
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Residual Compensation Networks for Heterogeneous Face Recognition

Zhongying Deng,* Xiaojiang Peng,∗ Yu Qiao†
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Shenzhen, Guangdong Province, China 518055
{zy.deng1, xj.peng, yu.qiao}@siat.ac.cn

Abstract
Heterogeneous Face Recognition (HFR) is a challenging task
due to large modality discrepancy as well as insufficient train-
ing images in certain modalities. In this paper, we propose
a new two-branch network architecture, termed as Residual
Compensation Networks (RCN), to learn separated features
for different modalities in HFR. The RCN incorporates a
residual compensation (RC) module and a modality discrep-
ancy loss (MD loss) into traditional convolutional neural net-
works. The RC module reduces modal discrepancy by adding
compensation to one of the modalities so that its represen-
tation can be close to the other modality. The MD loss alle-
viates modal discrepancy by minimizing the cosine distance
between different modalities. In addition, we explore differ-
ent architectures and positions for the RC module, and eval-
uate different transfer learning strategies for HFR. Extensive
experiments on IIIT-D Viewed Sketch, Forensic Sketch, CA-
SIA NIR-VIS 2.0 and CUHK NIR-VIS show that our RCN
outperforms other state-of-the-art methods significantly.

Introduction
Heterogeneous face recognition (HFR) mainly focuses on
identifying a person from face images with different modal-
ities such as photos versus sketches or near-infrared (NIR)
versus visual (VIS) images. Owing to its promising appli-
cations in surveillance and law enforcement agencies, HFR
has attracted increasing attention recently (Wu et al. 2017;
Song et al. 2017; He et al. 2017). Though great progress has
been made, it is still a challenging problem due to insuffi-
cient training samples and the large modal discrepancy.

With limited training data, many early works (Liao et al.
2009; Klare, Li, and Jain 2011; Li et al. 2016) address het-
erogeneous face recognition based on hand-crafted features.
To reduce modal discrepancy, they mainly project face fea-
tures of different modalities into latent common subspace.
Nonetheless, hand-crafted features based methods gradually
reach a bottleneck because hand-crafted features are with
limited representation capability.

Recently, new breakthrough marked by deep Convolu-
tional Neural Networks (CNN) has been made in various vi-
sual tasks including face recognition (Sun, Wang, and Tang
∗Z. Deng and X. Peng contributed equally.
†Corresponding author.
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2014b; 2014a; Wen et al. 2016). Compared to hand-crafted
features, CNN learned from large scale datasets extracts
more discriminative features which describe the highly non-
linear relationship of different modalities. Therefore, some
researchers introduce CNN to deal with the HFR prob-
lem and achieve impressive performance (Hu et al. 2017;
Wu et al. 2017; Sarfraz and Stiefelhagen 2015; He et al.
2017). Though CNN has shown superior performance com-
pared to traditional features, it may easily over-fit on small
scale HFR datasets with naive training schemes. In addition,
extracting features with a generic face CNN model for both
NIR/Sketch and VIS images may still suffer modal discrep-
ancy since all the parameters are shared while the inputs are
of different modalities.

To prevent the target CNN model from over-fitting, Hu
et al. (Hu et al. 2018) propose a synthetic data augmenta-
tion method to exponentially enlarge HFR datasets. Wu et
al. (Wu et al. 2017) propose a coupled deep learning (CDL)
approach which leverages a relevance constraint and a triplet
loss to alleviate over-fitting and reduce modal difference.
Several other methods utilize metric learning and generative
networks for the two issues of HFR (Saxena and Verbeek
2016; He et al. 2017). Overall, these methods use a generic
face CNN model to learn modality-invariant features which
can be seen as to project different modal images into a com-
mon subspace.

