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Abstract 

Automatically generating natural language description for 
video is an extremely complicated and challenging task. To 
tackle the obstacles of traditional LSTM-based model for 
video captioning, we propose a novel architecture to gener-
ate the optimal descriptions for videos, which focuses on 
constructing a new network structure that can generate sen-
tences superior to the basic model with LSTM, and estab-
lishing special attention mechanisms that can provide more 
useful visual information for caption generation. This 
scheme discards the traditional LSTM, and exploits the fully 
convolutional network with coarse-to-fine and inherited at-
tention designed according to the characteristics of fully 
convolutional structure. Our model cannot only outperform 
the basic LSTM-based model, but also achieve the compa-
rable performance with those of state-of-the-art methods. 

 Introduction   

With the explosive growth of video data on the Web, how 

to seamlessly handle the complex structures of various vid-

eos to achieve effective description generation becomes a 

research focus (Venugopalan et al. 2015b; Yao et al. 2015). 

Although it’s easy for human to describe a video with a 

quick glance, it needs more complicated designs for com-

puters to do the same task (Venugopalan et al. 2015a; Pan 

et al. 2016). The caption generation model must identify 

what objects appear in a video, the attributes of these ob-

jects, and the relationships among objects. All of these 

tasks are the fundamental challenges in computer vision. 

Thus video captioning, which aims at constructing a lan-
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guage generation model that can express the semantic un-

derstanding with accurate and meaningful descriptions for 

videos, has received considerable attentions. 

 Some pioneering methods try to address video caption-

ing through hard-coded visual concepts and sentence tem-

plates (Kojima et al. 2002). However, these methods are 

highly human-crafted and the generated sentences are less 

natural. Recently, inspired by the advances of neural ma-

chine translation model (Cho et al. 2014; Sutskever et al. 

2014), the combination of Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) is widely 

adopted, which has significantly improved the quality of 

video textual description. Generally, the CNN-RNN mod-

els first encode the video into a fixed-length feature vector 

using CNN, and then feed the feature vector into a RNN 

decoder to generate captions. 
 Despite the existing progress, the fundamental CNN-
RNN model is still a “rough” one. For video captioning, its 
input and output are sequential structures which contain 
temporal information. Due to the outstanding performance 
of RNN especially Long Short Term Memory network 
(LSTM), RNN naturally becomes an essential part in the 
sequence generation tasks (Venugopalan et al. 2015a; 
2015b). However, its shortcomings in captioning tasks 
have been discovered. LSTM requires the previous output 
as the input at each moment, which makes the training ex-
tremely slow. The memory unit of LSTM is complex and 
requires the significant storage because of the fairly long 
path of back-propagation. All of these make the training of 
LSTM difficult. Thus some researchers have tried to solve 
the sequence generation via new model architecture with-
out LSTM, and made some breakthroughs in neural ma-
chine translation (Gehring et al. 2017; Vaswani et al. 
2017). 
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 Motivated by the above observations, we propose a nov-

el framework to generate the optimal descriptions for vide-

os. Our framework discards the traditional LSTM and ex-

ploits the fully convolutional network as the basic architec-

ture, and meanwhile leverages the coarse-to-fine and inher-

ited attention which are designed based on the characteris-

tics of the fully convolutional structure. This framework 

aims at addressing two key issues to tackle the obstacles of 

LSTM, i.e., constructing a new network structure that can 

generate sentences superior to the LSTM-based models, 

and establishing special attention mechanisms that can 

provide more useful visual information for caption genera-

tion. The example captions generated by the LSTM-based 

model and ours are given in Figure 1. To the best of our 

knowledge, this is a new attempt to apply the pure fully 

convolutional network with attention for video captioning. 

