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Abstract
In real-world applications, commercial off-the-shelf systems
are utilized for performing automated facial analysis includ-
ing face recognition, emotion recognition, and attribute pre-
diction. However, a majority of these commercial systems act
as black boxes due to the inaccessibility of the model param-
eters which makes it challenging to fine-tune the models for
specific applications. Stimulated by the advances in adversar-
ial perturbations, this research proposes the concept of Data
Fine-tuning to improve the classification accuracy of a given
model without changing the parameters of the model. This
is accomplished by modeling it as data (image) perturbation
problem. A small amount of “noise” is added to the input with
the objective of minimizing the classification loss without af-
fecting the (visual) appearance. Experiments performed on
three publicly available datasets LFW, CelebA, and MUCT,
demonstrate the effectiveness of the proposed concept.

Introduction
With the advancements in machine learning (specifically
deep learning), ready to use Commercial Off-The-Shelf
(COTS) systems are available for automated face analy-
sis, such as face recognition (Ding and Tao 2018), emotion
recognition (Fan et al. 2016), and attribute prediction (Hand,
Castillo, and Chellappa 2018). However, often times the de-
tails of the model are not released which makes it difficult
to update it for any other task or datasets. This renders the
model’s effectiveness as a black-box model only. To illus-
trate this, let X be the input data for a model with weights
W and bias b. This model can be expressed as:

φ(WX+ b) (1)
If the source of the model is available, model fine-tuning
is used to update the parameters. However, as mentioned
above, in black box scenarios, the model parameters, W and
b cannot be modified, as the user does not have access to the
model.

“Can we enhance the performance of a black-box system
for a given dataset?” To answer this question, in this re-
search, we present a novel concept termed as Data Fine-
tuning (DFT), wherein the input data is adjusted corre-
sponding to the model’s unseen decision boundary. To the
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Figure 1: Illustration of model fine-tuning and data fine-
tuning: (a) represents the data distribution with two classes.
(b) represents Model Fine-tuning where the model’s deci-
sion boundary shifts corresponding to the input data, and
(c) represents Data Fine-tuning where the input data shifts
corresponding to model’s decision boundary (best viewed in
color).

best of our knowledge, this is the first work towards data
fine-tuning to enhance the performance of a given black box
system. As shown in Figure 1, the proposed data fine-tuning
adjusts the input data X whereas, in the model fine-tuning
approach (MFT), the parameters (W, b) are adjusted for op-
timal classification.

Mathematically, model fine-tuning is:

φ(WX+ b)
MFT−−→ φ(W′X+ b′) (2)

and data fine-tuning can be written as:

φ(WX+ b)
DFT−−→ φ(WZ+ b) (3)
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Figure 2: Comparing the concept of adversarial perturbation with data fine-tuning. (a) Adversarial perturbation: shows the
application of perturbation in attacking deep learning models (Xie et al. 2017). (b) Privacy preservation: perturbation can be
used to anonymize the attributes by preserving the identity of the input image (Chhabra et al. 2018). (c) Data Fine-tuning:
illustrates the proposed application of perturbation in enhancing the performance of a model (best viewed in color).

where, MFT and DFT are model fine-tuning1 and data fine-
tuning, respectively. (W′,b′) are the parameters after MFT
and Z is the perturbed version of input X after data fine-
tuning.

In this research, the proposed data fine-tuning is achieved
using adversarial perturbation. For this purpose, samples in
the training data are uniformly perturbed and the model is
trained iteratively on this perturbed training data to mini-
mize classification loss. After each iteration, optimization
is performed over the perturbation noise and added to the
training data. At the end of the training, a single uniform
perturbation is learned corresponding to a dataset. As a case
study, the proposed algorithm is evaluated for facial attribute
classification. It learns a single universal perturbation for a
given dataset to improve facial attribute classification while
preserving the visual appearance of the images. Experiments
are performed on three publicly available datasets and re-
sults showcase enhanced performance of black box systems
using data fine-tuning.

Related Work
In the literature, perturbation is studied from two perspec-
tives: (i) privacy preservation and (ii) attacks on deep learn-
ing models. For privacy preservation, several techniques uti-
lizing data perturbation are proposed. (Jain and Bhandare
2011) proposed min max normalization method to perturb
data before using in data mining applications. (Last et al.
2014) proposed a data publishing method using NSVDist.
Using this method, the sensitive attributes of the data are
published as the frequency distributions. Recently, (Chhabra
et al. 2018) proposed an algorithm to anonymize multi-
ple facial attributes in an input image while preserving
the identity using adversarial perturbation. (Li and Zhou

1Various data augmentation techniques have also been used for
model fine-tuning (Salamon and Bello 2017; Um et al. 2017; Wu
et al. 2018)

2018) proposed Random Linear Transformation with Con-
densed Information-Support Vector Machine to convert the
condensed information to another random vector space to
achieve safe and efficient data classification.

