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Abstract

Predicting future frames in videos has become a promising di-
rection of research for both computer vision and robot learn-
ing communities. The core of this problem involves mov-
ing object capture and future motion prediction. While object
capture specifies which objects are moving in videos, motion
prediction describes their future dynamics. Motivated by this
analysis, we propose a Cubic Long Short-Term Memory (Cu-
bicLSTM) unit for video prediction. CubicLSTM consists of
three branches, i.e., a spatial branch for capturing moving ob-
jects, a temporal branch for processing motions, and an out-
put branch for combining the first two branches to generate
predicted frames. Stacking multiple CubicLSTM units along
the spatial branch and output branch, and then evolving along
the temporal branch can form a cubic recurrent neural net-
work (CubicRNN). Experiment shows that CubicRNN pro-
duces more accurate video predictions than prior methods on
both synthetic and real-world datasets.

Introduction
Videos contain a large amount of visual information in
scenes as well as profound dynamic changes in motions.
Learning video representations, imagining motions and un-
derstanding scenes are fundamental missions in computer
vision. It is indisputable that a model, which is able to pre-
dict future frames after watching several context frames,
has the ability to achieve these missions (Srivastava, Mansi-
mov, and Salakhutdinov 2015). Compared with video recog-
nition (Zhu, Xu, and Yang 2017; Fan et al. 2017; 2018),
video prediction has an innate advantage that it usually
does not require external supervised information. Videos
also provide a window for robots to understand the phys-
ical world. Predicting what will happen in future can help
robots to plan their actions and make decisions. For exam-
ple, action-conditional video prediction (Oh et al. 2015;
Finn, Goodfellow, and Levine 2016; Ebert et al. 2017;
Babaeizadeh et al. 2018) provides a physical understanding
of the object in terms of the factors (e.g., forces) acting upon
it and the long term effect (e.g., motions) of those factors.

As video is a kind of spatio-temporal sequences, recurrent
neural networks (RNNs), especially Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997) and Gated
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Recurrent Unit (GRU) (Cho et al. 2014), have been widely
applied to video prediction. One of the earliest RNN mod-
els for video prediction (Ranzato et al. 2014) directly bor-
rows a structure from the language modeling literature (Ben-
gio et al. 2003). It quantizes the space of frame patches as
visual words and therefore can be seen as patch-level pre-
diction. Later work (Srivastava, Mansimov, and Salakhut-
dinov 2015) builds encoder-decoder predictors using the
fully connected LSTM (FC-LSTM). In addition to patch-
level prediction, it also learns to predict future frames at
the feature level. Since the traditional LSTM (or GRU)
units learn from one-dimensional vectors where the fea-
ture representation is highly compact and the spatial in-
formation is lost, both of these methods attempt to avoid
directly predicting future video frames at the image level.
To predict spatio-temporal sequences, convolutional LSTM
(ConvLSTM) (Shi et al. 2015) modifies FC-LSTM by tak-
ing three-dimensional tensors as the input and replacing
fully connected layers by convolutional operations. ConvL-
STM has become an important component in several video
prediction works (Finn, Goodfellow, and Levine 2016;
Wang et al. 2017; Babaeizadeh et al. 2018; Lotter, Kreiman,
and Cox 2017).

Like most traditional LSTM units, FC-LSTM is designed
to learn only one type of information, i.e., the dependency
of sequences. Directly adapting FC-LSTM makes it diffi-
cult for ConvLSTM to simultaneously exploit the temporal
information and the spatial information in videos. The con-
volutional operation in ConvLSTM has to process motions
on one hand and capture moving objects on the other hand.
Similarly, the state of ConvLSTM must be able to carry the
motion information and object information at the same time.
It could be insufficient to use only one convolution and one
state for spatio-temporal prediction.

