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Abstract

This paper presents an efficient algorithm to tackle temporal
localization of activities in videos via sentence queries. The
task differs from traditional action localization in three as-
pects: (1) Activities are combinations of various kinds of ac-
tions and may span a long period of time. (2) Sentence queries
are not limited to a predefined list of classes. (3) The videos
usually contain multiple different activity instances. Tradi-
tional proposal-based approaches for action localization that
only consider the class-agnostic “actionness” of video snip-
pets are insufficient to tackle this task. We propose a novel
Semantic Activity Proposal (SAP) which integrates the se-
mantic information of sentence queries into the proposal gen-
eration process to get discriminative activity proposals. Vi-
sual and semantic information are jointly utilized for proposal
ranking and refinement. We evaluate our algorithm on the
TACoS dataset and the Charades-STA dataset. Experimental
results show that our algorithm outperforms existing methods
on both datasets, and at the same time reduces the number of
proposals by a factor of at least 10.

1 Introduction
Recognizing “what’s happening” in videos is a crucial task
of visual understanding. Recent success of deep learning and
computer vision has advanced this task from action classifi-
cation (Simonyan and Zisserman 2014; Karpathy et al. 2014;
Ng et al. 2015; Tran et al. 2015) to detection (Zhao et al.
2017; Yuan et al. 2017; Lin et al. 2018) i.e. temporal lo-
calization of actions in videos. Traditional action detection
approaches makes one important assumption: the actions to
be detected are atomic and in a predefined list (Karpathy et
al. 2014; Heilbron et al. 2015; Monfort et al. 2018). Thus
these approaches are insufficient to describe and detect the
combination of a series of actions.

In this paper, we aim to tackle temporal localization of ac-
tivities in videos via sentence queries, which is a more desir-
able setting. It has three major differences compared to tra-
ditional action localization: (1) Activities are more complex
than atomic actions like boxing or drinking. The definition
of activity we adopt here is actually the same as “high-level
event” defined in (Jiang et al. 2013): an activity is composed
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Figure 1: Sample of temporal activity localization via sen-
tence query.

by several actions or interactions. The latter is more com-
mon and is the process of a subject interacting with an ob-
ject. They may happen in order or co-occur. (2) Sentences
are not constrained to a predefined list. They are variable re-
garding both structure and content, thus can describe various
activities. (3) The videos usually contain multiple different
activity instances and each may span a long duration. Fig-
ure 1 shows an example in which the query sentence is “a
person opens a cabinet to place his hat inside ”, which de-
scribes an activity composed by two interactions involving
two objects: cabinet and hat.

Current approaches to localization problems in computer
vision, either spatial or temporal, are mostly based on “pro-
posal and classification”: candidate regions are first gener-
ated by a separate method, and then fed to a classifier to
get the probabilities of containing the target classes. State-
of-the-art action proposal generation methods (Zhao et al.
2017; Yuan et al. 2017; Lin et al. 2018) make predictions
based on the “actionness” score of every short snippets in
the videos. The actionness of a snippet is class-agnostic, just
a quantification of the likelihood of containing a generic ac-
tion instance (Wang et al. 2016). Moreover, the actionness
judgment will assign low score to relatively static scenes
which may contain objects. In our settings, static objects
are as important as actions for localizing activities. Thus
existing works of temporal activity localization via sen-
tence queries choose not to use proposal generation meth-
ods, but use exhaustive enumeration of possible temporal re-
gions (Hendricks et al. 2017) or naive sliding windows (Gao
et al. 2017a). Due to the long duration of videos and activ-
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ities, the absence of proper activity proposals will lead to
a large number of candidates, and result in inefficient algo-
rithms.

To tackle the challenge of activity proposal generation for
sentence query, we propose a novel Semantic Activity Pro-
posal (SAP) framework to integrate the semantic informa-
tion in sentences into the activity proposal generation pro-
cess. We first train a visual concept detection CNN with
paired sentence-clip training data. The visual concepts are
selected from training sentence according to their frequen-
cies. For proposal generation, the visual concepts extracted
from the query sentence and video frames are used to com-
pute visual-semantic correlation score for every frame. Ac-
tivity proposals are generated by grouping frames with high
visual-semantic correlation score. Finally, the visual features
of video frames, the visual concept vectors and the textual
features of sentence queries are utilized to compute a visual-
textual alignment score and a refinement of the temporal
boundaries for proposals.