In this paper, instead of using a generic CNN model,
we propose a new two-branch network architecture, termed
as Residual Compensation Networks (RCN), to learn sepa-
rated features for different modalities in HFR. In our RCN,
based on a well-trained backbone face CNN model from one
modality with rich training data, we add a Residual Com-
pensation (RC) module for the other modality, and tune it
with an extra Modal Discrepancy loss (MD loss). The RCN
tackles over-fitting by fixing the backbone face CNN model
and tuning a light RC module for the other modality, and al-
leviates modal discrepancy by the RC module and the MD
loss. Take the NIR-VIS task for example, we first train a VIS
face CNN model on public available large VIS datasets, and
then fix it for the VIS branch while add a RC module af-
ter the feature layer for the NIR branch, and finally tune the
RC module with the MD loss and the cross-entropy loss on
paired NIR-VIS face images with the same identities.

With a two-branch architecture, our RCN owns several
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advantages as follows: (i) It keeps the exact same repre-
sentation capability for the VIS modality which is critical
for some HFR cases like the Forensic Sketch dataset where
VIS yields the enlarged gallery set. (ii) By tuning a light
RC module with few parameters, it reduces the over-fitting
efficiently. (iii) It also benefits from large scale paired im-
age inputs which alleviates over-fitting. (iv) It reduces modal
discrepancy with a easy-to-implement cosine based MD loss
while keeps inter-identity discriminative power by standard
cross-entropy loss.

In summary, we propose a novel two-branch modal-
invariant deep learning framework for HFR with state-of-
the-art results on several datasets. Our contributions are as
follows:

• We propose the Residual Compensation Convolutional
Neural Network to alleviate over-fitting and reduce
modality discrepancy simultaneously for HFR, which can
extend to other cross domain tasks instead of HFR.

• We design an easy-to-implement Modality Discrepancy
loss (MD loss) to efficiently reduce modal discrepancy.

• Our RCN achieves the state-of-the-art performance on
four popular HFR datasets, namely 90.34% on IIIT-D
Viewed Sketch, 62.26% on Forensic Sketch, 99.32% on
CASIA NIR-VIS 2.0 and 99.44% on CUHK NIR-VIS.

Residual Compensation Networks
To reduce the modal discrepancy, we propose a novel resid-
ual compensation (RC) module and a modality discrepancy
loss (MD loss). In this section, we first present the overview
of our RCN architecture. Then we elaborate the design of
RC module and MD loss, followed by some discussions.

Overview of RCN
Figure 1 shows the architecture of our RCN. RCN takes
as input an image pair of the same subject but with dif-
ferent modalities. Then the image pair is processed by two
branches of RCN, we assume the right branch for VIS im-
ages and the left branch for NIR/Sketch images. The back-
bone CNN of both branches is a variation of ResNet (He
et al. 2016), i.e. ResNet-10 in the right of Figure 1. The
ResNet-10 consists of a FC layer and 10 convolution lay-
ers including 2 ResNet blocks whose block number is 1 and
2 respectively. The 128-d output vector from FC is con-
sidered as the face representation of VIS branch. For the
NIR/Sketch branch, this vector is fed into the proposed RC
module which constitutes a FC layer followed by a PReLU
layer (He et al. 2015). The output of RC module is the final
representation of a NIR/Sketch face. The whole network can
be trained end-to-end with the joint supervision of cross en-
tropy loss and the proposed MD loss. For testing, we use the
left and right branch to extract the features of NIR/Sketch
and VIS face images respectively.

Residual Compensation Module
To utilize a well-trained CNN model on VIS data efficiently,
we propose a novel residual compensation module and add
it to the NIR/Sketch branch.

Assume that the pre-trained CNN on large VIS face
datasets is fθ(∗) with parameters θ, a VIS face image Ivi and
a NIR/Sketch face image Ini with the same identity, we can
extract face features as xvi = fθ(Ivi ) and xni = fθ(Ini ) for
both images. Note that fθ(∗) is learned on VIS face datasets,
it is suitable to extract the discriminative feature for Ivi . How-
ever, using fθ(∗) to extract the feature of Ini may result in a
bad face representation since the distribution of NIR/Sketch
images and VIS images are quite different. In other words,
the pre-trained CNN may bring modal discrepancy between
xvi and xni .