 Our main contributions involve the following aspects: 1) 

Different from the traditional LSTM-based model, a pure 

fully convolutional architecture with coarse-to-fine and in-

herited attention is introduced for video captioning; and 2) 

The coarse-to-fine attention is designed to make full use of 

different levels of visual information involved in videos, 

and the inherited attention is developed to better concen-

trate on the region-level information that needs to be fo-

cused on at different moments. Our model can not only 

outperform the basic LSTM-based model, but also achieve 

the comparable performance with those of the state-of-the-

art models on MSVD, which verifies the effectiveness and 

feasibility of our proposed framework. 

Related Work 

Describing the content of videos with natural language has 

made great progress in recent years. The existing methods 

for video captioning can be divided into two categories, 

i.e., template-based and sequence learning-based (Kojima 

et al. 2002; Venugopalan et al. 2015a; Gan et al. 2017). 

 The template-based method predefines some special 

rules for the generated description and subdivides the cap-

tion into several parts such as subject, verb and object 

(Kojima et al. 2002). With the predefined templates, each 

part of the sentence is associated with the words detected 

from the visual information of video, and finally the de-

scription of video can be generated. For example, to de-

scribe human activities with natural language, Kojima et al. 

(2002) proposed a concept architecture of actions, and a 

semantic hierarchy was designed to learn the semantic rela-

tionships among different sentence fragments. Recently, 

Xu et al. (2015) proposed a unified framework which con-

sisted of a compositional semantic language model, a deep 

video model, and a joint embedding model for video cap-

tioning. These methods could generate fluent sentences, 

but had obvious problems. They highly relied on the prede-

fined templates and rules, which made the generated sen-

tences very rigid. 

 The sequence learning-based method is different from 

the template-based. Instead of utilizing the predefined 

rules, it directly generates the final caption with a much 

more flexible syntactical structure based on the input vid-

eo. Donahue et al. (2015) proposed Long-term Recurrent 

Convolutional Networks (LRCNs), which leveraged the 

strengths of CNNs for visual recognition and utilized 

LSTM as the language model. To get better visual repre-

sentation, Venugopalan et al. (2015a) considered the tem-

poral information with optical flow and used LSTM in 

both encoder and decoder. Pan et al. (2017) proposed a 

structure to consider the semantic attributes from both im-

age and video, which could provide additional semantic in-

formation. To get more beneficial information, Xu et al. 

(2017) took multimodal features into consideration, which 

contained the features of frame, motion and audio. Li et al. 

(2017) jointly applied the region-level and frame-level at-

tention to the task of video captioning to catch more useful 

and precise visual representation. Wang et al. (2018a) pro-

posed a hierarchical reinforcement learning framework to 

learn the semantic dynamics when captioning a video. To 

get a better caption than that generated by the basic encod-

er-decoder structure, some researchers added an additional 

module called “Reconstructor” (Wang et al. 2018b) or 

“ARNet” (Chen et al. 2018). Although these modules have 

different names, the core idea is to solve some inherent 

problems of the basic encoder-decoder model by stacking 

the LSTM structure. Such works have made great contribu-

tions to video captioning and give us much inspiration. The 

advantage is that the generated captions are all well-formed 

sentences, which are much more natural than the sentences 

generated by the template-based ones. Though great pro-

gress has been made in the sequence learning method, 

many problems still exist in the LSTM-based models, 

which limits the further improvement for video captioning. 

 To mitigate the deficiencies in template-based and se-

quence learning-based methods, both Facebook (Gehring 

et al. 2017) and Google (Vaswani et al. 2017) proposed 

Figure 1: The example sentences generated by LSTM, our meth-

od, and the ground truth captions. 
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novel model architectures to solve sequence generation 

tasks without RNN. The model proposed by Facebook was 

based on CNN, while that proposed by Google was based 

on attention. Both models have achieved significant results 

on neural machine translation, which demonstrates the po-

tentials of these models in other sequence modeling tasks 

like image or video captioning. Aneja et al. (2018) pro-

posed to use CNN for image captioning, and the scores of 

sentences generated by the CNN-based model were com-

parable with the basic RNN-based model. Inspired by such 

progress, we particularly propose a video captioning model 

with a fully convolutional network, and establish new at-

tention mechanisms for stacked structure and region-level 

attention calculation to generate more accurate descriptions. 