Our contributions in this work are as follows:
(1) We propose a novel proposal generation algorithm and

framework for temporal activity localization via sentence
queries. The proposed Semantic Activity Proposal (SAP),
to the best of our knowledge, is the first work to integrate
semantic information of sentences into proposal generation.

(2) The proposed framework not only achieves supe-
rior localization performance over the state-of-the-art on the
TACoS dataset and the Charades-STA dataset, but also re-
duced the average number of proposals by a factor of at least
10, which is a significant improvement of efficiency.

2 Related Work
Action Classification. There has been a large number of
studies about action classification using deep convolutional
neural networks (CNNs). (Tran et al. 2015) extend the 2D
CNN architecture used in image classification tasks to 3D,
which includes temporal dimension and can model short-
term motion in video clips. (Simonyan and Zisserman 2014)
combine two 2D CNNs which model RGB image and opti-
cal flow image to predict the actions in videos. 3D convo-
lution and optical flow are not enough to model long-term
motion information in untrimmed videos, thus later works
focused on aggregating temporal information. (Karpathy et
al. 2014) propose various kinds of temporal information fu-
sion strategies for CNN inputs. (Ng et al. 2015) use the
Long Short Term Memory (LSTM) as a feature aggregation
technique. (Wang et al. 2017) integrate non-local operation
(which can be viewed as a form of attention) into 3D CNN to
model relations between consecutive frames. However, these
methods deal with trimmed videos or untrimmed videos
which contain single action instance. Hence they don’t con-
sider the temporal localization of actions.

Action Proposal and Temporal Localization. Temporal
action localization methods are based on action proposals,
which generates a limited number of candidate temporal re-
gions. A major group of action proposal methods are based
on “actionness grouping”. (Zhao et al. 2017) train an ac-

tionness classifier to evaluate the binary actionness proba-
bilities for individual snippets and then use the proposed
temporal actionness grouping (TAG) the generate propos-
als. Such strategy is also adopted by later works: (Lin, Zhao,
and Shou 2017b; Shou et al. 2017; Gao, Chen, and Neva-
tia 2018). (Yuan et al. 2017; Lin et al. 2018) devise algo-
rithms to compose action proposals based on the probabil-
ities of starting, course, and ending of every time point if
the videos. Another group of works first generate anchors of
variable length at every temporal position and then evaluate
them by predicting 0/1 actionness label or action class la-
bel. DAP (Escorcia et al. 2016) and SST (Buch et al. 2017)
use an LSTM or GRU unit to process the feature sequence
of a video to produce K proposals at each time step. (Gao
et al. 2017b) propose to generate and evaluate a clip pyra-
mid at every anchor unit in the frame sequence. (Lin, Zhao,
and Shou 2017a) also use convolutional layer to produce an-
chors hierarchically with different granularities. (Xu, Das,
and Saenko 2017) design 3D convolutional network to map
a video snippet to predictions of anchor segments.

Video/Image Retrieval with Sentence. Our work is also
closely related to video retrieval with sentence, which re-
quires retrieving the videos/images from a set of candi-
dates that match the given sentence query. In (Wang, Li, and
Lazebnik 2016), image and text are embedded into the same
space via the proposed deep structure-preserving image-text
embeddings. In (Karpathy and Li 2015), they embed object
regions and words into the same multi-modal space, then
region-word pairwise similarities are computed and reduced
to image-sentence score for retrieval. To retrieve videos via
complex textual queries, (Lin et al. 2014) parse the sentences
into semantic graphs and match them to visual concepts in
the videos. But the retrieval of whole videos is different from
temporal localization in our settings.

