (a) CNN or RNN plus RNN ar-
chitecture and (b) our Temporal Deformable Convolutional
Encoder-Decoder Networks, for video captioning.

encode a video and a decoder of RNN is utilized to generate
the sentence, one word at each time step till the end. Regard-
less of different versions of CNN or RNN plus RNN video
captioning framework, a common practice is the use of se-
quential RNN, which may result in two limitations. First,
RNN powered by Long Short-Term Memory (LSTM) alle-
viates the issue of vanishing or exploding gradients to some
extent, nevertheless the problem still exists. Moreover, the
utilization of RNN on a long path between the start and end
of a sequence will easily forget the long-range information.
Second, the training process of RNN is inherently sequen-
tial due to the recurrent relation in time and thus prevents
parallel computations in a sequence.

We propose to mitigate the aforementioned two issues via
convolutions in an encoder-decoder architecture. Compared
to the chain structure in RNN, feed-forward convolutions
produce representations of fixed-length inputs and could
easily capture long-term dependencies by stacking several
layers on the top of each other. Unlike RNN in which the
inputs are fed through a variable number of non-linearities
and the number depends on the input length, the operation
of convolution fixes the number of non-linearities and thus
eases the optimization. Furthermore, feed-forward convolu-
tions are without any recurrent functions and do not rely on
the computation of the previous time step. Therefore, com-
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putations over all the input elements could be fully paral-
lelized during training.

By consolidating the idea of leveraging convolutions
in sequence-to-sequence learning for video captioning,
we present a novel Temporal Deformable Convolutional
Encoder-Decoder Networks (TDConvED) architecture, as
conceptually shown in Figure 1 (b). Given a video, a stan-
dard CNN is utilized to extract visual features of sampled
frames or clips. Then, the features of frames/clips are fed
into convolutional block to produce intermediate states of
each frame/clip with contexts. The context size is enlarged
by stacking several convolutional blocks. Please also note
that we endow the convolutional block in encoder with more
power of devising temporal deformable convolutions by cap-
turing dynamics in temporal extents of actions or scenes.
Once all sampled frames/clips are encoded, the video-level
representations are computed by mean pooling over all the
intermediate states. Similarly, we employ feed-forward con-
volutional blocks that operate on the concatenation of video-
level representations and the embeddings of past words to
generate subsequent word, till the end token is predicted.
In addition, sentence generation is further enhanced by ad-
ditionally incorporating temporally attended video features.
Since there are no recurrent connections and all ground-truth
words are available at any time step, our TDConvED model
could be trained in parallel.

Our main contribution is the proposal of the use of con-
volutions for sequence-to-sequence learning and eventually
boosting video captioning. This also leads to the elegant
view of how to design feed-forward convolutional structure
in an encoder-decoder video captioning framework, and how
to support parallelization over every element within a se-
quence, which are problems not yet fully understood.

Related Work
Video Captioning. The dominant direction in modern video
captioning is sequence learning approaches (Pan et al. 2016;
2017; Chen et al. 2017; Venugopalan et al. 2015a; 2015b;
Yao et al. 2015; Yu et al. 2016; Li et al. 2018) which utilize
RNN-based architecture to generate novel sentences with
flexible syntactical structures. For instance, Venugopalan et
al. present a LSTM-based model to generate video descrip-
tions with the mean pooled representation over all frames
in (Venugopalan et al. 2015b). The framework is then ex-
tended by inputting both frames and optical flow images into
an encoder-decoder LSTM in (Venugopalan et al. 2015a).
Compared to mean pooling, Yao et al. propose to utilize the
temporal attention mechanism to exploit temporal structure
for video captioning (Yao et al. 2015). Later in (Zhao, Li,
and Lu 2018), Zhao et al. design an object-aware tube fea-
ture for video captioning to enable attention on salient ob-
jects. Most recently, Hao et al. develop several deep fusion
strategies to effectively integrate both visual and audio cues
into sentence generation in (Hao, Zhang, and Guan 2018).

