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Abstract
In this work, we propose a novel Spatial-Temporal Atten-
tion (STA) approach to tackle the large-scale person re-
identification task in videos. Different from the most exist-
ing methods, which simply compute representations of video
clips using frame-level aggregation (e.g. average pooling),
the proposed STA adopts a more effective way for produc-
ing robust clip-level feature representation. Concretely, our
STA fully exploits those discriminative parts of one target
person in both spatial and temporal dimensions, which results
in a 2-D attention score matrix via inter-frame regulariza-
tion to measure the importances of spatial parts across differ-
ent frames. Thus, a more robust clip-level feature representa-
tion can be generated according to a weighted sum operation
guided by the mined 2-D attention score matrix. In this way,
the challenging cases for video-based person re-identification
such as pose variation and partial occlusion can be well
tackled by the STA. We conduct extensive experiments on
two large-scale benchmarks, i.e. MARS and DukeMTMC-
VideoReID. In particular, the mAP reaches 87.7% on MARS,
which significantly outperforms the state-of-the-arts with a
large margin of more than 11.6%.

Introduction
Person re-identification (Re-ID) aims at matching images of
a person in one camera with the images of this person from
another different camera. In recent years, person Re-ID un-
der the image sequence (video) setting has drawn significant
attention in literature since it is critical for applications like
intelligent video surveillance and multimedia. (McLaughlin,
Martinez del Rincon, and Miller 2016; Wang et al. 2016;
Zhou et al. 2017; Liu, Yan, and Ouyang 2017; Jimin Xiao
2019).

Most of the existing video-based person Re-ID work (Liu,
Yan, and Ouyang 2017; Song et al. 2017; Li et al. 2018)
focuses on very small datasets, e.g. PRID-2010 (Hirzer et
al. 2011) and iLIDS-VID (Wang et al. 2014) that only
contains about 300 person identities with 600 tracklets
in total. Although the existing approaches achieve good
performances on PRID-2010 and iLIDS-VID, their accu-
racies in the state-of-the-art large-scale datasets such as
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the MARS dataset (Zheng et al. 2016) and DukeMTMC-
VideoReID dataset (Wu et al. 2018; Ristani et al. 2016) are
far from satisfying. Their performances are largely limited
by the tremendous variations in camera viewpoints, human
poses, illumination, occlusions, and background clutter in
the large-scale video-based Re-ID dataset.

For the video-based Re-ID task, the key is to learn a map-
ping function that converts videos into a low-dimensional
feature space in which each video can be represented by a
single vector. Most existing methods represent a frame of
the video as a feature vector, and then employ average or
maximum pooling across the frames to obtain the represen-
tation of the input video (Hirzer et al. 2011; You et al. 2016).
However, this approach usually fails when occlusions ap-
pear frequently in the video. In addition, basic operations
like maximum or average pooling across video frames can-
not handle the spatial misalignment caused by the variation
of human poses among frames. In order to distill the relevant
information from a video and weaken the influence of noisy
samples (e.g. occlusion), recent studies (Zhou et al. 2017;
Xu et al. 2017) introduce the attention mechanism and
achieve improved results. However, these existing attention-
based methods only assign an attention weight to each
frame, thus lack the capabilities of discovering either the dis-
criminative frames in a video sequence or the discriminative
body parts in each frame. Also, the attention mechanisms
in most existing attention-based approaches are parametric,
e.g. fully connected layers, which require the input video se-
quence to be in fixed length.