Activity Localization with Sentence. In (Hendricks et al.
2017), the authors propose to localize moments in video via
natural language with a dataset named DiDeMo. However,
the annotated temporal boundaries are coarse since each
video is segmented into 5-second segments. They propose
a sentence-to-video retrieval method named Moment Con-
textual Network (MCN) to tackle the localization problem
since the number of possible temporal segments are very
limited. (Gao et al. 2017a) propose a Cross-modal Tempo-
ral Regression Localizer (CTRL), which use dense sliding
window to produce activity proposals, then encode visual
and textual information with a multi-modal processing net-
work to produce visual-textual alignment score and location
regression. But proposals produced by sliding window ig-
nore the relation between temporal regions and the sentence
queries. The Attention Based Location Regression (ABLR)
in (Yuan, Mei, and Zhu 2018) does not rely on proposals to
localize activities. They encode the visual and textual fea-
tures with Bi-LSTM and directly regress the temporal loca-
tions based on the visual-textual co-attention weights. Thus,
this method is unable to generate multiple predictions for a
sentence query. These existing methods overlooked the im-
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Visual-Semantic Correlation Score

The man places the orange
on the cutting board and uses
the knife to slice off the ends.

Sentence Encoding

Proposals

Visual concepts

threshold

Figure 2: The proposed framework for temporal activity localization via sentence query. There are three main components: (1)
Visual Concept Detection produces vectors of probabilities of containing common visual concepts for sampled frames. These
visual concept vectors dot-product with the one extracted from query sentence, results are the visual-semantic correlation
score. (2) Semantic Activity Proposals are generated by temporally grouping frames with high correlation score. (3) Proposal
Evaluation and Refinement takes the proposals, visual concept vectors and query sentences as input, and outputs alignment
scores and refined boundaries for the proposals.

portance of generating activity proposals, let alone integrat-
ing textual information into proposal generation.

3 Approach
3.1 Problem Formulation
A video V is denoted as a sequence of frames: V = {ft}Tt=1.
Each video is associated with a set of temporal annotations
A = {(dj , sj , ej)Nj=1}, where N is the number of annota-
tions, dj is the sentence description, the corresponding clip
of video V starts at frame sj and ends at frame ej . The task
is to predict the start and end time for a given sentence query.

3.2 Framework
Visual Concept Detection. In this work, we define vi-
sual concept as the visible object and actions in the videos.
They are described by the sentences, thus the words in
the sentences correspond to visual concepts in the video
frames, such as orange, cup, and wash. While there
are no spatial bounding box annotations for the words, a
visual concept detector can be trained using Multiple In-
stance Learning (MIL) (Maron and Lozano-Pérez 1997;
Viola, Platt, and Zhang 2005; Fang et al. 2015). We first
select K most common words (visual concepts) in all the
training sentences. Each sentence description dj can then be
converted to a one-hot vector cj , where ckj equals to 1 means
word k is in the sentence, and 0 otherwise. Meanwhile, we
assume that every frame of the corresponding clip will con-
tain the visual concepts in dj . Thus we randomly sample a
frame fj from the clip (sj , ej) as the input to visual concept
detector. We define the visual concept detector as a func-
tion Fvcd(fj) that maps an image to a visual concept vector

pj . Inside Fvcd, a CNN Fcnn is utilized as visual feature
extractor, whose input is an image fj and output is a fea-
ture map Mj . Mh,w

j is the feature vector of length m for
image region indexed by h,w, which is transformed by a
fully-connected layer:

Ph,w
j = sigmoid(Mh,w

j W + b), (1)

where W ∈ Rm×K and b ∈ RK are trainable parameters.
Ph,w
j is then the word probability vector of image region in-

dexed by h,w. We use the noisy-OR version of MIL (Viola,
Platt, and Zhang 2005) to compute the final probability for
the whole image:

pj = 1−
∏
h,w

(1− Ph,w
j ), (2)

where pj is a vector of length K and pkj stands for the prob-
ability of word k appearing in frame fj . We denote pj as the
visual concept vector for frame fj . Equation 1 and 2 con-
clude the details of the visual concept detector Fvcd. To learn
the parameters of Fvcd, we adopt the cross-entropy loss:

Lossvcd = −
K∑

k=1

ckj log p
k
j . (3)