Sequence Learning with CNN. The most typical
paradigm in sequence learning is RNN-based encoder-
decoder structure which mainly capitalizes on RNN to
model the probability of decoding an output given the pre-
vious outputs and all the inputs. Although the remarkable

results have been observed on a number of sequential tasks
(e.g., image/video captioning, machine translation), the in-
herent recursive characteristic inevitably limits the paral-
lelization abilities and even raises vanishing/exploding gra-
dient problems in the training stage. To tackle these barriers,
there is an emerging trend of leveraging Convolutional Neu-
ral Network (CNN) for sequence learning in language mod-
eling for NLP tasks (Meng et al. 2015; Bradbury et al. 2016;
Kalchbrenner et al. 2016; Gehring et al. 2017). A convolu-
tional encoder with a gated architecture has been designed
in (Meng et al. 2015), which could pinpoint the parts of
a source sentence that are relevant to the target word for
machine translation. Recently, the first fully convolutional
model for sequence learning is proposed in (Gehring et al.
2017) to design both encoder and decoder in the form of
convolutions with CNN, which even outperforms strong re-
current models on machine translation task.

Summary. In short, our approach in this paper belongs
to sequence learning method for video captioning. Unlike
most of the aforementioned sequence learning models which
mainly focus on generating sentence by solely depending on
RNN-based decoder, our work contributes by exploiting a
fully convolutional sequence learning architecture that relies
on CNN-based encoder and decoder for video captioning.
Moreover, we additionally explore the temporal deformable
convolutions and temporal attention mechanism to extend
and utilize temporal dynamics across frames/clips, and even-
tually enhance the quality of generated sentence.

Temporal Deformable
Convolutional Encoder-Decoder Networks

Our Temporal Deformable Convolutional Encoder-Decoder
Networks (TDConvED) architecture is devised to generate
video descriptions by fully capitalizing on convolutional en-
coder and decoder. Specifically, a convolutional encoder is
firstly leveraged to encode each frame/clip with the con-
textual information among multiple sampled frames/clips
via temporal deformable convolution. The idea behind tem-
poral deformable convolution is to augment the temporal
samplings with additional offsets learnt from the inherent
temporal dynamics of scenes/actions within frame/clip se-
quence. Next, conditioned on the video-level representation
induced by the temporal deformable convolutional encoder
(e.g., performing mean pooling over all encoded features of
frames/clips), we employ a convolutional decoder to pre-
dict each output word by additionally exploiting the con-
textual relations across the previous output words. Further-
more, a temporal attention mechanism tailored to temporal
deformable convolutional encoder-decoder structure is de-
signed to further boost video captioning. An overview of
TDConvED is shown in Figure 2.

Problem Formulation
Suppose a video V with Nv sampled frames/clips (uniform
sampling) to be described by a textual sentence S, where
S = (w1, w2, . . . , wNs

) is the word sequence consisting
of Ns words. Let v = (v1, v2, . . . , vNv

) denote the tem-
poral sequence of frame/clip representations of the video V ,
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Figure 2: The overall architecture of our TDConvED that fully employs convolutions in both encoder and decoder networks
for video captioning. A standard CNN is firstly utilized to extract visual features of sampled frames/clips. Then, the features of
frames/clips are fed into a temporal deformable convolutional encoder with stacked temporal deformable convolutional blocks
to produce intermediate states of each frame/clip with contexts. The video-level representations are computed by mean pooling
over all the intermediate states. After that, a convolutional decoder with stacked shifted convolutional blocks operates on the
concatenation of video-level representations and the embeddings of past words to generate the next word. In addition, a temporal
attention mechanism tailored to such convolutional encoder-decoder structure is incorporated to boost video captioning.

where vi ∈ RDv represents the Dv-dimensional feature of
i-th frame/clip extracted by 2D/3D CNN.