Methodology 

Revisit of RNN-based Model 

Encoder A 2-D/3-D CNN is used as the video encoder. 

Each frame sampled from a video is encoded as a   -

dimensional feature, i.e.,   {                }, where 

  denotes the number of frames and    is the n-th frame of 

video. The common way to obtain the video representation 

is to take the average of the frame feature vectors in  . 

However, the mean pooling strategy discards the temporal 

information among the frames. More effectively, LSTM 

can be adopted as the video encoder. The current hidden 

state    can be updated as: 

                                 (1) 

where      is the previous hidden state, and    is the fea-

ture of the input frame at the current time step. The last 

hidden state of the LSTM encoder can be taken as the 

global feature representation, and then fed into the decoder. 

Decoder Another LSTM is used as the decoder, which is 

initialized by the video representation. Each word in a cap-

tion is mapped to a   -dimensional word embedding. The 

whole sentence can then be represented as a sequence 

  {                }. Finally, the output caption can 

be generated based on the following Eq. (2). 

                                  (2) 

where    is the input word embedding at the current time 

step. When the hidden state at each time step is obtained, 

the corresponding word of the caption can be generated. 

Loss The negative log probability of sentence is given by 

summing the log probabilities over words in the sentence, 

which is defined as: 

      ∑         |             
 
          (3) 

where   is the length of sentence;   is the video represen-

tation; and    is the generated word at the current time step. 

Our Fully Convolutional Model with Attention 

Although the LSTM-based model can generate natural lan-

guage descriptions for videos, the problems of LSTM still 

exist. To solve the problems, we propose a novel frame-

work which integrates Fully Convolutional Network (a 

novel generation model for video captioning without the 

assistance of LSTM), Coarse-to-Fine Attention (a new at-

tention mechanism used for a stacked structure) and Inher-

ited Attention (a novel calculation strategy for frame 

weights at the region-level). An overview of our fully con-

volutional model with attention is shown in Figure 2. 

Fully Convolutional Network 

As described previously, the features of a video can be rep-

resented as   {                }, and the word em-

beddings of a corresponding caption can be represented as 

  {                } . The features of all the frames 

will be fed into the initial input part of the fully convolu-

tional network and the attention module. 

 To make the input of the initial moment contain both 

semantic and visual information, the initial input can be 

obtained based on the following Eq. (4). 

                                             (4) 

where    denotes the word embedding of the word in the 

sentence at the current time step; and   denotes the global 

feature that is obtained by taking the average of the fea-

tures of the sampled frames. Therefore,   is the concatena-

tion of word embeddings and global features of a video. 

 As shown in Figure 2, the main structure of our model is 

the stacked   layers of masked 1-D CNN. The kernel size 

of each convolutional kernel is  . The latter part of the 

kernel is masked with zero, because the word embeddings 

corresponding to next time steps are not available at the 

current time step. A CNN kernel can receive k input fea-

tures, that is, the current input feature is in the middle of 

the kernel, the left part receives the word embeddings of 

past time steps, and the right part is masked with zero. Due 

to the characteristics of a stacked CNN, each kernel of the 

high-level layer can process more information as the num-

ber of the stacked layer increases. Thus the output features 

of the last layer for the stacked structure can be considered 

to contain all information of the word embeddings provid-

ed to the first layer. The final caption of the video can then 

be generated by the fully convolutional network.  

Coarse-to-Fine and Inherited Attention 

Because the structure of our model is greatly different from 

the RNN-based model, the new attention mechanisms are 

designed based on the characteristics of our structure. In 

this section, we will introduce two attention mechanisms. 