In order to address the issues mentioned above, we pro-
pose an effective yet easy-to-implement Spatial-Temporal
Attention (STA) framework to address the large-scale
video-based person re-identification problem, as shown in
Fig. 1. Instead of simply encoding a sequence of images by
pooling or assigning weights to each frame by the paramet-
ric model, our STA framework jointly incorporates multiple
novel components including frame selection, discriminative
parts mining, and feature aggregation without using any ad-
ditional parameters. In all, our major contributions in this
paper can be summarized as follows:

• We propose a simple yet effective STA model that assigns
attention score for each spatial region to achieve discrimi-
native parts mining and frame selection without using any
additional parameters.
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Figure 1: Architecture of STA framework. The input video tracklet is first reduced to N frames by random sampling. (1)
Each selected frame is fed into the backbone network to be transformed into feature maps. (2) Then, the feature maps are sent
to our proposed spatial-temporal attention model to assign an attention score to each spatial region of different frames and then
generate a 2-D attention score matrix. An Inter-Frame Regularization is employed to restrict the difference among different
frames (detailed in Fig. 2). (3) Using the attention score, we extract the spatial region feature map with the highest attention
score among all frames, and operate the weighted sum of the spatial region feature maps based on the assigned attention score.
(4) Then, we adopt feature fusion strategy to concatenate the spatial feature maps from different spatial regions to generate
two sets of feature maps of the whole person body as the global representation and discriminative representation. (5) Finally, a
global pooling layer and a fully connected layer are used to transform the feature maps to a vector for person re-identification.
During training, we combine both the triplet loss and the softmax loss. During testing, we choose the feature vector after the
first fully connected layer as the representation for the input video tracklet.

• We introduce the inter-frame regularization term to re-
strict the dissimilarity among different frames and ensure
that each frame shares the same identity.

• We design a novel feature fusion strategy that combines
both global information and discriminative information
from the video sequence for better feature aggregation.

• We conduct extensive experiments and ablation study to
demonstrate the effectiveness of each component. The
final results achieve the state-of-the-art on two main-
stream large-scale datasets: MARS and DukeMTMC-
VideoReID.

Related Work
Image-based person re-identification is extensively ex-
plored in the literature, and the existing studies can gen-
erally be divided into two categories: discriminative learn-
ing (Xiao et al. 2016; Zheng, Zheng, and Yang 2017;
Sun et al. 2017; Fu et al. 2019) and metric learning (Ahmed,
Jones, and Marks 2015; Hermans, Beyer, and Leibe 2017;
Ding et al. 2015). In (Hermans, Beyer, and Leibe 2017), Her-
mans et al. propose a variant of triplet loss to perform end-
to-end deep metric learning, and their model can outperform
many other published methods by a large margin. In (Zheng,
Zheng, and Yang 2017), Zheng et al. employ siamese net-

work and combine both verification loss and classification
losses to learn a discriminative embedding and a similarity
measurement at the same time.

Video-based person re-identification is an extension of
the image-based person re-identification, and is widely stud-
ied recently (McLaughlin, Martinez del Rincon, and Miller
2016; Liu et al. 2017; Wang et al. 2016; Zheng et al.
2016). For example, McLaughlin et al. (McLaughlin, Mar-
tinez del Rincon, and Miller 2016) adopt Recurrnet Neural
Network(RNN) to pass the message of each frame extracted
from Convolution Network Network(CNN). Liu et al. (Liu
et al. 2017) focus on learning a long-range motion context
features from adjacent frames for a robuster identification.

Attention models in person re-identification. Since
Xu et al. (Xu et al. 2015) propose the attention mecha-
nism, it has been applied to lots of person re-identification
work (Zhou et al. 2017; Xu et al. 2017; Liu, Yan, and
Ouyang 2017; Li et al. 2018). In (Liu, Yan, and Ouyang
2017), Liu et al. propose a method to estimate quality score
of each frame automatically and weaken the influence of
noisy samples. Xu et al. (Xu et al. 2017) introduce the joint
Spatial and Temporal Attention Pooling Network that can
extract the discriminative frames from probe and gallery
videos, and obtain temporal attention weights for one se-
quence guided by the features of the other sequences. Li et
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al. (Li et al. 2018) employ multiple spatial attention models
with the temporal attention model to learn latent represen-
tations of different body parts of each person. Comparing
to these existing attention models, our proposed STA model
has two major differences that further boost our person Re-
ID performance: First, the simple yet effective STA model
has no additional parameters, which means that the length
of the input sequence does not have to be fixed. Second, the
STA model can learn a attention score for each region in dif-
ferent frames, which can achieve the discriminative region
mining and frame selection jointly.