Semantic Activity Proposal. With the visual concept ex-
tractor Fvcd, we can obtain visual concept vectors for each
frame of video V : P = {pt}Tt=1, where pt = Fvcd(ft). Then
the visual-semantic correlation scores between the query
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Algorithm 1 Semantic Activity Proposal Generation
1: function SEMANTIC ACTIVITY PROPOSAL(Q, λ, τ )
2: R← ∅ . Grouped temporal regions
3: G← ∅ . Generated proposals
4: end← True
5: for t = 1 to T do
6: if end then
7: if Qi ≥ λ then . Start a new temporal group
8: s← t
9: end← False

10: else
11: r ← ratio of Qi ≥ λ in [s, t] . Get positive ratio
12: if r < τ then . Positive ratio under tolerance
13: end← True
14: add [s, t] to R . End current temporal group
15: for s, t in R do
16: for L in proposalLengths do . List of lengths
17: propL← sliding windows of L in [s, t]
18: add propL to G
19: return G

sentence dj and frames can be represented asQj = {qtj}Tt=1,
where

qtj = pt · cj . (4)

qtj stands for the total probabilities of frame t containing
all the visual concepts in query j. Qj is then normalized to
[0, 1]. As shown in Figure 2, frames with more visual con-
cepts described in dj tend to get higher correlation score.
Frames with score above a threshold λ are considered pos-
itive, i.e. related to the sentence query. We use a binary-
search algorithm to determine λ, such that the ratio of pos-
itive frames does not exceed 0.06. This value is chosen to
make a balance between the number of generated proposals
and the recall, and is decided on the validation set. When
the positive frames are selected, we adopt an algorithm sim-
ilar to (Zhao et al. 2017) to group the positive frames into
consecutive temporal regions. To account for false negative
frames, an extra parameter τ is introduced as the tolerance
ratio, which controls the ratio of negative frames allowed in
a temporal region. The activity proposals are finally gener-
ated with a predefined length inside the grouped temporal
regions using sliding window. Algorithm 1 shows the details
of the temporal grouping process.

Proposal Evaluation and Refinement. The details of
proposal evaluation and refinement are shown in Figure 3.
For a specific query (dj , sj , ej), we denote the generated
proposals by Gj = {(ln, rn)}

Nj

n=1, where Nj is the number
of proposals and ln, rn are the temporal boundaries. Gj will
be evaluated to produce alignment scores, which are then
used to rank the proposals. Since the generated proposals
have fixed lengths, their boundaries will be further refined
to localize the activities more precisely. First, the visual fea-
ture vectors and concept vectors of the frames inside pro-
posal region are extracted from a pre-trained CNN, denoted
by fv and fc, respectively. Next, these vectors are aggregated
as a single feature vector. For visual features, we adopt the
trainable VLAD encoding (Miech, Laptev, and Sivic 2017).

CNN Feature Vectors

Bi-LSTM

VLAD

Visual Concept Vectors

Skip-thought / Glove

Proposal

Sentence

MLP

Figure 3: The proposal evaluation and refinement process.

For visual concept vectors, since the order of the sequence
is important, we use a bi-directional LSTM to encode the
sequence and concatenate the final state vectors of both di-
rections. The feature aggregation is summarized as follows:

gv = VLAD(fv),

gc = [LSTMfw(fc), LSTMbw(fc)].
(5)

For the query sentence, we experiment with two kinds of off-
the-shelf sentence encoding method: Skip-thought (Kiros
et al. 2015) and Glove (Pennington, Socher, and Manning
2014). Details can be found in Sec. 4.2. The encoded sen-
tence feature vector is denoted as gs.

Then the alignment score and boundary refinement is
computed as:

sali = MLP(gs ⊗ gv, 1),
bl, br = MLP(gs ⊗ gc, 2),

(6)

where ⊗ is element-wise product, and MLP(, u) is a multi-
layer perceptron whose final layer has u outputs. bs and be
are the predicted offset for the start and end points of the
proposal. During training, we compute alignment scores be-
tween all the sentence-proposal pairs in a mini-batch, and
encourage our model to output low scores for negative pairs
and high scores for positive pairs. Thus the alignment loss is
defined as:

Lossali =
1

B

B∑
i=1

[log(1 + exp(−salii,i ))+

B∑
j=1,j 6=i

α log(1 + exp(salii,j ))],

(7)

where α is a hyper-parameter to balance the loss of positive
and negative pairs. The boundary refinement loss is defined
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as:

Lossref =

B∑
i=1

[H(bli − (li − si))+

H(bri − (ri − ei))],

(8)

where li and si are the proposal and annotated starting
points, likewise for ri and ei.H() is the Huber loss function.
The final loss for training the proposal evaluation module is:

Loss = Lossali + βLossref , (9)

where β is a hyper-parameter to balance the alignment and
refinement loss.