The first one is the coarse-to-fine attention, which is used 

to provide different information for different layers. The 

second one is the inherited attention, which is used to 

achieve a more accurate visual representation. 
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Coarse-to-Fine Attention Because of the stacked structure 

of a fully convolutional network, where the input of each 

layer comes from the output of the previous layer, we can 

regard the entire process as a continuous optimization of 

the sentence generated by the previous layer. To make full 

use of the knowledge learned in each layer, a coarse-to-fine 

attention that is adaptive to the hierarchical architecture of 

our model is developed to help the model focus on the sali-

ent frames and regions, so as to make optimization for op-

timal caption generation. 

 Our coarse-to-fine attention aims to provide the most 

necessary information for different layers. It consists of 

temporal attention and inherited attention. Temporal atten-

tion can provide the frame-level visual information, and 

inherited attention provides the region-level visual infor-

mation. As the number of a stacked layer increases, the 

coarse-to-fine attention can find much more precise visual 

information from a video. Each layer of our stacked model 

can utilize more precise information than before, in order 

to optimize the outputs generated by the previous layer 

with coarse-to-fine attention. 

 Temporal attention aims at calculating the weights of all 

frames sampled from a video based on the importance de-

grees of different frames at different time steps and provid-

ing the final result to the corresponding layer. It is used in 

the previous   layers of the model. Here, we adopt Multi-

head Attention (Vaswani et al., 2017) to get the required 

weights. The result of temporal attention can be computed 

based on the following Eq. (5): 

                                        
  

                   (    
     

 )     
       (5) 

                      
     

 

√   

  

where    is the input at the time step  ;   {          } is 

the features of frames;   
  and    {             } are the 

representations of input and frames in the same feature 

space respectively; and   is the number of sample frames. 

    is the final representation of visual information after 

using attention, and       denotes the weights of all frames 

of a video at the current time step. Multi-head attention al-

lows the model to jointly attend to the information from 

different representation subspaces at different positions. 

The concatenation of all results of heads can be regarded as 

the collection of different representations of a video. As 

shown in Eq. (5), the representation is the concatenation of 

features generated by many different heads. Our model can 

then learn all the features, and get the final representation 

from the concatenation for a video. Multi-head attention 

can obtain multiple representations that focus on different 

features, because they use full connections that are inde-

pendent of each other in every head. As the number of a 

stacked layer increases, the weights of different frames can 

be continuously optimized. Thus the final weights of 

frames are better than those with a single-layer structure. 

 Temporal attention can provide the frame-level visual 

information in the previous   layers, but such a frame-

Figure 2: An illustration of our proposed fully convolutional model with coarse-to-fine and inherited attention. The video representation 

is constructed by CNN. GF means the global feature of video after mean pooling. The initial input is the concatenation of word embed-

dings and global features of a video. The coarse-to-fine attention consists of temporal attention and inherited attention. The different col-

ors in coarse-to-fine attention mean the different fineness degrees of information. The darker the color, the more accurate the found in-

formation is. 𝛼𝑖 means the weight of the 𝑖-th frame, and 𝛽𝑖 𝑗  means the weight of the 𝑗-th region in the 𝑖-th frame. As the number of a 

stacked layer increases, the obtained information becomes more and more accurate. 
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level attention may ignore region details. To put emphasis 

on more accurate local visual regions and get meaningful 

visual information for upper layers, it is important to ex-

plore inherited attention to focus on the region-level visual 

information in the next few layers. 

Inherited Attention Some researchers have considered 

both frame-level and region-level attention in video cap-

tioning (Li et al. 2017). However, they do not fully utilize 

the relationship between the frame-level and region-level 

information, and cannot exploit the knowledge learned in 

the previous moment because of their model constraints. 