Proposed Method
Given a tracklet of person sequence, we propose the STA
framework (Fig. 1) to better handle the video-based per-
son re-identification problem through spatial-temporal at-
tention model with inter-frame regularization. We first ran-
domly select a constant number of frames from the input
video query, and feed them into a backbone network to ex-
tract features from each frame. Then, we send the obtained
feature maps into the proposed STA model to generate a 2-
D attention score matrix which assigns an attention weight
for each spatial region of each frame. In order to restrict
the difference among the frames in the single video track-
let, we propose the inter-frame regularization to estimate the
inter-frame similarity. Next, we use both the spatial region
with the maximum corresponding weights in each frame,
and the weighted sum among all attention weights to obtain
two sets of feature maps of the whole person body. Finally,
we concatenate them together as the global representation
and discriminative representation, and employ a global aver-
age pooling followed by a fully connected layer to represent
the video query. For the objective function, we combine the
softmax loss and batch-hard triplet loss (Hermans, Beyer,
and Leibe 2017).

Spatial-Temporal Attention (STA) Framework
Backbone Network. Various network architectures, like
VGG (Simonyan and Zisserman 2014), Resnet (He et al.
2016), and Google Inception (Szegedy et al. 2016), can be
employed as the backbone network to extract feature maps
for each frame. We choose ResNet50 (He et al. 2016) as
the backbone network, which was adopted by most previous
works. In particular, ResNet50 has one convolutional block
named conv1, and followed by four residual block named
conv2, 3, 4, 5 respectively. We further make two modifica-
tions on the original ResNet50: 1) the stride of the first resid-
ual block conv5 is set to 1; 2) the average pooling layer
and fully connected layer are removed. The input video is
first reduced to N frames by random sampling, and each se-
lected frame is fed into the backbone network. As a result,
each video V = {I1, ..., In, ..., IN} is represented by a set
of 16× 8 feature maps {fn}{n=1:N}, and each feature map
has D = 2048 channels.

Spatial-Temporal Attention Model. We propose the
spatial-temporal attention model to automatically learn from
each image frame the discriminative regions that are use-
ful for re-identification. Previous video-based person re-
identification methods (Liu, Yan, and Ouyang 2017; Zhou

et al. 2017) consider each frame as a whole image and as-
sign one weight for each frame. However, different regions
of a person body should have different influences on the re-
identification task. Thus, our approach aims to discover the
discriminative representation of these region for each frame.
Li et al. (Li et al. 2018) also employ a spatial-temporal atten-
tion model, in which they use different convolutional layers
to extract salient region of person body and adopt traditional
temporal attention model for frame selection. There are three
major drawbacks of this method. First, it involves more com-
putation because of more convolutional layers, and its input
sequence length has to be fixed due to the temporal atten-
tion model. Second, multiple spatial attention models used
in their approach are independent from each other, without
utilizing the spatial relationships that exist between human
body parts. As a result, the extracted spatial attentions could
be scattered and do not reflect the complete human body in
the foreground. Third, the spatial attention information and
temporal attention information are obtained by two differ-
ent models which would cause error accumulation. Different
from the existing methods, our spatial-temporal attention as-
signs attention weights, which contain both of spatial atten-
tion information and temporal attention information, to each
spatial region in different frames automatically without any
additional parameters. Experiments in Table 4 demonstrate
the advantages of our method compared to (Li et al. 2018).
To the best of our knowledge, our model is the first video-
based person Re-ID model that can discover the discrimi-
native parts but reserve the spatial relationship, and achieve
frame selection at the same time.