Since outputs of the pre-trained CNN xvi and xni are of the
same identity, they should be associated with corresponding
inherent hidden component xi. Suppose that there are trans-
mission functions ϕn and ϕv so that

xvi = ϕv(xi),x
n
i = ϕn(xi). (1)

We denote ϕ̃n as an approximation inverse function such
that xi ≈ ϕ̃n(xni ). Then the difference between xvi and xni
is

xvi − xni ≈ ϕv(ϕ̃n(xni ))− xni
≈ φ(xni ),

(2)

where φ(xni ) = ϕv(ϕ̃n(xni )) − xni . Eq.(2) shows that the
modal gap between xvi and xni can be approximatively mod-
eled by a residual module, i.e.

xvi ≈ xni + φ(xni ). (3)

In practice, xvi and xni come from the FC features of two
modalities of the same person. Since the FC features mainly
encode facial identity information, it is expected that xvi and
xni are close to each other.

To reduce the modal discrepancy, we argue that the gap
between the desired features x̂vi = xvi and x̂ni can be re-
duced by compensating xni with gτ , where gτ is a mapping
function with parameters τ . Specifically, we add a residual
compensation (RC) module gτ into the NIR/Sketch branch
of the pre-trained CNN fθ(∗) to make x̂ni approach x̂vi , i.e.
x̂ni = xni + gτ (xni ) ≈ x̂vi . The objective of the RC module
can be formulated as

min
τ

∑
i

diff(x̂vi , x̂
n
i ),

s.t. x̂vi = xvi = fθ(Ivi ),
x̂ni = xni + gτ (xni ) = fθ(Ini ) + gτ (fθ(Ini )),

(4)

where diff(∗, ∗) is a function that measures the difference
of two inputs. If we fine-tune the backbone model as well,
we can rewrite Eq.(4) by replacing fθ as fθ+∆ where ∆ de-
notes the weight changes of the pre-trained model. To min-
imize the difference of x̂vi and x̂ni , we further propose the
modality discrepancy loss.

Modality Discrepancy Loss
Considering the fact that we usually use cosine similarity
to measure the difference of two face images, we can use
the cosine distance as diff(∗, ∗) in Eq. (4). To this end, we
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Figure 1: The pipeline of the our RCN. Left: the two-branch architecture of RCN. Right: the backbone model of RCN.

define the modality discrepancy loss (MD loss) between (x̂vi ,
x̂ni ) as follows,

LMD =
1

N

N∑
i=1

(1− cos(x̂vi , x̂
n
i )) (5)

where cos(∗, ∗) is the cosine similarity of two inputs and
N is the total number of image pairs. It is obvious that the
optimization of LMD would force two face representations
to be similar. The total loss can be formulated as

L = LS + λLMD, (6)

where LS is the cross entropy loss of face classification and
λ is a hyper parameter to trade off these two terms. We define
a deep neural network with residual compensation module
and modality discrepancy loss as the Residual Compensa-
tion Networks (RCN).

Discussions
The architecture of RC module. By default, we imple-
ment gτ with a fully-connected (FC) layer followed by a
non-linear activation function and we refer it as standard RC
module. This implementation owes to the following consid-
eration: First, we only use a single FC layer because there
are large amount of parameters in FC layer. More FC layers
may lead to over-fitting easily. In practice, we add a dropout
layer to further reduce over-fitting in training phase. Second,
the non-linear activation function is used to improve the rep-
resentation capability because i) the residual compensation
is not necessary a linear mapping and ii) the relation between
VIS and NIR/Sketch signals is highly non-linear. In theory,
we can add the RC module in any layer instead of the FC
layer as in (Rebuffi, Bilen, and Vedaldi 2018). We conduct a

comprehensive evaluation to examine different setups of RC
module about this issue in experiments.