In this paper, we propose a new unit for video prediction,
i.e., the Cubic Long Short-Term Memory (CubicLSTM)
unit. This unit is equipped with two states, a temporal state
and a spatial state, which are respectively generated by two
independent convolutions. The motivation is that different
kinds of information should be processed and carried by dif-
ferent operations and states. CubicLSTM consists of three
branches, which are built along the three axes in the Carte-
sian coordinate system.

• The temporal branch flows along the x-axis (temporal
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axis), on which the convolution aims to obtain and process
motions. The temporal state is generated by this branch,
which contains the motion information.

• The spatial branch flows along the z-axis (spatial axis), on
which the convolution is responsible for capturing and an-
alyzing moving objects. The spatial state is generated by
this branch, which carries the spatial layout information
about moving objects.

• The output branch generates intermediate or final predic-
tion frames along the y-axis (output axis), according to
the predicted motions provided by the temporal branch
and the moving object information provided by the spa-
tial branch.

Stacking multiple CubicLSTM units along the spatial
branch and output branch can form a two-dimensional net-
work. This two-dimensional network can further construct
a three-dimensional network by evolving along the temporal
axis. We refer to this three-dimensional network as the cubic
recurrent neural network (CubicRNN). Experiment shows
that CubicRNN produces highly accurate video predictions
on the Moving-MNIST dataset (Srivastava, Mansimov, and
Salakhutdinov 2015), Robotic Pushing dataset (Finn, Good-
fellow, and Levine 2016) and KTH Action dataset (Schüldt,
Laptev, and Caputo 2004).

Related work
Video Prediction
A number of prior works have addressed video prediction
with different settings. They can essentially be classified as
follows.

Generation vs. Transformation. As mentioned above,
video prediction can be classified as patch level (Ranzato
et al. 2014), feature level (Ranzato et al. 2014; Srivas-
tava, Mansimov, and Salakhutdinov 2015; Vondrick, Pir-
siavash, and Torralba 2016a) and image level. For image-
level prediction, the generation group of methods generates
each pixel in frames (Shi et al. 2015; Reed et al. 2017).
Some of these methods have difficulty in handling real-
world video prediction due to the curse of dimensionality.
The second group first predicts a transformation and then
applies the transformation to the previous frame to gen-
erate a new frame (Jia et al. 2016; Jaderberg et al. 2015;
Finn, Goodfellow, and Levine 2016; Vondrick and Torralba
2017). These types of methods can reduce the difficulty
of predicting real-world future frames. In addition, some
methods (Villegas et al. 2017; Denton and Birodkar 2017;
Tulyakov et al. 2018) first decompose a video into a station-
ary content part and a temporally varying motion component
by multiple loss functions, and then combine the predicted
motion and stationary content to construct future frames.

Short-term prediction vs. Long-term prediction. Video
prediction can be classified as short-term (< 10 frames)
prediction (Xue et al. 2016; Kalchbrenner et al. 2017)
and long-term (≥ 10 frames) prediction (Oh et al. 2015;
Shi et al. 2015; Vondrick, Pirsiavash, and Torralba 2016b;
Finn, Goodfellow, and Levine 2016; Wang et al. 2017) ac-
cording to the number of predicted frames. Most methods

can usually undertake long-term predictions on virtual-word
datasets (e.g., game-play video datasets (Oh et al. 2015))
or synthetic datasets (e.g., the Moving-MNIST dataset (Sri-
vastava, Mansimov, and Salakhutdinov 2015)). Since real-
world sequences are less deterministic, some of these meth-
ods are limited to making long-term predictions. For exam-
ple, dynamic filter network (Jia et al. 2016) is able to predict
ten frames on the Moving-MNIST dataset but three frames
on the highway driving dataset. A special case of short-term
prediction is the so-called next-frame prediction (Xue et al.
2016; Lotter, Kreiman, and Cox 2017), which only predicts
one frame in the future.