The illustration of the spatial-temporal attention model is
shown in Fig. 2. Given the feature maps of an input video
{fn}{n=1:N}, we first generate the corresponding attention
map gn by operating the `2 normalization on the square sum
through the depth channel. Specifically,

gn(h,w) =
||
∑d=D

d=1 fn(h,w, d)
2||2∑H,W

h,w ||
∑d=D

d=1 fn(h,w, d)
2||2

(1)

whereH,W are the height and width of feature maps. Thus,
each frame has one corresponding attention map. Both the
feature maps and the attention maps of the N frames are
then divided into K blocks horizontally:{

gn =[gn,1, ..., gn,k, ..., gn,K ]

fn =[fn,1, ..., fn,k, ..., fn,K ]
(2)

Here, gn,k represents the spatial attention map on kth re-
gions of nth frame. After that, we employ the `1 normaliza-
tion on all values in each block to obtain one spatial attention
score for that region.

sn,k =
∑
i,j

||gn,k(i, j)||1 (3)

Since the feature maps are after ReLU activation and all the
values are greater than or equal to zero, the higher response
of an attention map means the better representation of the
person for re-identification task. The same procedure is op-
erated on all selected frames of the input video to obtain the
N ×K matrix S of spatial attention scores.

8289



H

W

D

#1

#2

#3

#4

Feature maps Attention maps

Inter Fram
e Regularization

Spatial L1-Norm

!","
!",$
!",%
!",&

!$,"
!$,$
!$,%
!$,&

!%,"
!%,$
!%,%
!%,&

!&,"
!&,$
!&,%
!&,&

Temporal L1-Norm 

!","
!",$
!",%
!",&

!$,"
!$,$
!$,%
!$,&

!%,"
!%,$
!%,%
!%,&

!&,"
!&,$
!&,%
!&,&

Attention Score Matrix

!","
!",$
!",%
!",&

!$,"
!$,$
!$,%
!$,&

!%,"
!%,$
!%,%
!%,&

!&,"
!&,$
!&,%
!&,&

Figure 2: Details of the spatial-temporal attention model
with inter-frame regularization. Given a set of feature
maps from the input video, we generate corresponding at-
tention maps for each frame. The inter-frame regularization
is used to restrict the difference among frames in the same
video tracklet. Then, attention maps are horizontally split
into four equal spatial region, and the spatial region from the
same spatial region but different frames are used to calculate
the 2-D attention score matrix

Instead of using multiple convolutional layers to formu-
late the temporal attention model as in (Li et al. 2018;
Zhou et al. 2017), we directly compare the attention scores
that are from different frames but on the same spatial re-
gion, and compute each attention over the `1 normalization
among them to obtain the normalized spatial-temporal atten-
tion scores. Specifically,

S(n, k) =
sn,k∑

n ||sn,k||1
(4)

As a result, each spatial region from different frames is as-
signed with a specific attention score based on the spatial-
temporal attention information.

Inter-Frame Regularization
For the video-based person Re-ID, the images from the same
video tracklet of a person should represent the appearance
of the same person. Such information is further exploited by
our approach as the inter-frame regularization to restrict the
difference of the learned attention maps among frames. This
inter-frame regularization helps to avoid the cases in which
the learned attention scores of each spatial region focus on
one specific frame and largely ignore the other frames.

Specifically, since each frame has a corresponding feature
map fn, which is used to classify the person identification
during training. One possible way is to add a classification
loss to all frames to make sure they share the same identi-
fication. However, there maybe some noisy samples which
are hard to classify and hence make the training processing
unstable. An alternative solution is to use Kullback-Leibler
(KL) divergence to evaluate the similarity of each frame, but
lots of close-to-zero elements exist in attention maps. These
elements will drop dramatically when employing the log op-
eration in the KL divergence, and make the training pro-
cessing unstable as well (Lin et al. 2017). Thus, in order to

encourage the spatial-temporal attention model to preserve
the similarity and meanwhile avoid focusing on one frame,
we design the inter-frame regularization which measures the
difference among input image frames. For convenience, we
define G as the collection of attention maps generated from
the input image frames,

G = [g1, ..., gN ] (5)

Assume gi, gj are attention maps calculated by Eqn. (1)
for two frames i and j. We employ the square Frobenius
Norm (Meyer 2000) of the difference between gi and gj .
Specifically,

Reg = ||gi − gj ||F

=

√√√√ H∑
h=1

W∑
w=1

|gi(h,w)− gj(h,w)|2
(6)