(Szegedy et al. 2013) demonstrated that application of im-
perceptible perturbation could lead to the misclassification
of an image. (Papernot et al. 2016) created an adversarial
attack by restricting l0-norm of the perturbation where only
a few pixels of an image are modified to fool the classifier.
(Carlini and Wagner 2017) introduced three adversarial at-
tacks and showed the failure of defensive distillation (Carlini
and Wagner 2016) for targeted networks. By adding pertur-
bation, (Kurakin, Goodfellow, and Bengio 2016) replaced
the original label of the image with the label of least likely
predicted class by the classifier. This lead to the poor classi-
fication accuracy of Inception v3. (Su, Vargas, and Kouichi
2017) proposed a one-pixel attack in which three networks
are fooled by changing one pixel per image. Universal ad-
versarial perturbation proposed by (Moosavi-Dezfooli et al.
2017) can fool a network when applied to any image. This
overcomes the limitation of computing perturbation on every
image. (Goswami et al. 2018) proposed a technique for auto-
matic detection of adversarial attacks by using the abnormal
filter response from the hidden layer of the deep neural net-
work. Further, a novel technique of selective dropout is pro-
posed to mitigate the adversarial attacks. (Goel et al. 2018)
developed SmartBox toolbox for detection and mitigation of
adversarial attacks against face recognition.

Existing literature demonstrates the application of adver-
sarial perturbation for performing attacks on deep learn-
ing models and in privacy preservation (Figure 2(a) and
(b)). However, data fine-tuning using adversarial perturba-
tion (Figure 2(c)) for enhancing the performance of a model
is not yet explored.
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Figure 3: (a) Block diagram illustrating the steps of the pro-
posed algorithm. In the first step, perturbation is initialized
with zero image and added to the original training data. In
the next step, perturbed training data is given as input to
the (attribute prediction) model followed by the computation
of loss. After that, optimization is performed over perturba-
tion and added to the training data. (b) Some samples of the
learned perturbation using the proposed algorithm. The first
two visualizations correspond to the perturbation learned for
‘Smiling’ attribute of LFW and CelebA datasets, respec-
tively. The third visualization corresponds to the ‘Gender’
attribute of the MUCT dataset (best viewed in color).

Proposed Approach: Data Fine-tuning
Considering a black-box system as a pre-trained model, the
problem statement can be defined as “given the dataset D
and pre-trained modelM , learn a perturbation vector N such
that adding noise N to D improves the performance of the
model M on D”. There are two important considerations
while performing data fine-tuning:

1. To learn a single universal perturbation noise for a given
dataset.

2. The visual appearance of the image should be preserved
after performing data fine-tuning.

The block diagram illustrating the steps involved in the
proposed algorithm is shown in Figure 3. The optimiza-
tion process for data fine-tuning using adversarial perturba-
tion with applications to facial attribute classification is dis-
cussed below. This same approach can be extended for other
classification models.

Given the original training set X with m number of im-
ages where each image, Xk has pixel values in the range
{0, 1}, i.e., Xk ∈ [0, 1]. Let Z be the perturbed training
set generated by adding model specific perturbation noise
N such that the pixel values of each output perturbed image
Zk ranges between 0 to 1, i.e., Zk ∈ [0, 1]. Mathematically,
it is written as:

Zk = f(Xk +N) (4)

such that f(Xk +N) ∈ [0, 1]

where, f(.) represents the function to transform an image in
the range of 0 to 1. In order to satisfy the above constraint,
inspired by (Carlini and Wagner 2017), the following func-
tion is used:

Zk =
1

2
(tanh(Xk +N) + 1) (5)

For each image Xk there are n number of attributes in the
attribute set A, where each attribute Ai has Cj number
of classes. For example, ‘Gender’ attribute has two classes
namely {Male, Female} while ‘Expression’ attribute has
three classes namely {Happy, Sad, Anger}. Mathematically,
it is written as:

A = {A1(C1),A2(C2), ...An(Cn)} (6)
The pre-trained attribute prediction model for attribute Ai

is represented as φAi(Xk,W, b), where W is the weight
matrix and b is the bias. The output attribute score of any
image Xk is written as:

P (Ai|Xk) = φAi
(Xk,W, b) (7)

where, P (Ai|Xk) represents the output attribute score of
the input image Xk for attribute Ai. In order to perform data
fine-tuning, perturbation N is added to each input image Xk

to get the output perturbed image Zk using Equation 5. Here,
N is the perturbation variable to be optimized. The output
attribute score of the perturbed image Zk is represented as:

P (Ai|Zk) = φAi
(Zk,W, b) (8)

In order to enhance the model’s performance for attribute
Ai, the distance between the true class and attribute pre-
dicted score of the perturbed image is minimized which is
expressed as:

min
N

F(yi,k, P (Ai|Zk)) (9)

where, F(., .) represents the function to minimize the dis-
tance between the true class and the predicted class. yi,k

represents the true class of attribute Ai in one hot encod-
ing form of the original image Xk. To preserve the visual
appearance of the output perturbed image Zk, the distance
between original image Xk and the perturbed image Zk is
minimized. Thus, the above equation is updated as:

min
N

F(yi,k, P (Ai|Zk)) +H(Xk,Zk) (10)

where,H represents the distance metric to minimize the dis-
tance between Xk and Zk. In this research, Euclidean dis-
tance metric is used to preserve the visual appearance of the
image. Therefore,

min
N

F(yi,k, P (Ai|Zk)) + ||Xk − Zk||2F (11)

Since the output class score ranges between 0 and 1, the
objective function in Equation (9) is formulated as:

F(yi, P (Ai|Z)) =
1

m

m∑
k=1

max(0, 1− yT
i,kP (Ai|Zk))

(12)
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Figure 4: Illustration of the proposed DFT algorithm. Fig-
ure (a)-(b) represents the training of attribute prediction
model using dataset D1. (c)-(d) shows the performance of
the trained attribute prediction model on dataset X. (e)-
(f) shows the performance of the fine-tuned dataset Z by
adding perturbation on trained attribute prediction model.
(Best viewed in color).

where, i ∈ {1, ..., n}, and the term yT
i,kP (Ai|Zk) outputs

the attribute score of the true class. As the above function
F(yi, P (Ai|Z)) is to be minimized, the term max(0, 1 −
yT
i,kP (Ai|Zk)) enforces the output attribute score of the

true class of the perturbed image Zk towards one.
Figure 4 illustrates the proposed algorithm with an exam-

ple. Let D1 be the dataset with two classes in the input im-
age space (Figure 4(a)) and it is used to train a model, M1.
Model M1 computes the decision boundary and projects the
output class scores corresponding to the input data D1 as
shown in Figure 4(b). It is observed that the output class
scores are well separated across the decision boundary for
the dataset D1. Now, the pre-trained model M1 is used for
projecting the input dataset X (Figure 4(c)). The decision
boundary of the modelM1 remains fixed. The projected out-
put class scores of the input data X are shown in Figure 4(d).
It is observed that most of the data points of both the classes
are projected on the same side of the decision boundary re-
sulting in a high classification error. This is due to the change
in the data distribution of the input dataset X. To overcome
this problem, input dataset X is fine-tuned by adding per-
turbation noise. Figure 4(e) shows the fine-tuned dataset Z
that is given as input to the model M1. The projection of the
fine-tuned dataset Z is shown in Figure 4(f). On comparing
the output class scores of the projection of input data X and
fine-tuned data Z, it is observed that several misclassified
samples from X are correctly classified with the fine-tuned
dataset Z.

Datasets Protocol and Experimental Details
The proposed algorithm is evaluated on three publicly avail-
able datasets for facial attribute classification: LFW (Huang
et al. 2008), CelebA (Liu et al. 2015), and MUCT (Mil-
borrow, Morkel, and Nicolls 2010). A comparison has also
been performed between Data Fine-tuning and Model Fine-

Table 1: Details of the experiments to show the efficacy of
the proposed data fine-tuning for facial attribute classifica-
tion.