4 Experiments
4.1 Datasets
TACoS (Regneri et al. 2013). The TACoS dataset is built
on the MPII Cooking Composite Activities (Rohrbach et al.
2012b; 2012a), which contains fine-grained temporal anno-
tations of cooking activities. There are 127 videos in the
dataset. Following previous work, we split the dataset into
training, validation and test sets with 75, 27 and 25 videos,
respectively. Each annotation contains one sentence and the
start and end time of the activity it describes in the video.
The numbers of annotations in training, validation and test
sets are 10146, 4589 and 4083, respectively. The average
length of the sentences is 6.2 words, the average duration
of the videos is 287.1 seconds, and the average number of
activities per video is 21.4.

Charades-STA (Gao et al. 2017a). The Charades-STA
dataset is built on the Charades (Sigurdsson et al. 2016)
dataset, which contains 9848 videos of daily indoors ac-
tivities collected through Amazon Mechanical Turk. There
are 16128 clip-sentence pairs in the released Charades-
STA dataset, which are split into training and test sets of
12408 and 3720 clip-sentence pairs, respectively. The aver-
age length of the sentences is 8.6 words, the average dura-
tion of the videos is 29.8 seconds, and the average number
of activities per video is 2.3.

4.2 Implementation
For training the visual concept detector, we collect common
visual concepts on both datasets. Concretely, we count the
words of training sentences, discard stop words and keep
words whose occurrence are at least 2 as the visual concepts.
This results in 912 and 566 visual concepts on the TACoS
dataset and Charades-STA dataset, respectively. We use the
VGG16 network pre-trained on ImageNet as the backbone
of our visual concept detector. We discard its layers after
fc6 and use the rest as the feature extractor. For each an-
notated temporal region, we uniformly sample one frame
and resize it to 512x512 pixels as the input at every train-
ing step. We use the Momentum algorithm with a learning
rate of 10−5 and batch size of 16 to train the visual concept
detector.

In the proposal evaluation module, the visual feature is
extracted from the visual concept detector’s fc6 layer. The

number of clusters for VLAD is 64 and the number of units
for LSTM is 1024. The Skip-thought encoding produces one
vector of length 4800 for each sentence. The Glove encod-
ing maps each word to a vector of length 300, and we further
encode the sequence using an LSTM with 1024 units. The
hyper-parameters in the losses, α and β are 0.015 and 0.01,
respectively. During training, the proposals are generated by
dense sliding window method. For each annotation, we gen-
erate sliding windows of length [64, 128, 256, 512] frames
for the video to cover the annotated temporal region. Only
windows having temporal IoU≥ 0.5 are used for training.
Each mini-batch is sampled such that there does not exist
any pair of sentences that describes the same clip, this en-
sures there is only one positive sentence for each proposal in
the batch and Lossali is correctly computed. The final loss
is optimized by the Adam algorithm with a learning rate of
10−4 and batch size of 64. For evaluation, the generated pro-
posal lengths are in [128, 256] (decided based on the statis-
tics of the datasets).

4.3 Evaluation Metrics
As in previous work (Gao et al. 2017a), we measure the
performance of temporal localization by average recall rate
of top-n results at certain temporal IoU (Intersection over
Union), which is the “R@n, IoU=m” in Table 1 and 2,
shown in percentage. The recall of one sentence query dj ,
r(n,m, dj), is 1 if the top-n returned results contains at least
one that has a temporal IoU≥ m, otherwise 0. The average
recall rate is the average over all the queries: R(n,m) =
1
N

∑N
j=1 r(n,m, dj).

4.4 Compared Methods
• Random. We generate activity proposals by sparse slid-

ing windows with [128, 256] frames and 20% stride, then
randomly select temporal regions from proposals.