Single dependency vs. Multiple dependencies. Most
methods need to observe multiple context frames before
making video predictions. Other methods, by contrast, aim
to predict the future based only on the understanding of
a single image (Mottaghi et al. 2016; Mathieu, Couprie,
and LeCun 2016; Walker et al. 2016; Xue et al. 2016;
Zhou and Berg 2016; Xiong et al. 2018).

Unconditional prediction vs. Conditional prediction.
The computer vision community usually focuses on uncon-
ditional prediction, in which the future only depends on
the video itself. The action-conditional prediction has been
widely explored in the robotic learning community, e.g.,
video game videos (Oh et al. 2015; Chiappa et al. 2017) and
robotic manipulations (Finn, Goodfellow, and Levine 2016;
Kalchbrenner et al. 2017; Ebert et al. 2017; Babaeizadeh et
al. 2018; Reed et al. 2017).

Deterministic model vs. Probabilistic model. One com-
mon assumption for video prediction is that the future is
deterministic. Most video prediction methods therefore be-
long to the deterministic model. However, the real-world can
be full of stochastic dynamics. The probabilistic model pre-
dicts multiple possible frames at one time. (Babaeizadeh et
al. 2018; Fragkiadaki et al. 2017). The probabilistic method
is also adopted in single dependency prediction because the
precise motion corresponding to a single image is often
stochastic and ambiguous (Xue et al. 2016).

Long Short-Term Memory (LSTM)
LSTM-based methods have been widely used in video pre-
diction (Finn, Goodfellow, and Levine 2016; Wang et al.
2017; Ebert et al. 2017; Babaeizadeh et al. 2018; Lotter,
Kreiman, and Cox 2017). The proposed CubicLSTM can
therefore be considered as a fundamental module for video
prediction, which can be applied to many frameworks.

Among multidimensional LSTMs, our CubicLSTM is
similar to GridLSTM (Kalchbrenner, Danihelka, and Graves
2016). The difference is that GridLSTM is built by full
connections. Furthermore, all dimensions in GridLSTM are
equal. However, for CubicLSTM, the spatial branch applies
5× 5 convolutions while the temporal branch applies 1× 1
convolutions. Our CubicLSTM is also similar to PyramidL-
STM (Stollenga et al. 2015), which consists of six LSTMs
along with three axises, to capture the biomedical volumetric
image. The information flows dependently in the six LSTMs
and the output of PyramidLSTM is simply to add the hidden
states of the six LSTMs. However, CubicLSTM has three
branches and information flows across the these branches.
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Cubic LSTM
In this section, we first review Fully-Connected Long Short-
Term Memory (FC-LSTM) (Hochreiter and Schmidhuber
1997) and Convolutional LSTM (ConvLSTM) (Shi et al.
2015), and then describe the proposed Cubic LSTM (Cu-
bicLSTM) unit in detail.

FC-LSTM
LSTM is a special recurrent neural network (RNN) unit for
modeling long-term dependencies. The key to LSTM is the
cell state Ct which acts as an accumulator of the sequence or
the temporal information. The information from every new
input Xt will be integrated to Ct if the input it is activated.
At the same time, the past cell state Ct−1 may be forgotten
if the forget gate ft turns on. Whether Ct will be propagated
to the hidden state Ht is controlled by the output gate ot.
Usually, the cell state Ct and the hidden state Ht are jointly
referred to as the internal LSTM state, denoted as (Ct,Ht).
The updates of fully-connected LSTM (FC-LSTM) for the
t-th time step can be formulated as follows:

FC− LSTM



it = σ(Wi · [Xt,Ht−1] + bi),
ft = σ(Wf · [Xt,Ht−1] + bf ),
ot = σ(Wo · [Xt,Ht−1] + bo),
ct = tanh(Wc · [Xt,Ht−1] + bc),
Ct = ft � Ct + it � ct,
Ht = ot � tanh(Ct),

(1)

where ·, � and [·] denote the matrix product, the element-
wise product and the concatenation operation, respectively.