Experiment Data Fine-tuning Model Training
Attribute Database Database

Black Box
Data

Fine-tuning:
Intra Dataset

Gender
MUCT MUCT
LFW LFW

CelebA CelebA
Smiling, Bushy

Eyebrows
Pale Skin

LFW LFW

Smiling, Attractive,
Wearing Lipstick CelebA CelebA

Black Box
Data

Fine-tuning:
Inter Dataset

Gender
MUCT LFW, CelebA
LFW MUCT, CelebA

CelebA MUCT, LFW
Smiling, Bushy

Eyebrows,
Pale Skin

LFW CelebA

Smiling, Attractive,
Wearing Lipstick CelebA LFW

tuning. The details of each dataset and its protocol are de-
scribed below :

LFW dataset consists of 13,133 images of 5,749 sub-
jects. Total 73 attributes are annotated with intensity values
for each image. The attributes are binarized by considering
positive intensity values as attribute present with label 1 and
negative intensity values as attribute absent with label 0. The
dataset is partitioned into 60% training set, 20% validation
set, and 20% testing set.

CelebA dataset consists of 202,599 face images of more
than 10,000 celebrities. For each image, 40 binary attributes
are annotated such as Male, Smiling, and Bushy Eyebrows.
Standard pre-defined protocol is followed for experiments
and the dataset is partitioned into 162,770 images in the
training set, 19,867 into validation set, and 19,962 images
in the testing set.

MUCT dataset consists of 3,755 images of 276 subjects
out of which 131 are male and 146 are female. Viola-Jones
face detector is applied on all the images, and the detector
failed to detect 49 face images. Therefore, only 3,706 im-
ages are considered for further processing. These images are
further partitioned into 60% training set, 20% validation set,
and 20% testing set corresponding to each class.

To evaluate the performance of data fine-tuning, two ex-
periments are performed, (i) Black Box Data Fine-tuning:
Intra Dataset and (ii) Black Box Data Fine-tuning: Inter
Dataset. Both the experiments are performed on all the three
datasets. Classification performance of the attributes is en-
hanced corresponding to the attribute classification model.
To train the attribute classification model, pre-trained VG-
GFace (Parkhi et al. 2015) + NNET is used. Experimental
details are also shown in Table 1.

Implementation Details
The implementation details of training attribute classifica-
tion model, perturbation learning, and model fine-tuning are
discussed below.
Training Attribute Classification Model: To train attribute
classification model pre-trained VGGFace+NNET is used.
Two fully connected layers are used for training NNET of
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Figure 5: Misclassified samples that are correctly classified after data fine-tuning. First row shows the images misclassified
before data fine-tuning while the second row represents their correct classification after data fine-tuning. The first block of
images correspond to the ‘Smiling’ attribute, second block corresponds to ‘Bushy Eyebrows’, while the third block corresponds
to ‘Pale Skin’ of the LFW dataset. (Best viewed in color).

Table 2: Classification accuracy (in %) of before and af-
ter Data Fine-tuning(DFT) for ‘Gender’ attribute on LFW,
CelebA, and MUCT datasets.

Before DFT After DFT
LFW 87.94 91.17

CelebA 82.13 83.08
MUCT 91.67 94.31

Table 3: Classification accuracy (in %) before and after per-
forming data fine-tuning for three attributes on the LFW and
CelebA datasets.

LFW
Smiling Bushy Eyebrows Pale Skin

Before After Before After Before After
76.18 82.42 68.34 69.98 72.83 74.81

CelebA
Smiling Attractive Wearing Lipstick

Before After Before After Before After
67.82 71.30 70.48 70.54 80.95 81.29

512 dimensions. Each model is trained for 20 epochs with
Adam optimizer, and learning rate is set to 0.005.
Perturbation Learning: To learn the perturbation for a
given dataset, learning rate is set to 0.001 and the batch size
is 800. The number of iterations used for processing each
batch is 16, and the number of epochs is 5.
Model Fine-tuning: To fine-tune the attribute classification
model, Adam optimizer is used with learning rate set to
0.005. The model is trained for 20 epochs.

Performance Evaluation

The performance of the proposed algorithm is evaluated
for Black Box Data Fine-tuning: Intra Dataset Experiment,
where the dataset used for data fine-tuning is same on which
the pre-trained model is trained. On the other hand, in Black
Box Data Fine-tuning: Inter Dataset Experiment, the train-
ing data used to perform data fine-tuning is different from
the training data used to train the pre-trained model.
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Figure 6: Smiling attribute score distribution pertaining to
before and after performing data fine-tuning on the LFW
dataset. The left graph represents the score distribution be-
fore data fine-tuning and right graph represents the score dis-
tribution after data fine-tuning. (Best viewed in color).