• SST. (Buch et al. 2017) as mentioned in Sec. 2. The orig-
inal SST method generates dense proposals with various
lengths as each time step. In our experiments, we train
SST with dense proposal lengths. For evaluation, the pro-
posals are [128, 256] frames and post-processed by non-
maximum suppression.

• CTRL. (Gao et al. 2017a) as mentioned in Sec. 2.
• MCN. (Hendricks et al. 2017) as mentioned in Sec. 2. The

original MCN enumerates all possible temporal regions
as candidates, but this is impractical for our settings. We
use the same proposal generation algorithm as CTRL for
MCN.

• ABLR. (Yuan, Mei, and Zhu 2018) as mentioned in
Sec. 2. We implemented ABLR and tested on the datasets.
Note that this method can’t produce Recall@5 results.

4.5 Results
Results on the TACoS dataset. Table 1 shows the recall
of top {1, 5} results at IoU threshold {0.1, 0.5} of differ-
ent methods on the TACoS dataset. It is clear that tradi-
tional action proposal method SST doesn’t work well under
this setting. The reasons are mainly twofold: (1) the pro-
posals generate by SST are not aware of the specific activ-
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Figure 4: Comparison of our SAP with existing methods on the TACoS dataset. (left & center) SAP outperforms other methods
on every metric and requires much less proposals. And SAP reaches peak performance at around 100 proposals. (right) When
the number of proposals is fixed to 100, SAP also consistently has the highest recall.

Method R@1 R@1 R@5 R@5
IoU=0.5 IoU=0.1 IoU=0.5 IoU=0.1

Random 0.71 3.28 3.72 15.47
SST 0.97 3.46 4.57 14.54
CTRL 13.30 24.32 25.42 48.73
MCN 5.58 14.42 10.33 37.35
ABLR 9.4 31.4 - -
SAPglove 16.62 29.24 27.01 52.50
SAPnoref 14.45 29.51 23.78 52.09
SAPsv 18.24 31.15 28.11 53.51

Table 1: Comparison of different methods on TACoS.

Method R@1 R@1 R@5 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Random 8.51 3.03 37.12 14.06
SST 15.98 8.31 40.68 27.24
CTRL 23.63 8.89 58.92 29.52
MCN 17.46 8.01 48.22 26.73
ABLR 24.36 9.01 - -
SAPglove 26.96 12.36 63.20 35.83
SAPsv 27.42 13.36 66.37 38.15

Table 2: Comparison of different methods on Charades-STA.

ity described in the query sentence; (2) the proposals are
not ranked according to their correlation to the query sen-
tence. Since the videos in the TACoS dataset have long du-
rations and contain multiple activities, methods that do not
consider sentence information in proposal generation will
suffer from a large number of proposals. CTRL and MCN
use naive proposal generation algorithm, and also have this
problem. They integrate sentence information only in the
proposal evaluation and ranking process, which still leads to
inferior performance. ABLR discards proposal generation.
However, the attention based approach may suffer from low
accuracy at the boundaries, which we conjecture is the rea-
son why ABLR gets lower recall at higher IoU threshold.
The effectiveness of proposal refinement is demonstrated

by ablation (SAPnoref ), it is clear that adding proposal re-
finement leads to better localization performance. We also
found that Skip-thought vectors (SAPsv) performs consis-
tently better than Glove embeddings (SAPglove). We hy-
pothesize the reason is that the number of training sentences
is not large enough to train the encoding LSTM for Glove
embeddings. Overall, the proposed method outperforms oth-
ers by a significant margin. Notably, on the most important
metric “R@1,IoU=0.5”, SAP outperforms the best competi-
tor CTRL by 37%.

Results on the Charades-STA dataset. Table 2 shows the
recall of top {1, 5} results at IoU threshold {0.5, 0.7} of
different methods on the Charades-STA dataset. We choose
a higher IoU threshold on this dataset because the videos
are shorter and the number of activities per video is less
compared to TACoS. For this reason, SST achieves higher
performance on this dataset, which in turn indicates the
importance of discriminative proposals on datasets of long
videos. And it is also observed that there isn’t a large dif-
ference between SAP and other methods regarding the num-
ber of generated proposals. Thus the advantage of SAP can
be attributed to the proposal evaluation and refinement pro-
cess. Overall, the proposed SAP consistently outperforms
other methods on this dataset. On the most important met-
ric “R@1,IoU=0.7”, SAP outperforms the best competitor
ABLR by 48.3%.