Note that we randomly choose two frames i and j from the
N frames of each video for this regularization term. In order
to restrict the difference between two frames, we minimize
this regularization term Reg by adding it to the original ob-
jective function Ltotal defined in Eqn. (11) after multiplied
by a coefficient λ.

min(Ltotal + λReg) (7)

Feature Fusion Strategy
After STA model with inter-frame regularization, we obtain
an N ×K matrix S that assigns an attention score sn,k for
the feature map fn,k of each spatial region and each frame.
Inspired by (Fu et al. 2019), we propose a strategy for feature
fusion by combining the global and discriminative informa-
tion of each tracklet as described in Alg. 1.

Given the attention score matrix and a set of feature maps,
we first divide feature maps into several spatial regions just
like what we operate on attention map, and pick the spatial
region that has the highest corresponding score compared to
other frames. Then, we repeat this operation for every spatial
region and concatenate those regions together to obtain a
feature map that contains the most discriminative regions of
input frames. Next, we use every attention score as a weight
and employ the element-wise multiplication on every split
feature map to generate another feature map with the global
information of input frames. Finally, we concatenate these
two feature maps together and employ the global average
pooling followed by a fully connected layer to generate the
representation vector X for the Re-ID task.

X = [x1, x2, ..., xn] (8)

Loss Function
In this paper, we utilize both the batch-hard triplet loss pro-
posed in (Hermans, Beyer, and Leibe 2017) and the softmax
loss jointly to train the STA model through the combination
the metric learning and discriminative learning.

The triplet loss with hard mining is first proposed in (Her-
mans, Beyer, and Leibe 2017) as an improved version of
the original semi-hard triplet loss (Schroff, Kalenichenko,
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Algorithm 1: Algorithm of Feature Fusion Strategy
Input : A set of feature maps {fn}n=1:N ;

An attention score matrix S;
Size of Feature map, H,W,D;
Length of Sequence N ;
Number of Spatial blocks K;

Output: Feature map after fusion Ffuse;
Initialization : F1 = Zeros(H,W,D),

F2 = Zeros(H,W,D); Hs = bH/4c;
for n = 1 : N do

for k = 1 : K do
fn,k ← fn(Hs ∗ (k − 1) : Hs ∗ k, :, :);

end
end
for k = 1 : K do

m← the index of the maximum value in S(:, k);
F1(Hs : Hs, :, :)← fmk;
for n = 1:N do

F2(Hs ∗ (k − 1) : Hs ∗ k, :, :) += fnk ∗ snk;
end

end
Ffuse ← [F1, F2];
return Ffuse;

and Philbin 2015). We randomly sample P identities and K
tracklets for each mini-batch to meet the requirement of the
batch-hard triplet loss. Typically, the loss function is formu-
lated as follows:

Ltriplet =

P∑
i=1

K∑
a=1

[α+

hardest positive︷ ︸︸ ︷
max

p=1...K
||x(i)a − x(i)p ||2

− min
n=1...K
j=1...P

j 6=i

||x(i)a − x(i)p ||2

︸ ︷︷ ︸
hardest negative

]+
(9)

where x(i)a , x
(i)
p , x

(i)
n are features extracted from the anchor,

positive and negative samples respectively, and α is the mar-
gin hyperparameter to control the differences of intra and
inter distances. Here, positive and negative samples refer to
the person with same or different identity from the anchor.

Besides batch-hard triplet loss, we employ softmax cross
entropy loss for discriminative learning as well. The original
softmax cross entropy loss can be formulated as follows:

Lsoftmax = −
P∑
i=1

K∑
a=1

log
e
WT

ya,i
xa,i∑C

k=1 e
WT

k xa,i
(10)

where yi,a is the ground truth identity of the sample {a, i},
and C is number of classes. Our loss function for optimiza-
tion is the combination of softmax loss and batch-hard triplet
loss as follows:

Ltotal = Lsoftmax + Ltriplet (11)

Experiments
Datasets and Evaluation Protocol
Mars dataset (Zheng et al. 2016) is one of the largest video-
based person re-identification dataset. It contains 17,503
tracklets from 1,261 identities, and additional 3,248 tracklets
serving as distractors. These video tracklets are captured by
six cameras in a university campus. The total 1,261 identities
are split into 625 identities for training and 636 identities for
testing. Every identity in the training set has 13 video track-
lets on average, and each tracklet has 59 frames on average.
The ground truth labels are detected and tracked using the
Deformable Part Model (DPM) (Felzenszwalb, McAllester,
and Ramanan 2008) and GMCP tracker (Zamir, Dehghan,
and Shah 2012).