To generate it, ft, ot and ct in the FC-LSTM, a fully-
connected layer is first applied on the concatenation of the
input Xt and the last hidden state Ht−1 with the form
W · [Xt,Ht−1] + b, where W = [Wi,Wf ,Wo,Wc] and
b = [bi, bf , bo, bc]. The intermediate result is then split into
four parts and passed to the activation functions, i.e., σ and
tanh. Lastly, the new state (Ct,Ht) is produced according
to the gates and ct by element-wise product. In summary,
FC-LSTM takes the current input Xt as input, the previous
state (Ct−1,Ht−1) and generates the new state (Ct,Ht). It
is parametrized byW , b. For simplicity, we reformulate FC-
LSTM as follow:

FC− LSTM :

(Ct,Ht) = LSTM(Xt, (Ct−1,Ht−1);W, b; ·). (2)

The input Xt and the state (Ct,Ht) in FC-LSTM are all
one-dimensional vectors, which cannot directly encode spa-
tial information. Although we can use one-dimensional vec-
tors to represent images by flattening the two-dimensional
data (greyscale images) or the three-dimensional data (color
images), such operation loses spatial correlations.

ConvLSTM
To exploit spatial correlations for video prediction, ConvL-
STM takes three-dimensional tensors as input and replaces
the fully-connected layer (matrix product) in FC-LSTM with
the convolutional layer. The updates for ConvLSTM can be

written as follow:

ConvLSTM :

(Ct,Ht) = LSTM(Xt, (Ct−1,Ht−1);W, b; ∗), (3)

where ∗ denotes the convolution operator and Xt,
(Ct−1,Ht−1), (Ct,Ht) are all three-dimensional tensors
with shape (height, width, channel). As FC-LSTMs are de-
signed to learn only one type of information, directly adapt-
ing FC-LSTM makes it difficult for ConvLSTM to simul-
taneously process the temporal information and the spatial
information in videos. To predict future spatio-temporal se-
quences, as previously noted, the convolution in ConvLSTM
has to catch motions on one hand and capture moving ob-
jects on the other hand. Similarly, the state of ConvLSTM
must be capable of storing motion information and visual
information at the same time.

CubicLSTM
To reduce the burden of prediction, the proposed Cubi-
cLSTM unit processes the temporal information and the spa-
tial information separately. Specifically, CubicLSTM con-
sists of three branches: a temporal branch, a spatial branch
and a output branch. The temporal branch aim to obtain and
process motions. The spatial branch is responsible for cap-
turing and analyzing objects. The output branch generates
predictions according to the predicted motion information
and the moving object information. As shown in Figure 1(a),
the unit is built along the three axes in a space Cartesian co-
ordinate system.
• Along the x-axis (temporal axis), the convolution opera-

tion obtains the current motion information according to
the input Xt,l, the previously motion information Ht−1,l
and the previously object informationH′t,l−1. The current
motion information is then used to update the previous
temporal cell state Ct−1,l and produce the new motion in-
formationHt,l.

• Along the z-axis (spatial axis), the convolution captures
the current spatial layout of objects. This information is
then used to rectify the previous spatial cell state C′t,l−1
and generate the new object visual informationH′t,l.

• Along the y-axis (output axis), the output branch com-
bines the current motion information and the current ob-
ject information to generate an intermediate prediction for
the input of the next CubicLSTM unit or construct the fi-
nal prediction frame.

The topological diagram of ConvLSTM is shown in Fig-
ure 1(b). The updates of CubicLSTM are formulated as Eq.
(4), where l, ′ and ′′ denote the spatial network layer, the
spatial branch and the output branch respectively.