Comparison to other losses for deep face recognition.
Compared to contrastive loss (Sun, Wang, and Tang 2014a),
triplet loss (Schroff, Kalenichenko, and Philbin 2015) and
center loss (Wen et al. 2016), the MD loss of RCN is effi-
cient and easy to implement, which don’t need to carefully
constitute the negative pairs/triplets from the training set or
to adjust hyper parameter of margin (compare to contrastive
loss and triplet loss) and don’t introduce additional parame-
ters in loss design (center loss learns class centers). In addi-
tion, we use cosine distance as supervision since cosine sim-
ilarity is adopted to measure two face images in test phase.
We find Euclidean distance can be large at the beginning and
dominate the whole training loss, which may be harmful for
training and can lead to divergence. On the contrary, MD
loss use cosine distance which never be larger than 1. As a
result, MD loss is relatively small comparing to cross en-
tropy loss at beginning and can only play an important role
at later stage of training phase, which makes the training
process more stable and easier to converge.

Relation to other residual block based works. He et al.
(He et al. 2016) propose residual networks to ease the train-
ing of very deep networks. Rebuffi et al. (Rebuffi, Bilen, and
Vedaldi 2018) also apply residual block to transfer learning
by adding a small number of residual parameters to univer-
sal parametric family. Cao et al. (Cao et al. 2018) propose
a Deep Residual EquivAriant Mapping (DREAM) block to
map profile faces to frontal faces and get the pose-robust
CNN. Our work is inspired by these residual block based
works but with several differences. First, as far as we know,
we are the first to exploit RC module for HFR task. Sec-
ond, RCN has two branches to process features from two
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modalities. To adapt the fixed pre-trained backbone to new
NIR task and reduce model discrepancy, we add a new RC
module to the NIR branch. Third, we introduce MD loss to
explicitly constrain the modal similarity.

Experiments
In this section, we evaluate our proposed RCN on IIIT-D
Viewed Sketch (Bhatt et al. 2012b), Forensic Sketch (Klare,
Li, and Jain 2011), CASIA NIR-VIS 2.0 (Li et al. 2013) and
CUHK NIR-VIS.

Dataset and Protocol
IIIT-D Viewed Sketch and Forensic Sketch are two widely-
used sketch datasets in HFR. IIIT-D Viewed Sketch con-
sists of 238 sketch-photo image pairs which are drawn by
a professional sketch artist given corresponding digital im-
ages. Forensic Sketch contains 159 forensic sketches which
are drawn by forensic sketch artists according to the verbal
descriptions of the witnesses. The corresponding mug shot
photos are later identified by the law enforcement agency.
For IIIT-D Viewed Sketch, we take the same training and
testing protocols as (Wu et al. 2017) where training set is
with the 1,194 image pairs from CUFSF (Zhang, Wang,
and Tang 2011) and the rank-1 identification accuracy on
IIIT-D Viewed Sketch is reported. For Forensic Sketch, We
follow the same partition protocol as (Peng et al. 2017;
Klare, Li, and Jain 2011) which uses 106 subjects to train
and 53 subjects to test. As in (Peng et al. 2017; Klare, Li, and
Jain 2011), the gallery is extended by 10,000 face images of
10,000 persons from MegaFace Challenge (Kemelmacher-
Shlizerman et al. 2016) to simulate real scenarios, and rank-
50 accuracy of face identification is reported.

CASIA NIR-VIS 2.0 and CUHK NIR-VIS are two popu-
lar NIR-VIS datasets. CASIA NIR-VIS 2.0 contains 17,580
images of 725 subjects with variations in pose, age, resolu-
tion and expressions. As the standard evaluation protocols
in (Li et al. 2013), we tune parameters on View 1 and report
the rank-1 face identification accuracy and verification rate
(VR)@false acceptance rate (FAR) on View 2. For CUHK
VIS-NIR face dataset, there are 2,876 different subjects and
each subject has only an infrared facial image and a visi-
ble counterpart. Following (Li et al. 2016), we use 1,438
infrared and visible image pairs as the training set and the
remaining 1,438 pairs as the testing set.

Implementation Details
The face images are detected by MTCNN (Zhang et al.
2016) and five landmarks (nose, two eyes, mouse corners)
of each face are obtained for alignment with similarity trans-
form. In this way, we align and crop face images to 112×96.
Some cropped examples are shown in Figure 2. After that,
each pixel ([0,255], RGB channels) of the cropped face im-
ages is subtracted by 127.5 and then divided by 128.