Inspired by the recent successes of sequence to sequence
solutions leveraged in image/video captioning (Venugopalan
et al. 2015a; Yao et al. 2017a; 2017b; 2018), we aim to for-
mulate our video captioning model in an encoder-decoder
scheme. Instead of relying on RNN to compute intermedi-
ate encoder/decoder states, we novelly utilize a fully con-
volutional encoder-decoder architecture for sequence to se-
quence modeling in video captioning. Formally, a tempo-
ral deformable convolutional encoder is utilized to encode
the input frame/clip sequence v = (v1, v2, . . . , vNv

) into a
set of context vectors z = (z1, z2, . . . , zNv

), which are en-
dowed with the contextual information among frames/clips
sampled in a free-form temporal deformation along the in-
put sequence. Next, we perform mean pooling over all the
context vectors z to achieve the video-level representation,
which is further injected into the convolutional decoder to
generate target output sentence S by capturing the long-term
contextual relations among input video and previous output
words. Thus, the video sentence generation problem we ex-
ploit is formulated by minimizing the following energy loss:

E(v, S) = − log Pr (S|v), (1)

which is the negative log probability of the correct textual
sentence given the temporal sequence of input video. By
applying chain rule to model the joint probability over the
sequential words, the log probability of the sentence is mea-
sured by the sum of the log probabilities over each word,
which can be written as

log Pr (S|v) =

Ns∑
t=1

log Pr (wt|v, w0, . . . , wt−1). (2)

In contrast to the conventional RNN-based encoder-decoder
architecture that models the above parametric distribution

Pr (wt|v, w0, . . . , wt−1) with RNN, we employ convolu-
tions to calculate it in a simple feed-forward manner at de-
coding stage. Since no recurrent dependency exists in the
convolutional decoder and all grough-truth words are avail-
able at training, the joint probability Pr (S|v) can be calcu-
lated in parallel for all words. Derived from the idea of at-
tention mechanism in sequence to sequence modeling (Yao
et al. 2015), we also capitalize on temporal attention mech-
anism to focus on the frames/clips that are highly relevant
to the output word for enriching the video-level representa-
tion. Such representation will be additionally injected into
convolutional decoder to enhance video captioning.

Temporal Deformable Convolutional Encoder
An encoder is a module that takes the source sequence (i.e.,
frame/clip sequence of video) as input and produces inter-
mediate states to encode the semantic content. Here we de-
vise a temporal deformable convolutional block in the en-
coder of our TDConvED which applies temporal deformable
convolution over the input sequence to capture the context
across frames/clips sampled in a free-form temporal defor-
mation, as depicted in Figure 3 (a). Such design of tem-
poral deformable convolution improves conventional tem-
poral convolution by capturing temporal dynamics on the
natural basis of actions/scenes within the video. Meanwhile,
the feed-forward convolutional structure in encoder enables
the parallelization within the input sequence and allows fast
computation. Furthermore, to exploit long-term dependency
among input sequence at encoding stage, multiple temporal
deformable convolutional blocks are stacked in encoder to
integrate the contextual information from a larger number of
temporal samplings in the input sequence.

Formally, consider the l-th temporal deformable convo-
lutional block in encoder with the corresponding output se-
quence denoted as pl = (pl1, p

l
2, . . . , p

l
Nv

), where pli ∈ RDr
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Figure 3: An illustration of (a) the temporal deformable conv
block in encoder, (b) the shifted conv block in decoder, and
(c) the temporal deformable convolution.

is the output of the temporal deformable convolution cen-
tered on the i-th frame/clip. Given the output sequence
pl−1 = (pl−1

1 , pl−1
2 , . . . , pl−1

Nv
) of the (l − 1)-th block, each

output intermediate state pli is achieved by feeding the subse-
quence of pl−1 into a temporal deformable convolution (ker-
nel size: k) plus a non-linearity unit. Note that the tempo-
ral deformable convolution operates in a two-stage way, i.e.,
first measuring temporal offsets via an one-dimensional con-
volution for sampling frames/clips and then aggregating the
features of sampled frames/clips, as depicted in Figure 3 (c).
More specifically, let X = (pl−1

i+r1
, pl−1

i+r2
, . . . , pl−1

i+rk
) denote

the subsequence of pl−1, where rn is the n-th element of
R and R = {−k/2, . . . , 0, . . . , k/2}. The one-dimensional
convolution in the l-th temporal deformable convolutional
block can be parameterized as the transformation matrix
W l

f ∈ Rk×kDr and the bias blf ∈ Rk, which takes the con-
catenation of k elements in X as input and produces a set of
offsets ∆ri = {∆rin}kn=1 ∈ Rk:

∆ri = W l
f [pl−1

i+r1
, pl−1

i+r2
, . . . , pl−1

i+rk
] + blf , (3)

where the n-th element ∆rin in ∆ri denotes the measured
temporal offset for the n-th sample in the subsequence X .
Next, we achieve the output of temporal deformable con-
volution by augmenting samples with temporal offsets via
another one-dimensional convolution:
oli = W l

d[pl−1
i+r1+∆ri1

, pl−1
i+r2+∆ri2

, . . . , pl−1
i+rk+∆rik

]+bld, (4)

where W l
d ∈ R2Dr×kDr is the transformation matrix in the

one-dimensional convolution and bld ∈ R2Dr is the bias. As
the temporal offset ∆rin is typically fractional, pl−1

i+rn+∆rin
in Eq.(4) can be calculated via temporal linear interpolation:

pl−1
i+rn+∆rin

=
∑
s

B(s, i+ rn + ∆rin)pl−1
s , (5)

where i+rn +∆rin denotes an arbitrary position, s enumer-
ates all integral positions in the input sequence pl−1, and
B(a, b) = max(0, 1− |a− b|).

In addition, we adopt a gated linear unit (GLU) (Dauphin
et al. 2017) as the non-linearity unit to ease gradient propa-
gation. Thus given the output of temporal deformable con-
volution oli ∈ R2Dr which has twice the dimension of the
input element, a GLU is applied over oli = [A,B] through a
simple gating mechanism:

g(oli) = A⊗ σ(B), (6)

where A,B ∈ RDr and ⊗ is the point-wise multiplication.
σ(B) represents a gate unit that controls which elements
of A are more relevant to the current context. Moreover,
the residual connections (He et al. 2016) from input of the
temporal deformable convolution block to the output of the
block are added to enable deeper networks. Hence, the final
output of the l-th temporal deformable convolutional block
is measured as

pli = g(oli) + pl−1
i . (7)

To ensure the match between the length of output se-
quence of temporal deformable convolutional block and the
input length, both the left and right sides of the input are
padded with k/2 zero vectors. By stacking several temporal
deformable convolutional blocks over the input frame/clip
sequence, we obtain the final sequence of context vectors
z = (z1, z2, . . . , zNv

), where zi ∈ RDr represents the con-
textually encoded feature of the i-th frame/clip.

Convolutional Decoder
The most typical way to implement the decoder for sequence
learning is to adopt sequential RNN to produce the out-
put sequence conditioned on the representations of the in-
put sequence induced by the encoder. However, the inher-
ent dependency in RNN inevitably limits the paralleliza-
tion abilities of RNN-based decoder and even raises van-
ishing/exploding gradient problems for training. To allevi-
ate the challenges in decoder of sequence learning, we de-
vise a fully convolutional decoder by stacking several shifted
convolutional blocks to capture long-term context across the
encoded context vectors of input video and output words.
Here, the center position of the convolution in shifted convo-
lutional block is shifted with respect to the center of normal
convolutions, as shown in Figure 3 (b).

In particular, given the encoded sequence of context vec-
tors z = (z1, z2, . . . , zNv ) for input video, we first perform
mean pooling over all context vectors and achieve the video-

level representation z̃ = 1
Nv

Nv∑
i=1

zi. Since no memory cells

or autoregressive path exists in the convolutional decoder,
the video-level representation z̃ is transformed with a linear
mapping Wi and concatenated with the embeddings of the
input word at each time step, which will be set as the input
of the first shifted convolutional block of the decoder. The
transformation for addition of word embeddings and posi-
tion embeddings is denoted as We. Consider the l-th shifted
convolutional block in decoder with the corresponding out-
put sequence ql = (ql0, q

l
1, . . . , q

l
Ns

), where qlt ∈ RDf de-
notes the output of the convolution at time step t. More
specifically, by taking the output sequence of the (l − 1)-
th shifted convolutional block as input, every subsequence
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of ql−1 is fed into an one-dimensional convolution (kernel
size: k) plus a GLU and residual connections, resulting in the
output intermediate state qlt at time step t. Different from the
basic convolution, the corresponding subsequence of ql−1