Essentially, in a single CubicLSTM, the temporal branch
and the spatial branch are symmetrical. However, in experi-
ment, we found that adopting 1×1 convolution for temporal
branch achieves higher accuracy than adopting 5× 5 convo-
lution. This may indicate that ‘motion’ should focus on tem-
poral neighbors while ‘object’ should focus on spatial neigh-
bors. Their functions also depend on their positions and con-
nections in RNNs. To deal with a sequence, the same unit

8265



(a)
Ct,1’ Ht,1’

Ct+1,2’ Ht+1,2’

Ht,1

Ct,1

Ht,2

Ct,2

Xt,1

Xt,2

Xt+1,1

Xt+1,2

Yt,1

Yt,2

Yt+1,1

Yt+1,2

(b)

Ct,l’

Xt,l Ht,lHt,l’

   convolution

o c fi o c
Ct,l

Ht+1,l Ct+1,lYt,l Ht,l+1’

’ ’ ’ ’

   convolution

       convolution

σ tanh tanhσ σ σ σσ

o c’ ’ ’ ’
i’ f’ c’ o’

fi o c
o c f i

Ct,l+1’

tanh tanh

(c)

Ht+1,l

output (y-) axis

Xt,l

fi c o

temporal (x-) axis

spatial (z-) axis

Ht,l

Ct,l

Ct+1,l

Ht,l

Ct,l+1 Ht,l+1 Yt,l ’ ’

’Ct,l’

’ ’ ’ ’

Figure 1: (a) 3D structure of the CubicLSTM unit. (b) Topological diagram of the CubicLSTM unit. (c) Two-spatial-layer
RNN composed of CubicLSTM units. The unit consists of three branches, a spatial (z-) branch for extracting and recognizing
moving objects, a temporal (y-) branch for capturing and predicting motions, and an output (x-) branch for combining the first
two branches to generate the predicted frames.

CubicLSTM


temporal branch : (Ct,l,Ht,l) = LSTM(Xt,l,H′t,l−1, (Ct−1,l,Ht−1,l);W, b; ∗),

spatial branch : (C′t,l,H′t,l) = LSTM(Xt,l,Ht−1,l, (C′t,l−1,H′t,l−1);W ′, b′; ∗),

output branch : Yt,l =W ′′ ∗ [Ht,l,H′t,l] + b′′.

(4)

is repeated along the temporal axis. Therefore, the parame-
ters are shared along the temporal dimension. For the spatial
axis, we stack multiple different units to form a multi-layer
structure to better exploit spatial correlations and capture ob-
jects. The parameters along the spatial axis are different.

At the end of spatial direction, rather than being dis-
carded, the spatial state is used to initialize the starting spa-
tial state at the next time step. Formally, the spatial states
between two time steps are defined as follows:

C′t,1 = C′t−1,L, H′t,1 = H′t−1,L, (5)

where L > 1 is the number of layers along the spatial axis.
We demonstrate a 2-spatial-layer RNN in Figure 1(c), which
is the smallest network formed by CubicLSTMs.

Cubic RNN
In this section, we introduce a new RNN architecture for
video prediction, the cubic RNN (CubicRNN). CubicRNN
is created by first stacking multiple CubicLSTM units along
the spatial axis and along the output axis, which forms a two-
dimensional network, and then evolving along the temporal
branch, which forms a three-dimensional structure.

In contrast to traditional RNN structures, CubicRNN is
capable of watching multiple adjacent frames at one time
step along the spatial axis, which forms a sliding window.
The size of the sliding window is equal to the number of

time step t-1 time step t

spatial

temporal

X

Y

w
in

do
w

Figure 2: A CubicRNN consisting of three spatial layers and
two output layers, which can watch three frames at once.

spatial layers. Suppose we have L spatial layers: CubicRNN
will view the previous Xt−L+1, · · · ,Xt−1 frames to predict
the t-th frame. The sliding window enables CubicRNN to
better capture the information about both motions and ob-
jects. An example of CubicRNN is illustrated in Figure 2.
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Table 1: Results of CubicRNN and state-of-the-art models on the Moving-MNIST dataset. The “CubicRNN (c×y×z)” denotes
that the CubicRNN model has z spatial layer(s) and y output layer(s), and the channel size of its state is c. We report per-frame
mean square error (MSE) and per-frame binary cross-entropy (BCE) of generated frames. Lower MSE or CE means better
prediction accuracy.