We pre-train the backbone ResNet-10 on several web-
collected data, including CASIA-WebFace (Yi et al. 2014),
CACD2000 (Chen, Chen, and Hsu 2015), Celebrity+ (Liu
et al. 2015), MSRA-CFW (Zhang et al. 2012), cleaned ver-
sion of MS-Celeb-1M (Guo et al. 2016) provided by (Wu et

al. 2015). We adopt joint supervision of cross-entropy loss
and the center loss (Wen et al. 2016) to train the model. The
pre-trained model gets 99.48% on LFW (Huang et al. 2007).

Then, we initialize the shared ResNet-10 with the pre-
trained model and train our RCN with cross-entropy loss and
the MD loss. We set the batch size to 128, i.e. 64 image pairs
and initial learning rate to 0.01. To alleviate over-fitting, we
freeze all convolutional layers of the pre-trained CNN and
only train the FC layers and RC module. All experiments
are carried out based on the Caffe (Jia et al. 2014).

Exploration of RC Module
In this section, we first compare our RCN to several baseline
models, and then explore the architecture and position of RC
module.

Comparison to baseline models. We conduct the com-
parison on CASIA NIR-VIS 2.0 and IIIT-D Viewed Sketch.
We consider four comparable baseline models: (a) tradi-
tional single-branch model by fine-tuning the FC layer only,
(b) traditional single-branch model with an extra FC layer
and a PReLU layer, (c) two-branch model with an extra
FC layer and a PReLU layer for NIR/Sketch branch, (d)
two-branch model with an extra RC module for NIR/Sketch
branch and fine-tuned with softmax loss. Model (a) and
model (b) are two straightforward transfer learning meth-
ods. Model (c) is a comparable baseline to the RC module.
Figure 3 illustrates these baseline architectures.

Table 1 shows the performance comparison between the
baseline models and our RCN. We have several observations
as follows.

• As expected, the pre-trained model gets the worst perfor-
mance on both datasets which indicates there exists large
modal discrepancy between VIS and NIR/Sketch face im-
ages.

• As a typical transfer learning scheme, fine-tuning all the
layers (2nd row) of the pre-trained model improves the
performance largely. Instead of fine-tuning all the layers,
the baseline model (a) only fine-tunes the FC layer and
obtains superior results especially on IIIT-D. We argue
that fine-tuning all the layers may have higher risk from
over-fitting than (a) since the HFR datasets are small.

• Adding a new FC layer is an alternative simple trans-
fer learning scheme. As shown in the 4th row, the per-
formance of this scheme w/o the PReLU layer on both
datasets is inferior to baseline model (a). The non-linear
PReLU layer improves performance slightly on CASIA
NIR-VIS 2.0 while degrades significantly on IIIT-D. This
can be explained by more parameters and the powerful
non-linear operation lead to over-fitting easily on small
datasets.

• As an architecture-comparable baseline model, model (c)
is even worse than the model obtained by fine-tuning all
layers. The PReLU in (c) makes the features from VIS
and NIR/Sketch branch hard to match each other since
the VIS branch does not have a PReLU layer.

• Adding a default RC module to the NIR/Sketch branch
outperforms all other baseline models. Compared to

8242



Figure 2: Cropped face images from (a) IIIT-D Viewed Sketch, (b) Forensic Sketch, (c) CASIA NIR-VIS 2.0 and (d) CUHK
NIR-VIS.

Table 1: Comparison of different baseline models on IIIT-D Viewed Sketch and CASIA NIR-VIS 2.0. The numbers in “()” of
the 4th and 5th rows denote the results with a PReLU layer after FC.