DukeMTMC-VideoReID dataset (Wu et al. 2018) is an-
other large-scale benchmark dataset for video-based person
Re-ID. It is derived from the DukeMTMC dataset (Ristani
et al. 2016). The DukeMTMC-VideoReID dataset contains
4,832 tracklets from 1,812 identities, and it is split into 702,
702 and 408 identities for training, testing and distraction re-
spectively. In total, it has 369,656 frames of 2,196 tracklets
for training, and 445,764 frames of 2,636 tracklets for test-
ing and distraction. Each tracklet has 168 frames on average.
The bounding boxes are annotated manually.

Evaluation Protocol. In our experiments, we use the
Cumulative Matching Characteristic (CMC) curve and the
mean average precision (mAP) to evaluate the performance
of the STA model. For each query, CMC represents the ac-
curacy of the person retrieval. We report the Rank-1, Rank-
5, Rank-20 scores to represent the CMC curve. The CMC
metric is effective when each query corresponds to only one
ground truth clip in the gallery. However, when multiple
ground truth clips exist in the gallery, and the objective is to
return to the user as many correct matches as possible, CMC
would not effectively measure the performances of models
on this objective. Comparatively, mAP is a comprehensive
metric that is well-suited for both single-match and multiple-
match objectives.

Implementation Details
As discussed in “Proposed Method”, we first randomly se-
lectN = 4 frames from the input tracklet, and use the modi-
fied ResNet50 initialized on the ImageNet (Deng et al. 2009)
dataset as the backbone network. The number of spatial re-
gions is set toK = 4. And, each frame is augmented by ran-
dom horizontal flipping and normalization. Each mini-batch
is sampled with randomly selected P identities and ran-
domly sampledK images for each identity from the training
set. In our experiment, we set P = 16 andK = 4 so that the
mini-batch size is 64. And, we recommend to set the margin
parameter in triplet loss to 0.3. During training, we use the
Adam (Kingma and Ba 2014) weight decay 0.0005 to opti-
mize the parameters for 70 epochs. The overall learning rate
is initialized to 0.0003 and decay to 3× 10−5 and 3× 10−6

after training for 200 and 400 epochs respectively. The to-
tal training process lasts for 800 epochs. For evaluation, we
extract the feature vector after the first fully connected layer
as the representation of query tracklet. Our model is imple-
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Model MARS DukeMTMC-VideoReID
R1 R5 R10 mAP R1 R5 R10 mAP

Baseline 74.5 88.8 91.8 64.0 79.1 93.9 96.0 76.8
Baseline + TL 80.8 92.1 94.3 74.0 90.6 95.8 96.7 89.7
Baseline + TL + Avg 82.5 92.9 94.9 75.0 91.8 97.4 98.0 91.0
Baseline + TL + STA 84.8 94.6 96.2 78.0 93.3 98.1 98.6 92.7
Baseline + TL + STA + Fusion 85.3 95.1 96.4 79.1 95.3 98.1 99.1 93.9
Baseline + TL + STA + Fusion + Reg 86.3 95.7 97.1 80.8 96.2 99.3 99.6 94.9

Table 1: Comparison of different proposed components, where TL, Avg, STA, Fusion, and Reg represent the triplet loss, average
pooling, spatial-temporal attention module, feature fusion strategy, and inter-frame regularization respectively. R-1, R-5, R-10
accuracies (%) and mAP (%) are reported. Baseline model corresponds to ResNet50 trained with softmax loss on video datasets
MARS or DukeMTMC-VideoReID respectively.