Models MSE BCE
MNIST-2 MNIST-3 MNIST-2

FC-LSTM (Srivastava, Mansimov, and Salakhutdinov 2015) 118.3 162.4 483.2
CridLSTM (Kalchbrenner, Danihelka, and Graves 2016) 111.6 157.8 419.5
ConvLSTM (128× 4) (Shi et al. 2015) 103.3 142.1 367.0
PyramidLSTM (Stollenga et al. 2015) 100.5 142.8 355.3
CDNA (Finn, Goodfellow, and Levine 2016) 97.4 138.2 346.6
DFN (Jia et al. 2016) 89.0 130.5 285.2
VPN baseline (Kalchbrenner et al. 2017) 70.0 125.2 110.1
PredRNN with spatialtemporal memory (Wang et al. 2017) 74.0 118.2 118.5
PredRNN + ST-LSTM (128× 4) (Wang et al. 2017) 56.8 93.4 97.0
CubicRNN (32× 3× 1) 111.5 158.4 386.3
CubicRNN (32× 1× 3) 73.4 127.1 210.3
CubicRNN (32× 3× 2) 59.7 110.2 121.9
CubicRNN (32× 3× 3) 47.3 88.2 91.7

Experiments
We evaluated the proposed CubicLSTM unit on three
video prediction datasets, Moving-MNIST dataset (Srivas-
tava, Mansimov, and Salakhutdinov 2015), Robotic Pushing
dataset (Finn, Goodfellow, and Levine 2016) and KTH Ac-
tion dataset (Schüldt, Laptev, and Caputo 2004), including
synthetic and real-world video sequences. All models were
trained using the ADAM optimizer (Kingma and Ba 2015)
and implemented in TensorFlow. We trained the models us-
ing eight GPUs in parallel and set the batch size to four for
each GPU.

Moving MNIST dataset
The Moving MNIST dataset consists of 20 consecutive
frames, 10 for the input and 10 for the prediction. Each
frame contains two potentially overlapping handwritten dig-
its moving and bouncing inside a 64× 64 image. The digits
are chosen randomly from the MNIST dataset and placed
initially at random locations. Each digit is assigned a veloc-
ity whose direction is chosen uniformly on a unit circle and
whose magnitude is also chosen uniformly at random over
a fixed range. The size of the training set can be consider-
able large. We use the code provided by (Shi et al. 2015)
to generate training samples on-the-fly. For the test, we fol-
lowed (Wang et al. 2017) which evaluates methods on two
settings, i.e., two moving digits (MNIST-2) and three mov-
ing digits (MNIST-3). We also followed (Wang et al. 2017)
to evaluate predictions, in which both the mean square er-
ror (MSE) and binary cross-entropy (BCE) were used. Only
simple prepossessing was done to convert pixel values into
the range [0, 1].

Each state in the implementation of CubicLSTM has 32
channels. The size of the spatial-convolutional kernel was
set to 5 × 5. Both the temporal-convolutional kernel and
output-convolutional kernel were set to 1 × 1. We used the
MSE loss and BCE loss to train the models correspond-
ing to the different evaluation metrics. We also adopted an
encoder-decoder framework as (Srivastava, Mansimov, and

context

prediction

MNIST-2 MNIST-3

spatial state

temporal state

motion area

ground
truth

Figure 3: Prediction examples on the Moving MNIST
dataset (top) and visualizations of the spatial hidden state
(middle) and temporal hidden state (bottom). The spatial
state provides the object information such as contours and
appearances, while the temporal state provides the motion
information of potential motion areas. The two states will be
exploited to generate the future frame by the output branch.

Salakhutdinov 2015; Shi et al. 2015), in which the initial
states of the decoder network are copied from the last states
of the encoder network. The inputs and outputs were fed and
generated as CubicRNN (Figure 2). All models were trained
for 300K iterations with a learning rate of 10−3 for the first
150K iterations and a learning rate of 10−4 for the latter
150K iterations.