is Xq = (ql−1
t−k+1, q

l−1
t−k+2, . . . , q

l−1
t ) since no future infor-

mation is available to decoder at decoding stage. Hence, the
operation in each shifted convolutional block is given by

qlt = g(W q
l [ql−1

t−k+1, q
l−1
t−k+2, . . . , q

l−1
t ] + bql ) + ql−1

t , (8)

where W q
l ∈ R2Df×kDf and bql ∈ R2Df denote the trans-

formation matrix and bias of the convolutional kernel in the
l-th shifted convolutional block, respectively. Note that for
each shifted convolutional block, only the left side of the in-
put sequence is padded with k−1 zero vectors for matching
the length between input and output sequence. Accordingly,
by leveraging the convolutional decoder with stacked shifted
convolutional blocks, we obtain the final output sequence
h = (h1, h2, . . . , hNs

) and each element ht ∈ RDf denotes
the output intermediate state at time step t.

Temporal Attention Mechanism
In many cases, the output word at decoding stage only re-
lates to some frames/clips of the input video. As a result,
utilizing one encoder to compress the whole video into a
global feature (e.g., the aforementioned mean pooled video-
level representation z̃) would collapse the natural temporal
structure within video and bring in the noises from irrele-
vant frames/clips, resulting in sub-optimal results. To dy-
namically pinpoint the frames/clips that are highly relevant
to the output word and further incorporate the contributions
of different frames/clips into producing video-level repre-
sentation for predicting target word, a temporal attention
mechanism is employed over the encoded sequence of con-
text vectors z = (z1, z2, . . . , zNv ) to boost video caption-
ing. Specifically, at each time step t, the attention mecha-
nism first generates a normalized attention distribution over
all the encoded context vectors z depending on the current
output intermediate state ht of the convolutional decoder as

ati =Wa [tanh (Wzzi +Whht + ba)] , λ
t = softmax

(
at
)
, (9)

where ati is the i-th element of at, Wa ∈ R1×Da , Wz ∈
RDa×Dr and Wh ∈ RDa×Df are transformation matrices.
λt ∈ RNv denotes the normalized attention distribution and
its i-th element λti is the attention probability of context vec-
tor zi of the i-th frame/clip. Based on the attention distri-
bution, we calculate the attended video-level feature ẑt by
aggregating all the context vectors weighted by attention:

ẑt =

Nv∑
i=1

λtizi. (10)

The attended video-level feature ẑt is further transformed
with a linear mapping and combined with the output in-
termediate state ht of convolutional decoder, which is em-
ployed to predict the next word through a softmax layer.

Inference
Similar to RNN based model, the inference of TDConvED
is performed sequentially by generating one word at each
time step. At the beginning of inference, the start sign word
< s > and the encoded sequence z = (z1, z2, . . . , zNv )
of input video are jointly fed into the convolutional decoder
to predict the output word distribution. The word with the
maximum probability is popped out as the input word to
the convolutional decoder at the next time step. This pro-
cess continues until the end sign word < e > is emitted or
the pre-defined maximum sentence length is reached.

Experiments
We evaluate and compare our TDConvED with conventional
RNN-based techniques by conducting video captioning task
on two benchmarks, i.e., Microsoft Research Video Descrip-
tion Corpus (MSVD) (Chen and Dolan 2011) and Microsoft
Research Video to Text (MSR-VTT) (Xu et al. 2016).

Datasets and Experimental Settings
MSVD. The MSVD dataset is the most popular video cap-
tioning benchmark and contains 1970 short videos clips
from YouTube. Following the standard settings in previous
works (Pan et al. 2016; Yao et al. 2015), we take 1200 videos
for training, 100 for validation and 670 for testing.

MSR-VTT. MSR-VTT is a recently released large-scale
benchmark for video captioning and consists of 10,000 web
video clips from 20 well-defined categories. Following the
official split, we utilize 6513, 497, and 2990 video clips for
training, validation and testing, respectively.