 To solve the above problems, we propose the inherited 

attention to calculate the region-level weights of visual in-

formation. The visual representations at the frame-level 

and region-level are quite different. The region-level repre-

sentation is the more precise description of frame, and con-

tains more detailed information than the frame-level repre-

sentation. This means that the region-level representation 

at different times should first conform to the representation 

weight at the frame-level. Inherited attention is used in the 

next   layers after the layers with temporal attention, so 

that we can use the learned knowledge about frames to cal-

culate the weights of regions. The representations and 

weights of regions at different times can be calculated as: 

    ∑                       
 
     

                                         
   (6) 

                   (    
     

 )     
  

                      
    

  

√   
) 

where     is the input at the time step  ;   {          }  
denotes the features of regions;   is the number of sam-

pled frames for video; and         is the weight of the  -th 

frame at the time step  . The final representation     con-

siders both the weights learned at the frame-level and those 

calculated at the region-level. Thus the final attention areas 

are more accurate, which can provide more beneficial in-

formation for the upper layers and then generate sentences 

that describe the video contents more precisely. 

Caption Generation 

The commonly used loss function for video captioning has 

been introduced in the part of RNN-based model. Howev-

er, our fully convolutional model takes much more infor-

mation into consideration. Thus we need a novel loss func-

tion that cannot only guide the model to generate reasona-

ble captions, but also make the model pay attention to the 

most valuable areas. Thus our model is trained by minimiz-

ing the following loss function: 

        ∑    ∑    
 
     ∑    ∑    

 
    

 
 
   (7) 

where the first part is the negative log-likelihood ment- 

ioned in Eq. (3);     and     are the weights of the  -th 

frame and  -th region at the time step   respectively, which 

can encourage the model not to focus on the same frame or 

the same region of the video at different time steps;   and 

  are two pre-set hyper-parameters to ensure that the nega-

tive log-likelihood loss contributes to the majority part of 

the final loss while the other parts are functioning. 

Experiments 

Dataset and Evaluation Metrics 

The Microsoft Video Description Corpus (MSVD) is the 

most popular benchmark dataset for video captioning 

(Guadarrama et al. 2013). It contains 1,970 video clips 

downloaded from YouTube with roughly 40 English de-

scriptions for each video. Typically, each video clip is 

about a single activity in open domains. For fair compari-

son, we follow the commonly utilized setting in our exper-

iments, i.e., 1,200 videos for training, 100 videos for vali-

dation and 670 videos for testing. 

 For performance evaluation, we consider all the public 

evaluation metrics, including BLEU (Papineni et al. 2002), 

CIDEr (Vedantam et al. 2015), METEOR (Denkowski and 

Lavie, 2014) and ROUGE (Lin 2004). 

Experimental Settings 

We sample 15 frames for each video. Inception-V3 (Sze-

gedy et al. 2016) and C3D (Ji et al. 2013) are used to ex-

tract features for video representation. The input images 

are resized to 299×299, and thus the dimension of frame 

features is 2,048. The region features of frames are extract-

ed from a lower layer of Inception-V3. Here, the inception 

net is pre-trained on ImageNet (Deng et al. 2009), and C3D 

is on Sports-1M (Karpathy et al. 2014). The layer of Incep-

tion-V3 before a full connection (8×8×2,048) is utilized to 

extract the region features. Each frame can be represented 

with 8×8 grid regions. The kernel size of 1-D CNN is 5, 

and the number of stacked layers is 4. We use temporal at-

tention in the first two layers and inherited attention in the 

last two layers. The head of multi-head attention is 8. The 

dimension of word-embedding, global feature, frame fea-

ture, and region feature are all 512. 

Experiment Results and Analyses 

Comparison with the State-of-the-Art Approaches 

As shown in Table 1, we compare our results with those of 

the state-of-the-art approaches for video captioning. All the 

selected methods are LSTM-based. It can be observed that 

our method achieves the better results superior to the state-

of-the-art approaches on all metrics. This indicates that our 

CNN-based model and attention mechanisms can signifi-

cantly improve the whole generation performance. 
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Comparison with the Basic LSTM-based Model 

Although Table 1 shows the effectiveness of our approach, 

it cannot completely exhibit the advantages of our fully 

convolutional model relative to a basic LSTM-based mod-

el, and whether the performance gains obtained from our 

attention mechanisms is remarkable or not. Thus we fur-

ther carry out more experiments to validate these aspects. 