IIIT-D Sketch CASIA NIR-VIS 2.0
Model Rank-1 (%) Rank-1 (%) VR@FAR=0.1% (%)

Pre-trained ResNet-10 52.10 86.58± 1.36 75.43± 1.88
Fine-tune all layers in ResNet-10 82.35 97.06± 0.43 96.43± 0.47
(a) Fine-tune FC only 86.97 98.76± 0.20 98.34± 0.26
(b) Fine-tune FC with an extra FC (PReLU) 84.8(79.41) 97.94± 0.29 (98.19± 0.36) 97.64± 0.42 (97.76± 0.25)
(c) An extra FC to NIR/Sketch branch (PReLU) 76.47(73.11) 97.33± 0.36 (95.77± 0.82) 97.15± 0.22 (95.35± 0.61)
(d) An extra RC module to NIR/Sketch branch 88.24 98.91± 0.17 98.52± 0.23
(d) + center loss 86.55 98.87± 0.25 98.36± 0.34
(d) + contrastive loss 88.66 98.72± 0.24 98.00± 0.37

RCN (RC + MD loss) 90.34 99.32± 0.15 98.74± 0.24

Figure 3: The architectures of four baseline models. (a) and
(b) are single-branch while (c) and (d) are two-branch. (d)
includes our default RC module.

model (c), our RC module benifits from two aspects: i)
it keeps the main features of backbone networks and ii)
it learns a powerful non-linear projection for the residual
which compensates modality difference.

We compare our MD loss with two widely-used loss func-
tions, namely center loss (7th row) and contrastive loss (8th
row). Both loss functions are added to train model (d) with
their best hyper-parameters from cross-validation. As shown

in the last 3 rows, both center loss and contrastive loss
slightly degrade or keep similar performance while our MD
loss boosts performance on both datasets significantly. In our
observation, the center loss fails to learn effective centers for
subjects and contrastive loss suffers from finding effective
negative/positive pairs with few samples. The values of both
loss functions are very large compared to cross-entropy loss
which makes training unstable. Overall, our RCN (RC+MD
loss) outperforms the naive fine-tuning scheme (2nd row) in
Rank-1 accuracy by 7.9% and 2.26% on IIIT-D and CASIA
NIR-VIS 2.0, respectively.

Evaluation of RC implementation. We explore different
RC designs with MD loss on IIIT-D and CASIA NIR-VIS
2.0 and compare their performance in Table 2.

First, we modify the standard RC module by removing the
PReLU (1st row) layer. It decreases the Rank-1 accuracy of
RCN by 2.1% on IIIT-D and 0.5% on CASIA NIR-VIS 2.0.
This degradation verifies our consideration that non-linear
mapping of gτ can improve the representation capability.
Second, we stack two standard RC modules (2nd row) to
seek further improvements. It is slightly inferior to RCN,
which can be explained by more parameters lead to over-
fitting easily on small HFR datasets.

Similar to (Rebuffi, Bilen, and Vedaldi 2018), we design
an alternative conv RC module (3rd row) which consists of
a 3 × 3 convolutional layer and a PReLU layer, and add it
to the first convolutional layer of the backbone network. As
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Table 2: Performance of different RC implementations on IIIT-D Viewed Sketch and CASIA NIR-VIS 2.0.

IIIT-D Viewed Sketch CASIA NIR-VIS 2.0
RC module Rank-1 (%) Rank-1 (%) VR@FAR=0.1% (%)

without PReLU 88.24 98.82± 0.35 98.37± 0.32
default RC ×2 89.50 99.18± 0.18 98.70± 0.25
3*3 conv RC 88.66 98.93± 0.24 98.47± 0.21
default RC + 3*3 conv RC 87.82 99.31± 0.22 98.93± 0.29

RCN (RC + MD loss) 90.34 99.32± 0.15 98.74± 0.24

shown in Table 2, the conv RC is inferior to the default RC
of our RCN especially on IIIT-D. Keeping both the default
RC module and the conv RC module (4th row) gets com-
parable performance as our RCN on CASIA NIR-VIS 2.0
but degrades 2.52% on IIIT-D. We believe the difference is
caused by the limited number of training samples of those
two datasets.

Evaluation of RC position. Considering that we only test
the conv RC module in the first convolutional layer in Ta-
ble 2, we further evaluate the position of the conv RC mod-
ule on CASIA NIR-VIS 2.0 with MD loss. Figure 4 shows
the comparison in Rank-1 accuracy. As shown in Figure 4,
adding RC module to the last convolutional layer or FC layer
(default) achieves the best performance, which suggests that
compensating high-level features is more effective. Adding
RC to all layers degrades the performance of RCN from
99.32% to 98.81% which can be explained by too many pa-
rameters lead to over-fit easily.