Features and Parameter Settings. We uniformly sample
25 frames/clips for each video and each word in the sentence
is represented as “one-hot” vector (binary index vector in
a vocabulary). For visual representations, we take the out-
put of 4,096-way fc7 layer from VGG or 2,048-way pool5
from ResNet (He et al. 2016) pre-trained on ImageNet (Rus-
sakovsky et al. 2015), and 4,096-way fc6 layer from C3D
(Tran et al. 2015) pre-trained on Sports-1M (Karpathy et al.
2014) as frame/clip representations. In training phase, we
add a start token < s > to indicate the starting of sentence,
an end token < e > to denote the end of each sentence, and
a padding token < p > to keep the length of all textual
sequences the same. For sentence generation in inference
stage, we adopt the beam search and set the beam size as
5. The kernel size k of convolutions in encoder and decoder
is set as 3. The convolutional encoder/decoder in our TD-
ConvED consists of 2 stacked temporal deformable/shifted
convolutional blocks. Both the dimensions of intermediate
states in encoder and decoder, i.e., Dr and Df , are set as
512. The dimension of the hidden layer for measuring at-
tention distribution Da is set as 512. The whole model is
trained by Adam (Kingma and Ba 2015) optimizer. We set
the initial learning rate as 10−3 and the mini-batch size as
64. The maximum training iteration is set as 30 epoches.

Evaluation Metrics. We adopt three common metrics:
BLEU@4 (Papineni et al. 2002), METEOR (Banerjee and
Lavie 2005), and CIDEr-D (Vedantam, Zitnick, and Parikh
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Table 1: Performances of TDConvED and other RNN-based
approaches on MSVD, where B@4, M and C are short for
BLEU@4, METEOR and CIDEr-D. All values are reported
as percentage (%). The short name in the brackets indicates
the features, where G, V, C, O, R and M denotes GoogleNet,
VGGNet, C3D, Optical flow, ResNet and motion feature
learnt by 3D CNN on hand-crafted descriptors, respectively.

Model M C B@4
MP-LSTM (V) 29.2 53.3 37.0
MP-LSTM (V+C) 29.7 55.1 39.4
MP-LSTM (R) 32.5 71.0 50.4
S2VT (V+O) 29.8 - -
S2VT (V+C) 30.0 58.8 42.1
TA (G+M) 29.6 51.7 41.9
TA (V+C) 29.9 56.1 40.9
TA (R) 33.3 72.0 51.3
LSTM-E (V+C) 31.0 - 45.3
GRU-RCN (G) 31.6 68.0 43.3
BAE (R+C) 32.4 63.5 42.5
p-RNN (V+C) 32.6 65.8 49.9
MAMRNN (G) 32.9 - -
PickNet-VL (R) 33.1 76.0 46.1
M3 (G+C) 33.3 - 52.8
TF (R) 33.4 - -
TDConvED1 (V) 29.4 53.6 41.0
TDConvED2 (V) 30.6 58.1 44.1
TDConvED (V) 30.8 58.2 45.2
TDConvED1 (V+C) 31.7 61.6 45.9
TDConvED2 (V+C) 32.5 65.3 47.8
TDConvED (V+C) 32.7 67.2 49.8
TDConvED1 (R) 32.9 72.3 48.3
TDConvED2 (R) 33.3 74.6 51.2
TDConvED (R) 33.8 76.4 53.3

2015). All the metrics are computed using the API 1 released
by Microsoft COCO Evaluation Server (Chen et al. 2015).

Compared Approaches. To empirically verify the merit
of TDConvED, we compared our method with several con-
ventional LSTM based models, including a CNN Encoder
plus a LSTM Decoder model (MP-LSTM) (Venugopalan et
al. 2015b), LSTM based Encoder-Decoder model (S2VT)
(Venugopalan et al. 2015a) and Temporal Attention based
LSTM network (TA) (Yao et al. 2015). We also compared
TDConvED with state-of-the-art methods: GRU-RCN (Bal-
las et al. 2015), LSTM-E (Pan et al. 2016), p-RNN (Yu
et al. 2016), MM (only visual input) (Ramanishka et al.
2016), MA-LSTM (Xu et al. 2017), BAE (Baraldi, Grana,
and Cucchiara 2017), hLSTMat (Song et al. 2017), MAM-
RNN (Li, Zhao, and Lu 2017), TF (Zhao, Li, and Lu 2018),
M3 (Wang et al. 2018), PickNet-VL (Chen et al. 2018)
and MCNN+MCF (Wu and Han 2018). In addition to TD-
ConvED, two different versions, named as TDConvED1 and
TDConvED2, are also taken into comparisons. The former
extends the basic CNN plus RNN model (MP-LSTM) by
simply replacing the RNN-based decoder with our designed