Meanwhile, the state-of-the-art approaches in Table 1 

adopt different networks to get video features. To make a 

fair comparison, we particularly summarize the results of 

the basic LSTM-based model (LSTM), our basic CNN-

based model (FCVC), and our fully convolutional model 

with attention (FCVC-CF&IA), as shown in Table 2. All 

these approaches use the features of frames extracted from 

Inception-V3 and C3D. The results indicate that our CNN-

based model obviously outperforms the basic LSTM-based 

model. It’s worth noting that the coarse-to-fine and inherit-

ed attention can also greatly improve the captioning per-

formance, which further verifies their important roles. 

Model METEOR BLEU-4 CIDEr ROUGE 

LSTM 31.9 43.4 44.1 68.6 

FCVC 32.1 48.7 64.8 69.1 

FCVC-CF&IA 34.8 53.1 79.8 71.8 

Table 2: The results of the basic LSTM-based model, our basic 

CNN-based model and our CNN-based model with attention. 

Why CNN but not LSTM 

As mentioned previously, the LSTM-based model has 

some drawbacks, thus we exploit CNN to overcome such 

obstacles. To further exhibit the power of our model, we 

have done some experiments for better comparison be-

tween the CNN-based and LSTM-based model. 

 The results in Tables 1&2 clearly show the superiority 

of CNN. It can be observed that the results of a CNN-based 

model are much better than those of the LSTM-based 

models, and our model can generate more accurate sen-

tences. According to the statistics on the reference sentenc-

es, it can be found that the number of “#unk” in the sen-

tences generated by our model is much less than that of the 

basic LSTM-based model. The word “#unk” indicates that 

the model does not know which word to generate at the 

current time step, and thus makes the sentence unsmooth 

and lowers the evaluation scores. Because LSTM is hard to 

train, the training of the structure with a stacked LSTM is 

difficult and needs a large amount of time. Our CNN-based 

model, on the other hand, can optimize the sentence gener-

ation layer by layer with the stacked structure, and does not 

need more time than the LSTM-based models. The output 

of a CNN is all dependent on the input, which increases the 

power of the model to optimize the sentences, while a 

LSTM-based model has too many parameters to optimize. 

 LSTM needs the hidden state of a previous time step as 

the input of the current time step, which makes the model 

training time-consuming. CNN can be trained faster be-

cause it can run in parallel. Meanwhile, it is faster than a 

RNN-based model even with more extra actions due to the 

stacked model. Since the extraction process of frame repre-

sentation is the same for all models, we use the frame fea-

tures that have been extracted from Inception-V3 pre-

trained on ImageNet and C3D pre-trained on Sports-1M, 

and then compare the cost of training time. The related re-

sults of these three methods are shown in Table 3. 

Model #unk Time/10M parameters 

LSTM 116 203sec 

FCVC 11 186sec 

FCVC-CF&IA 0 253sec 

Table 3: The comparison of training time among the basic LSTM-

based model, our basic CNN-based model and our CNN-based 

model with attention. “#unk” means the number of “#unk” in 

testing captions, and Time refers to the time cost in the training 

stage for every 10 million parameters. 

 As we expected, the training speed of a CNN-based 

model is faster than that of the basic LSTM-based model. 