Improvement by the spatial branch. Compared to Con-
vLSTM (Shi et al. 2015), CubicLSTM has an additional
spatial branch. To prove the improvement achieved by this
branch, we compare two models, both of which have 3 Cu-
bicLSTM units. The first model stacks units along the output
axis forms, forming a structure of 1 spatial layer and 3 out-
put layers. Since each state has 32 channels, we denote this
structure as (32× 3× 1). The second model stacks the three
units along the spatial axis, forming a structure of 3 spatial
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Figure 4: (a): Architecture of our model for the Robotic Pushing dataset. The model is largely borrowed from the convolutional
dynamic neural advection (CDNA) model proposed in (Finn, Goodfellow, and Levine 2016) and replaces ConvLSTMs in the
CNDA model with CubicLSTMs. Our model has three spatial layers, among which the convolutions and the deconvolutions
are shared. (b)-(c): Frame-wise PSNR comparisons of “CubicLSTM + CDNA”, “ConvLSTM + CDNA” (Finn, Goodfellow, and
Levine 2016) and “CNN + CDNA” on the Robotic Pushing dataset. Higher PSNR means better prediction accuracy.

layers and 1 output layer structure, denoted as (32× 1× 3).
The results are listed in Table 1.

On one hand, although both have 3 CubicLSTM units,
CubicRNN (32×1×3) significantly outperforms CubicRNN
(32× 3× 1). As the spatial branch and the temporal branch
in CubicRNN (32× 3× 1) are identical, the model does not
exploit spatial correlations well and only achieves similar
accuracy to ConvLSTM (128× 4). On the other hand, even
though CubicRNN (32× 1× 3) uses fewer parameters than
ConvLSTM (128×4), it obtains better predictions. This ex-
periment validates our belief that the temporal information
and the spatial information should be processed separately.

Comparison with other models. We report all the results
from existing models on the Moving MNIST dataset (Ta-
ble 1). We report two CubicRNN settings. The first has three
output layers and two spatial layers (32 × 3 × 2), and the
second one has three output layers and three spatial layers
(32 × 3 × 3). CubicRNN (32 × 3 × 3) produces the best
prediction. The prediction of CubicRNN is improved by in-
creasing the number of spatial layers.

We illustrate two prediction examples produced by Cubi-
cRNN (32×3×3) in the first row of Figure 3. The model is
capable of generating accurate predictions for the two-digit
case (MNIST-2). In the second and third rows of Figure 3,
we visualize the spatial hidden states and the temporal states
of the last CubicLSTM unit in the (32 × 3 × 3) structure
when it predicts the first frames of the two prediction exam-
ples. These states have 32 channels and we visualize each
channel by the function σ(·)× 255. As can be seen from the
visualization, the spatial hidden state reflects the visual and
the spatial information of the digits in the frame. The tem-
poral hidden state suggests that it is likely to contain some
“motion areas”. Compared with the relatively precise infor-

mation of objects provided by the spatial hidden state, the
“motion areas” provided by the temporal hidden state are
somewhat rough. The output branch will apply these “mo-
tion areas” on the digits to generate the prediction.

Robotic Pushing dataset
Robotic Pushing (Finn, Goodfellow, and Levine 2016) is an
action-conditional video prediction dataset which recodes
10 robotic arms pushing hundreds of objects in a basket. The
dataset consists of 50,000 iteration sequences with 1.5 mil-
lion video frames and two test sets. Objects in the first test
set use two subsets of objects in the training set, which are
so-called “seen objects”. The second test set involves two
subsets of “novel objects”, which are not used during train-
ing. Each test set has 1,500 recoded sequences. In addition
to RGB images, the dataset also provides the corresponding
gripper poses by recoding its states and commanded actions,
both of which are 5-dimensional vectors. We follow (Finn,
Goodfellow, and Levine 2016) to center-crop and downsam-
ple images to 64×64, and use the Peak Signal to Noise Ratio
(PSNR) (Mathieu, Couprie, and LeCun 2016) to evaluate the
prediction accuracy.