1https://github.com/tylin/coco-caption

Table 2: Performance of TDConvED and other RNN-based
approaches on MSR-VTT, where B@4, M and C are short
for BLEU@4, METEOR and CIDEr-D scores. All values
are reported as percentage (%). The short name in the brack-
ets indicates the frame/clip features, where G, C, R and A
denotes GoogleNet, C3D, ResNet and Audio feature.

Model M C B@4
MP-LSTM (R) 25.4 35.8 34.1
MP-LSTM (G+C+A) 25.6 38.1 35.7
S2VT (R) 25.8 36.7 34.4
S2VT (G+C+A) 26.0 39.1 36.0
TA (R) 24.9 34.5 33.2
TA (G+C+A) 25.1 36.7 34.8
LSTM-E (R) 25.7 36.1 34.5
LSTM-E (G+C+A) 25.8 38.5 36.1
hLSTMat (R) 26.3 - 38.3
MA-LSTM (G+C+A) 26.5 41.0 36.5
M3 (V+C) 26.6 - 38.1
MM (R+C) 27.0 41.8 38.3
MCNN+MCF (R) 27.2 42.1 38.1
PickNet-VL (R) 27.2 42.1 38.9
TDConvED1 (R) 26.8 40.7 37.1
TDConvED2 (R) 27.2 41.9 39.0
TDConvED (R) 27.5 42.8 39.5

convolutional decoder, and the latter is more similar to TD-
ConvED that only excludes temporal attention mechanism.

Experimental Results and Analysis
Quantitative Analysis. Table 1 shows the performances of
different models on MSVD. It is worth noting that the re-
ported performances of different approaches are often based
on different frame/clip representations. For fair compar-
isons, our proposed models are evaluated on three com-
monly adopted frame/clip representations, i.e., output from
VGG, the concatenation of features from VGG and C3D,
and output from ResNet. Overall, the results across three
evaluation metrics with the same input frame/clip represen-
tations consistently indicate that our proposed TDConvED
achieves better results against three conventional RNN-
based models including non-attention models (MP-LSTM
and S2VT) and attention-based approach (TA). Specifi-
cally, by equipping decoder with convolutions, TDConvED1

(V+C) makes the relative improvement over MP-LSTM
(V+C) which adopts RNN-based decoder by 6.7%, 11.8%
and 16.5% in METEOR, CIDEr-D and BLEU@4, respec-
tively. S2VT which exploits the context among the input
frame/clip sequence through RNN-based encoder improves
MP-LSTM, but the performances are still lower than our
TDConvED2. The result indicates the merit of leverag-
ing temporal deformable convolutions in TDConvED2 than
RNN in encoder-decoder architecture for video caption-
ing. Moreover, by additionally incorporating temporal at-
tention mechanism into MP-LSTM model, TA leads to a
performance boost. Similar in spirit, TDConvED improves
TDConvED2 by further taking temporal attention into ac-
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Figure 4: Sentence generation results on MSVD dataset. The
videos are represented by sampled frames and the output
sentences are generated by 1) GT: ground truth sentences, 2)
MP-LSTM, 3) S2VT, 4) LSTM-E and 5) our TDConvED.

count. There is a performance gap between TDConvED and
TA. Though both runs involve the utilization of temporal at-
tention, they are fundamentally different in the way that TA
explores the attention distribution over original frame/clip
features depending on the hidden state of RNN-based de-
coder, and TDConvED is by measuring attention distri-
bution over the contextually encoded frame/clip features
conditioned on the intermediate state of convolutional de-
coder. This again verifies the effectiveness of convolutional
encoder-decoder architecture. In addition, compared to other
state-of-the-art techniques (e.g., BAE, p-RNN, PickNet-VL,
M3, and TF), our TDConvED achieves better results in terms
of all the three evaluation metrics. The results basically indi-
cate that exploring convolutions in both encoder and decoder
networks is a promising direction for video captioning.