4.6 Efficiency of Proposal Generation
Considering the video duration and number of activities in
a video, a successful proposal method should be able to
achieve high recall rate with a small number of proposals.
We evaluate this with two measurements: average number
of proposals and average recall for a fixed number of pro-
posals. Figure 4(left and center) shows the advantage of
SAP over CTRL is significant both at high and low IoU
threshold. Notably, for IoU=0.5, SAP only needs around 20
proposals to achieve CTRL’s peak top5 recall rate, which
CTRL takes around 200 proposals. The result is likewise

8204



Drop yolk from egg shell into smaller glass, discard egg shell into trash.

(a) Query sentence: drop yolk from egg shell into smaller
glass, discard egg shell into trash.

The person gets a glass mug from the cupboard and places it on the countertop.

(b) Query sentence: the person gets a glass mug from
the cupboard and places it on the countertop.

Figure 5: Qualitative results. The words shown in bold are
defined as visual concepts. It can be observed that the visual-
semantic correlation score is a good indication of the tempo-
ral region of the activity even in a long video.

for IoU=0.1. This demonstrates the high efficiency of SAP.
Figure 4(right) plots the average recall rate for 100 pro-
posals for SAP and CTRL. The advantage of SAP is again
significant, it outperforms CTRL at every IoU region. Ta-
ble 3 shows the comparison of time consumption for pro-
posal generation and evaluation per query. Note that SST
doesnt do proposal evaluation and ABLR generates single
prediction without proposals, thus they are faster. The ad-
vantage of having less proposals can be seen from the com-
parison among SAP(ours), CTRL and MCN. Overall, these
show that by integrating semantic information for activity
proposal generation, SAP can produce a small number of
discriminative proposals for faster evaluation and achieve
high localization accuracy.

4.7 Effect of Visual Concepts
To demonstrate the effect of visual concepts, we conduct ex-
periments on the TACoS dataset with various numbers of vi-
sual concepts. Table 4 shows the results. It can be observed
that with a small number of concepts, the model is likely to
lose some semantic information during proposal generation.
Thus, as the number of concepts increase (from 93 to 912),
the performance will continue to improve. But an even larger

Method SAP(ours) CTRL MCN SST ABLR
Time 0.35s 1.76s 0.88s 0.33s 0.01s

Table 3: Comparison of time consumption for proposal gen-
eration and evaluation per query.

#Concepts R@1 R@1 R@5 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

1413 18.13 30.14 27.28 52.09
912 18.24 31.15 28.11 53.51
397 18.05 31.66 27.50 54.17
233 17.31 29.83 27.09 53.09
93 16.60 27.50 25.12 49.74

Table 4: Performances with different number of visual con-
cepts on TACoS.

number of concepts (e.g. 1413) will introduce noise into the
model and hurt the performance.

4.8 Qualitative Results
To gain an intuition about the effectiveness of the Seman-
tic Activity Proposal, we present some qualitative results in
Figure 5. On the TACoS dataset, each video contains over
20 different activities which could span the duration of the
whole video. It can be observed that the visual-semantic cor-
relation scores are high around the ground truth regions and
low for other regions. Thus our SAP can generate a small
number of proposals for a long video while having high lo-
calization accuracy. Furthermore, the boundaries of the pro-
posals can be refined to more accurately localize the activi-
ties as shown in the bottom of Figure 5(a,b).

5 Conclusions
We have introduced a novel framework for activity local-
ization in videos via sentence query, including an efficient
activity proposal generation algorithm named Semantic Ac-
tivity Proposal (SAP). We evaluate both the localization ac-
curacy and number of proposals of our framework on the
TACoS and Charades-STA dataset. Experiments show that
our proposed framework outperforms existing methods with
a significant margin, and at the same time reduces the num-
ber of needed proposals by a factor of at least 10. Our future
work will consider analyzing the sentence structure to dis-
cover more discriminative visual concepts.
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