Our fully convolutional model with attention needs more 

time for training because the model needs to consider both 

the frame-level and region-level features for video. This 

may introduce more operations than those of a basic 

LSTM-based model and our basic CNN-based model. All 

the operations used here is very concise and do not in- 

Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr METEOR ROUGE 

LSTM-E (Pan et al. 2016) 78.8 66.0 55.4 45.3 - 31.0 - 

h-RNN (Yu et al. 2016) 81.5 70.4 60.4 49.9 65.8 32.6 - 

MAM-RNN (Li et al. 2017) 80.1 66.1 54.7 41.3 53.9 32.2 - 

LSTM-LS (Liu et al. 2017) 80.2 69.0 60.1 51.1 - 32.6 - 

MA-LSTM (Xu et al. 2017) 82.3 71.1 61.8 52.3 70.4 33.6 - 

MFATT (Long et al. 2018) 83.0 71.9 63.0 52.0 72.1 33.5 - 

TSL (Wu et al. 2018) - - - 51.7 74.9 34.0 - 

M3 (Wang et al. 2018c) 81.6 71.4 62.3 52.0 - 32.2 - 

FCVC-CF&IA (Ours) 83.5 72.8 63.3 53.1 79.8 34.8 71.8 

Table 1: The comparison results between state-of-the-art approaches and ours on MSVD. 
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crease the training difficulty. As shown in Figure 3, we 

give some captioning examples by the basic LSTM-based 

model, our basic CNN-based model, and our CNN-based 

model with coarse-to-fine and inherited attention. 

How to use Attention 

As described before, we put emphases on coarse-to-fine 

and inherited attention, and have obtained promising per-

formance gains. To further verify the superiority of our at-

tention mechanisms, we propose several different ways to 

exploit the attention mechanisms, and compare them with 

the basic one. The related results are shown in Table 4. 

FCVC is the baseline model, that is, the CNN-based model 

without attention. FCVC-TA is the CNN-based model with 

temporal attention in every layer of the model. FCVC-IA 

means we only use inherited attention. In every layer, we 

use temporal attention to compute the weights of different 

frames, and then inherited attention to get region-level 

weights. FCVC-all and FCVC-final use both coarse-to-fine 

attention and inherited attention. FCVC-all uses temporal 

attention in the first two layers, and both temporal attention 

and inherited attention in the last two layers. FCVC-final 

uses temporal attention in the first two layers and only in-

herited attention in the last two layers. It can be seen that 

with both coarse-to-fine and inherited attention, we can ob-

tain the best result. The result of FCVC-final is better than 

that of FCVC-all because the latter can only focus on the 

region-level attention in the last two layers. To reduce the 

difficulty of model learning, we specially distribute the 

learning of frame-level and region-level attention weights 

in different layers. This manner can mitigate the conflict 

among different modules, and help achieve better results. It 

will be better if the modules of the model only need to care 

about a small part of actual calculation. The features used 

here are also extracted from Inception-V3 and C3D. 

Model METEOR BLEU-4 CIDEr ROUGE 

FCVC 32.1 48.7 64.8 69.1 

FCVC-TA 33.1 49.8 70.7 69.7 

FCVC-IA 33.3 50.5 73.7 70.2 

FCVC-all 34.2 51.9 77.2 71.1 

FCVC-final 34.8 53.1 79.8 71.8 

Table 4: The comparison between the baseline CNN-based model 

without attention and the CNN-based models with attention. 

Conclusion 

In this paper, we propose a novel fully convolutional net-

work with coarse-to-fine and inherited attention to generate 

video captions. We build a CNN-based model to replace 

LSTM, which can achieve faster training and better de-

scriptions of videos. We develop coarse-to-fine and inher-

ited attention, and prove their feasibility with extensive ex-

periments. The promising results on the MSVD dataset 

verify the effectiveness of our model. Since simply stack-

ing CNN cannot fully realize the potentials of a CNN-

based model in sequence generation tasks, it may not be 

adaptive enough for more complex dataset. We will con-

sider exploring a more effective CNN-based model, and 

further enhance its generalization ability and robustness for 

video caption generation in our future work. 

Figure 3: Some captioning examples on MSVD with different models. The sentences generated by our fully convolutional model with atten-

tion can better describe the semantic contents of the video. GT means the ground truth sentences of MSVD. 
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