Black Box Data Fine-tuning: Intra Dataset
Experiment

The proposed algorithm is evaluated on LFW, CelebA, and
MUCT datasets for enhancing the performance of black box
models. ‘Gender’ is the common attribute among all three
datasets. Table 2 shows the classification accuracy pertain-
ing to before and after data fine-tuning for ‘Gender’ at-
tribute. For all three datasets, the classification accuracy im-
proves by 1% to 3% using data fine-tuning. Specifically,
the classification accuracy increases by 2.64% for MUCT
dataset whereas, for LFW dataset, the accuracy increases by
3.21%.

Three additional attributes, namely LFW-{‘Smiling’,
‘Bushy Eyebrows’, ‘Pale Skin’}, CelebA-{‘Smiling’, ‘At-
tractive’, ‘Wearing Lipstick’} are also evaluated. Table 3
shows the classification accuracy corresponding to these at-
tributes. Similar to the results on ‘Gender’ attribute, data
fine-tuning leads to an overall increase in the classifica-
tion accuracies of all the attributes for both the datasets.
The classification accuracy of ‘Smiling’ attribute increases
by approximately 6% for LFW dataset and 4% for CelebA
dataset. This shows the utility of data fine-tuning in enhanc-
ing the model’s performance trained on the same dataset.
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Table 4: Confusion matrix of the LFW dataset for three attributes: ‘Smiling’, ‘Bushy Eyebrows’, ‘Pale Skin’.
Attribute

Class Prediction Attribute
Class Prediction Attribute

Class Prediction

Smiling Not
Smiling

Bushy
Eyebrows

Not Bushy
Eyebrows Pale Skin Not Pale

Skin

LFW Ground
Truth

Before
Data Fine-tuning

Smiling 65.50 34.50 Bushy
Eyebrows 77.17 22.83 Pale Skin 74.48 25.52

Not
Smiling 15.86 84.14 Not Bushy

Eyebrows 42.23 57.77 Not Pale
Skin 28.75 71.25

After
Data Fine-tuning

Smiling 73.26 26.74 Bushy
Eyebrows 79.19 20.81 Pale Skin 76.57 23.43

Not
Smiling 10.76 89.24 Not Bushy

Eyebrows 41.05 58.95 Not Pale
Skin 26.88 73.12

False Positive Rate
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u

e 
Po
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ti
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 R
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Figure 7: ROC plots showing before and after data fine-tuning results of Black box Data Fine-tuning: Inter Dataset Experiment.
First three ROC curves shows the result on the LFW dataset using a model trained on the CelebA dataset. Last three ROC
curves shows the result on the CelebA dataset using a model trained on the LFW dataset (best viewed in color).

Table 5: Classification accuracy(%) of Black box Data Fine-
tuning: Inter Dataset experiment for ‘Gender’ attribute on
the MUCT, LFW, and CelebA datasets.

Dataset used to train the model
MUCT LFW CelebA

Before After Before After Before After

Dataset
MUCT - - 57.84 83.65 80.27 92.84
LFW 63.09 80.45 - - 56.01 86.33

CelebA 49.14 74.73 67.53 76.59 - -

Figure 5 shows some misclassified samples of LFW
dataset corresponding to ‘Smiling’, ‘Bushy Eyebrows’, and
‘Pale Skin’ attributes that are correctly classified after data
fine-tuning. It is also observed that the visual appearance of
the images is preserved. The score distribution of ‘Smiling’
attribute, before and after data fine-tuning is shown in Fig-
ure 6. It is observed that the overlapping region between
both the classes is reduced, and the confidence of predict-
ing the true class scores is increased after data fine-tuning.
The confusion matrix corresponding to the three attributes
of the LFW dataset is shown in Table 4 which indicates that
the True Positive Rate (TPR) and True Negative Rate (TNR)
is improved for all three attributes. For instance, the TPR
of ‘Smiling’ attribute is increased by approximately 8% and
TNR is increased by approximately 5% showcasing the effi-
cacy of the proposed technique.

Black box Data Fine-tuning: Inter Dataset
Experiment
This experiment is performed considering the real world sce-
nario associated with Commercial off-the-shelf (COTS) sys-
tems where the training data distribution of the system is un-

Table 6: Classification accuracy(%) of Black box Data Fine-
tuning: Inter Dataset experiment.