Figure 4: Evaluation of RC position on CASIA NIR-VIS
2.0. #k(k = 1, 2, ..., 10) means we add RC module to the
k-th convolutional layer. ‘All’ means adding RC module to
all layers.

Exploration of MD loss
We evaluate the hyper parameter λ in Eq. (6) on the IIIT-
D Viewed Sketch and CASIA NIR-VIS 2.0. The results are
shown in Figure 5.

From Figure 5, we can observe that the MD loss obtains
superior performance to only using cross entropy loss (i.e.
λ=0) with a wide range of λ on both datasets. The rank-1

Figure 5: Rank-1 accuracy on IIIT-D Viewed Sketch and
CASIA NIR-VIS 2.0 with varied λ.

accuracy is significantly increased with λ = 0.4 on IIIT-D
and λ = 0.8 on CASIA NIR-VIS 2.0, which manifests the
effectiveness of MD loss. In addition, the MD loss has the
comparable performance to using cross entropy loss alone
even with large λ (i.e. λ=1) on CASIA NIR-VIS 2.0. While
a very high ratio of MD loss might be harmful for discrim-
inability between classes and leads to degradation of perfor-
mance.

Comparison to the State of the Art
IIIT-D Viewed Sketch. We show the comparison of RCN
and other state-of-the-art methods on the IIIT-D Viewed
Sketch in Table 3. VGG (Parkhi, Vedaldi, and Zisserman
2015), Light CNN (Wu et al. 2015), Center Loss (Wen et al.
2016) and CDL (Wu et al. 2017) are CNN-based methods.
They only show slightly superior to hand-crafted feature
based method MCWLD (Bhatt et al. 2012a). Our RCN out-
performs those methods with large margin, i.e. 6.1% higher
than MCWLD, 4.99% higher than CDL and 6.27% higher
than Center Loss and Light CNN. In addition, RCN also in-
creases the rank-1 accuracy significantly over the pre-trained
ResNet-10 and the fine-tuned one.

Forensic Sketch. Table 4 shows the comparison of
state-of-the-art methods on the challenging Forensic Sketch
dataset. Almost all works (Peng et al. 2017; Klare and Jain
2013; Klare, Li, and Jain 2011; Peng et al. 2016) are based
on hand-crafted features instead of CNN features. This may
owe to the fact that traditional CNN can not effectively deal
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Table 3: Comparison to the state of the art on IIIT-D Viewed
Sketch face dataset.

Method Rank-1 (%)

SIFT (Bhatt et al. 2012a) 76.28
MCWLD (Bhatt et al. 2012a) 84.24
VGG (Parkhi, Vedaldi, and Zisserman 2015) 80.89
Light CNN (Wu et al. 2015) 84.07
Center Loss (Wen et al. 2016) 84.07
CDL (Wu et al. 2017) 85.35

Pre-trained ResNet-10 52.10
Fine-tuned ResNet-10 82.35
RCN-10 90.34

with the issues of very large modal discrepancy as well as
over-fitting on hundreds of training samples. Indeed, both
the pre-trained ResNet-10 and the fine-tuned one show poor
performance, which infers that these two issues are not ef-
fectively addressed. Our RCN improves the performance
by a large margin, i.e. 37.73% over the pre-trained model
and 28.30% over fine-tuned one, and get the state-of-the-
art performance on the enlarged gallery, which exhibits that
RCN potentially alleviates over-fitting and reduces the large
modal discrepancy. To the best of our knowledge, it is the
first time that CNN feature based method surpasses the oth-
ers on the Forensic Sketch dataset.

Table 4: Comparison to the state of the art on Forensic
Sketch face dataset.