Our model is illustrated in Figure 4(a). The model is
largely borrowed from the convolutional dynamic neural
advection (CDNA) model (Finn, Goodfellow, and Levine
2016) which is an encoder-decoder architecture that ex-
pands along the output direction and consists of several
convolutional encoders, ConvLSTMs, deconvolutional de-
coders and CDNA kernels. We denote the CDNA model
in (Finn, Goodfellow, and Levine 2016) as “ConvLSTM
+ CDNA”. Our model replaces ConvLSTMs in the CNDA
model with CubicLSTMs and expands the model along the
spatial axis to form a three-spatial-layer architecture. The
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Figure 5: Qualitative comparisons of “CubicLSTM + CDNA”, “ConvLSTM + CDNA” (Finn, Goodfellow, and Levine 2016)
and “CNN + CDNA” on the Robotic Pushing dataset. Our “CubicLSTM + CDNA” method can generate clearer frames than
others, especially for the videos with novel objects.

convolutional encoders and the deconvolutional decoders
are shared among these three spatial layers. We refer to our
model as “CubicLSTM + CDNA”. We also design a base-
line model which replaces ConvLSTMs in the CNDA model
with CNNs, denoted as “CNN + CDNA”. Since CNNs do
not have internal state that flows along the temporal dimen-
sion, it cannot exploit the temporal information. In this ex-
periment, all models were given three context frames before
predicting 10 future frames and were trained for 100K itera-
tions with the mean square error loss and the learning rate of
10−3. The results are shown in Figure 4(b) and Figure 4(c).

The “ConvLSTM + CDNA” model only obtains similar
accuracy to the “CNN + CDNA” model, which indicates
that convolutions of ConvLSTMs in the CDNA model may
mainly focus on the spatial information while neglecting the
temporal information. The “CubicLSTM + CDNA” model
achieves the best prediction accuracy. A qualitative compar-
ison of predicted video sequences is given in Figure 5. The
“CubicLSTM + CDNA” model generates sharper frames
than other models.

KTH Action dataset
The KTH Action dataset (Schüldt, Laptev, and Caputo
2004) is a real-world videos of people performing one of
six actions (walking, jogging, running, boxing, handwav-
ing, hand-clapping) against fairly uniform backgrounds. We
compared our method with the Motion-Content Network
(MCnet) (Villegas et al. 2017) and Disentangled Represen-
tation Net (DrNet) (Denton and Birodkar 2017) on the KTH
Action dataset.

The qualitative and quantitative comparisons between Dr-
Net, MCnet and CubicLSTM are shown in Figure 6. Al-

t = 12 t = 15 t = 17 t = 21 t = 25 t = 27 t = 30

Ground
truth

D N

MC et

CubicLSTM
(Ours)

Time Accuracy

PSNR

20.3

26.1

.

Figure 6: Qualitative and quantitative comparison of gener-
ated sequences between DrNet, MCnet and CubicLSTM.

though DrNet can generate relatively clear frames, the ap-
pearance and position of the person is slightly changed.
Therefore, the PSNR accuracy is not quite high. For MC-
net, the generated frames are a little distorted. Compared to
DrNet and MCnet, our CubicLSTM model can predict more
accurate frames and therefore achieves the highest accuracy.

Conclusions
In this work, we develop a CubicLSTM unit for video pre-
diction. The unit processes spatio-temporal information sep-
arately by a spatial branch and a temporal branch. This
separation can reduce the video prediction burden for net-
works. The CubicRNN is created by stacking multiple Cubi-
cLSTMs and generates better predictions than prior models,
which validates out belief that the spatial information and
temporal information should be processed separately.
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