Pre-trained Model trained on CelebA

LFW
Smiling Bushy Eyebrows Pale Skin

Before After Before After Before After
55.29 78.61 45.40 68.91 56.62 84.21

Pre-trained Model trained on LFW

CelebA
Smiling Attractive Wearing Lipstick

Before After Before After Before After
49.07 66.97 49.71 66.60 60.25 77.15

known to the user. The performance is evaluated for ‘Gen-
der’ attribute on all three datasets and the other three at-
tributes used in Experiment 1 for LFW and CelebA datasets.

Table 5 shows the classification accuracies for ‘Gender’
attribute. It is observed that the classification accuracies in-
crease by 12% to 30% on all three datasets. For other at-
tributes on LFW and CelebA datasets, data fine-tuning is
performed on the LFW dataset using a model trained on the
attributes of the CelebA dataset and vice versa. Classifica-
tion accuracies in Table 6 show the significant enhancement
in the performance of the black box system using data fine-
tuning. For instance, the accuracy on ‘Bushy Eyebrows’ of
the LFW dataset increases by approximately 23%. Similarly,
there is an improvement of 17% on the attribute ‘Attractive’
of the CelebA dataset. Figure 7 shows the ROC plots of all
three attributes of LFW and CelebA datasets. The signif-
icant difference in the curves for all the attributes clearly
demonstrates that the proposed algorithm is capable of im-
proving the performance of the model with a large margin.
Figure 8 shows the score distribution before and after ap-
plying data fine-tuning. It is observed that before data fine-
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Figure 8: Score distributions pertaining to before and after performing data fine-tuning. Top three graphs from the left represent
the distribution ofthe LFW dataset predicted using a model trained on the CelebA dataset. Bottom three graphs from the left
represent its corresponding distribution after data fine-tuning. Similarly top three graphs from the right represent the score
distribution on the CelebA dataset predicted using a model trained on the LFW dataset. Bottom three graphs from the right
represent its corresponding distribution after data fine-tuning. (Best viewed in color).
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Figure 9: Comparing Data Fine-tuning versus Model Fine-
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tuning, there is a huge overlap among the distributions of
both the classes. For instance, the distribution of the attribute
‘Bushy Eyebrows’ before perturbation for both the classes
is on the same side resulting in higher misclassification rate.
After data fine-tuning, the distribution of both the classes is
well separated. This illustrates that data fine-tuning is able to
shift the data corresponding to the model’s unseen decision
boundary.

Model Fine-tuning versus Data Fine-tuning
This experiment is performed to compare the performance
of model fine-tuning, where the model acts as a white box
versus data fine-tuning where the model is a black box.
For the experiments related to data fine-tuning, the proce-
dure of ‘Black Box Data Fine-tuning: Inter Dataset Experi-
ment’ is followed. For model fine-tuning, the attribute clas-
sification model trained on the CelebA dataset is fine-tuned
with MUCT and LFW dataset. Figure 9 shows the compar-
ison of data fine-tuning with model fine-tuning for ‘Gen-
der’ attribute. In this experiment, the pre-trained model is
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Figure 10: Comparing the results of Data Fine-tuning ver-
sus Model Fine-tuning on the LFW dataset using a model
trained on the CelebA dataset.

trained on the CelebA dataset. On comparing the results
on MUCT and LFW datasets, it is observed that data fine-
tuning performs better than model fine-tuning for both the
datasets. Experimental results obtained with other three at-
tributes are shown in Figure 10, which also indicate that data
fine-tuning outperforms model fine-tuning. Experiments are
also performed by combining model fine-tuning with data
fine-tuning. For this purpose, an iterative approach is fol-
lowed, where data fine-tuning and model fine-tuning are per-
formed iteratively. It is observed that the combination of
model fine-tuning and data fine-tuning further enhances the
results. However, such a combination is not useful for black-
box systems where model fine-tuning is not possible.

Conclusion
Increasing demands of automated systems for face analysis
has led to the development of several COTS systems. How-
ever, COTS systems are generally provided as black box sys-
tems and the model parameters are not available. In such
scenarios, enhancing the performance of black-box systems
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is a challenging task. To address this situation, in this re-
search a novel concept of data fine-tuning is proposed. Data
fine-tuning refers to the process of adjusting the input data
according to the behavior of the pre-trained model. The pro-
posed data fine-tuning algorithm is designed using adver-
sarial perturbation. Multiple experiments are performed to
evaluate the performance of the proposed algorithm. It is
observed that data fine-tuning enhances the performance of
black box models. A comparison of data fine-tuning with
model fine-tuning is also performed. We postulate that data
fine-tuning can be an exciting alternative to model fine-
tuning, particularly for black-box systems.
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