Method Rank-50 (%)

LFDA (Klare, Li, and Jain 2011) 13.4
D-RS (Klare and Jain 2013) 28.7
G-HFR (Peng et al. 2017) 31.96
SGR-DA (Peng et al. 2016) 54.64

Pre-trained ResNet-10 24.53
Fine-tuned ResNet-10 33.96
RCN-10 62.26

CASIA NIR-VIS 2.0. Table 5 shows the comparison of
different state-of-the-art methods on CASIA NIR-VIS 2.0
face dataset. From Table 5, we can observe that RCN effec-
tively enhances rank-1 accuracy and VR@FAR=0.1% over
pre-trained and fine-tuned ResNet-10. We owe the improve-
ment to the fact that RCN treats the problems of over-fitting
and modal discrepancy more effectively. Our RCN also ex-
hibits superior performance to traditional features (Peng et
al. 2017; Shi et al. 2017) and other CNN based methods
(He et al. 2017; Hu et al. 2018; Wu et al. 2017; 2015;
Saxena and Verbeek 2016) on both face recognition and ver-
ification tasks. It is worth noting that the our RCN is with
similar parameters to CDL, and that RCN increases the rank-
1 accuracy of fine-tuned ResNet-10 by 6.54% while CDL
gets only 1.47% higher than its backbone model Light CNN-
9. RCN is only with 10 convolutional layer and 128-dim out-
put, which demonstrates the superior capacity of our RCN to
extract compact and modal invariant features.

Table 5: Comparison to the state of the art on CASIA NIR-
VIS 2.0 face dataset.

Method Rank-1 (%) VR@FAR=0.1%

Light CNN (Wu et al. 2015) 96.72± 0.23 94.77± 0.43
Shared, Inter+Intra (Saxena and Verbeek 2016) 85.9± 0.9 78
TRIVET (Liu et al. 2016) 95.74± 0.52 91.03± 1.26
G-HFR (Peng et al. 2017) 85.3± 0.03 -
Gabor + HJB (Shi et al. 2017) 91.65± 0.89 89.91± 0.97
CDL (Wu et al. 2017) 98.62± 0.2 98.32± 0.05
Synthetic + CNN (Hu et al. 2018) 85.05± 0.83 -
WCNN + low-rank (He et al. 2017) 98.7± 0.3 98.4± 0.4

Pre-trained ResNet-10 86.58± 1.36 75.43± 1.88
Fine-tuned ResNet-10 97.06± 0.43 96.43± 0.47
RCN-10 99.32± 0.15 98.74± 0.24

CUHK NIR-VIS. For CUHK NIR-VIS, we set λ = 0.4
and get the rank-1 accuracy of 99.44%, which is shown in
Table 6. The result not only outperforms the pre-trained and
fine-tuned ResNet-10 but also is much better than CFDA (Li
et al. 2014), MCA (Li et al. 2016) and CEFD (Gong et al.
2017).

Table 6: Comparison to the state of the art on CUHK NIR-
VIS face dataset.

Method Rank-1 (%)

P-RS (Klare and Jain 2013) 75.1
CFDA (Li et al. 2014) 80.19
MCA (Li et al. 2016) 86.43
CEFD (Gong et al. 2017) 83.93

Pre-trained ResNet-10 95.97
Fine-tuned ResNet-10 99.03
RCN-10 99.44

Conclusion
In this paper, we introduce an easy-to-implement Resid-
ual Compensation Networks (RCN) for heterogeneous face
recognition by incorporating a novel residual compensation
(RC) module and a modality discrepancy loss (MD loss) into
CNN. We fix all convolutional parameters of the backbone
CNN and add a light learnable RC module to it to alleviate
over-fitting. The RC module also reduces modal discrepancy
by adding compensation to NIR/Sketch face features so that
its representation can be close to VIS features. The MD loss
further reduces the modal discrepancy by minimizing the co-
sine distance between different modalities. Extensive exper-
iments on IIIT-D Viewed Sketch, Forensic Sketch, CASIA
NIR-VIS 2.0 and CUHK NIR-VIS show that our RCN ef-
fectively alleviates over-fitting and reduces modal discrep-
ancy, which results in the state-of-the-art performance on
these datasets.
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