The performance comparisons on MSR-VTT are sum-
marized in Table 2. Our TDConvED consistently outper-
forms other baselines. Similar to the observations on MSVD,
TDConvED1 exhibits better performance than the basic
CNN plus RNN model, MP-LSTM, by replacing RNN with
convolutions in decoder. Moreover, TDConvED2 which ad-
ditionally utilizing temporal deformable convolutional en-
coder to encode input frame/clip sequence performs bet-
ter than TDConvED1, and larger degree of improvement is
attained when employing temporal attention mechanism in
convolutional encoder-decoder structure by TDConvED.

Qualitative Analysis. Figure 4 shows a few sentence
examples generated by different methods and human-
annotated ground truth. It is easy to see that all of these au-
tomatic methods can generate somewhat relevant sentences,
while TDConvED can predict more relevant keywords by
exploiting long-range contextual relations via temporal de-
formable convolutional encoder-decoder structure and tem-
poral attention mechanism. Compared to “walking” in the
sentence generated by MP-LSTM, “dancing” in TDConvED
is more precise to describe the first video. Similarly, the ob-
ject “onion” presents the second video more exactly.

Effect of the Number of Convolutional Blocks. In order
to investigate the effect of the number of stacked convolu-
tional blocks in our TDConvED, two additional experiments
are conducted by varying the number of stacked convolu-
tional blocks in encoder and decoder, respectively. As the

Table 3: The effect of the number of stacked conv blocks
(i.e., #blocks) in (a) decoder and (b) encoder on MSVD.
(a) Decoder in TDConvED1

#blocks M C
1 31.6 57.9
2 31.7 61.6
3 31.4 59.8

(b) Encoder in TDConvED2

#blocks M C
1 32.2 64.3
2 32.5 65.3
3 32.3 62.8

Table 4: Comparison of training time between TDConvED
and MP-LSTM on MSVD (Nvidia K40 GPU).

Model #param training time B@4 M
MP-LSTM (V) 11.15 M 2370 s/epoch 37.0 29.2
TDConvED (V) 16.79 M 1070 s/epoch 45.2 30.8

encoder in TDConvED1 is to perform mean pooling over
the features of frames/clips and irrespective of convolutions,
we first examine the impact of the convolutional block num-
ber in decoder of TDConvED1. Table 3(a) reports the com-
parison when the number ranges from 1 to 3. The best per-
formances are achieved when the number of stacked convo-
lutional blocks is 2. Next, by fixing the number of convolu-
tional blocks in decoder as 2, Table 3(b) summarizes the per-
formances of TDConvED2 (V+C) when the convolutional
block number in encoder varies from 1 to 3. The results show
that the setting with 2 stacked temporal deformable convo-
lutional blocks in encoder outperforms others.

Comparisons on Training Time. Table 4 details the
training time of our TDConvED and MP-LSTM. TD-
ConvED is benefited from parallelization for training and the
results clearly demonstrate the advantage of TDConvED at
training speed, which is about 2.2× faster than MP-LSTM.

Conclusions
We have presented Temporal Deformable Convolutional
Encoder-Decoder Networks (TDConvED) architecture,
which explores feed-forward convolutions instead of RNN
in sequence-to-sequence learning for video captioning. Par-
ticularly, we delve into the problem from the viewpoint of
stacking several convolutional blocks to capture long-term
contextual relationships for sequence learning. To verify our
claim, we have built an encoder-decoder framework that en-
codes each frame/clip with contexts to intermediate states
through multiple stacked convolutional blocks and then op-
erates convolutional blocks on the concatenation of video
features and the embeddings of past words to generate the
next word. Moreover, through a new design of temporal de-
formable convolution, the encoder is further endowed with
more power of capturing dynamics in temporal extents. As
our encoder-decoder structure only involves feed-forward
convolutions, the model allows parallel computation in a se-
quence at training. Extensive experiments conducted on both
MSVD and MSR-VTT datasets validate our proposal and
analysis. More remarkably, the improvements of our model
are clear when comparing to RNN-based techniques.
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