Sequence Length MARS DukeMTMC-VideoReID
R1 R5 R10 mAP R1 R5 R10 mAP

N=2 81.7 93.8 95.7 75.7 90.3 97.6 98.6 89.0
N=4 86.3 95.7 97.1 80.8 96.2 99.3 99.6 94.9
N=6 86.2 95.7 96.9 81.0 96.0 99.4 99.7 95.0
N=8 86.2 95.7 97.1 81.2 96.0 99.3 99.6 95.0

Table 2: Performance comparison of STA model with different sequence lengths during testing on MARS dataset and Duke-
VideoReID dataset. Here, we use the model trained with the sequence length of 4 and the spatial regions number of 4.

mented on Pytorch platform and trained with two NVIDIA
TITAN X GPUs. All our experiments on different datasets
follow the same settings as above.

Ablation Study
To verify the effectiveness of each component in STA model,
we conduct several analytic experiments including w/ or w/o
triplet loss, w/ or w/o spatial-temporal attention model, w/ or
w/o feature fusion, and w/ or w/o inter-frame regularization.
In addition, we carry out experiments to investigate the ef-
fect of varying the sequence length N and the number K of
spatial regions. Note that all the remaining settings are the
same as those discussed in “Implementation Details”.

Effectiveness of Components. In Table 1, we list the re-
sults of each component in our STA framework. Baseline
represents the ResNet50 model trained with softmax loss on
MARS/DukeMTMC-VideoReID dataset. TL corresponds to
the hard-batch triplet loss, and “+ TL” means the hard-batch
triplet loss is combined with the softmax loss in Baseline
model. Note that, the Baseline and Baseline + TL both treat
each tracklet frame by frame, i.e., the image-based mod-
els. STA is our proposed spatial-temporal attention model in
which the number of spatial regions is set to K = 4 and the
input sequence length is set to N = 4 as well. It generates a
4× 4 attention score matrix, and uses the score of the same
region but from a different frame to calculate the weighted
sum feature maps of each region. Compared to Baseline +
TL, STA improves Rank-1 and mAP accuracy by 4.0% and
4.0% on MARS, as well as 2.7% and 2.4% on DukeMTMC-
VideoReID respectively. These results show that the spatial-
temporal attention model is very effective at discovering
discriminative image regions which are useful for boost-
ing re-identification performance. Fusion means aggregat-
ing feature representation by the proposed fusion strategy

described in Alg. 1. It is obvious that the proposed fusion
strategy can further improve the performance by combining
the most discriminative information and global information
together. Reg refers to the proposed inter-frame regulariza-
tion term. From the comparison of w/ and w/o Reg, we can
find the Rank-1 accuracy and mAP improve by 1.0% and
1.7% on Mars, as well as 0.9% and 1.0% on DukeMTMC-
VideoReID respectively. This improvement shows the pro-
posed inter-frame regularization term can balance the frame
diversity and thus further improve the performance.

Consistence of Sequence Length. In Table 2, we show
the robustness of the trained model to different sequence
length of input tracklet. For fair comparison, we use the
model trained with sequence length of 4 and spatial region
number of 4, and evaluate the performance with different
sequence length: 2, 4, 6, and 8. As we can see, the perfor-
mances are very consistent when input sequence length is 4,
6 or 8. (e.g. all the Rank-1 accuracies are above 85% and
the mAP are above 80% on MARS.) This is because the
proposed STA model does not involve more parameters, so
there is no restriction on the sequence length. In addition,
the performances with N = 4 surpass most of the state-of-
the-art methods which usually need more frames for good
representation of the input video.

Influence of Spatial Region Number. To investigate how
the number of spatial regions influences the final perfor-
mance, we conduct experiments with three different spatial
regions: 2, 4, and 8 with the same sequence length 4. The
results are listed in Table 3. In these experiments, the STA
framework always achieves the best result with 4 spatial re-
gions. Since the size of feature maps is 16 × 8, with 2 or
8 spatial regions, it could be too coarse to contain enough
information or too small to contain enough information for
the re-identification task.
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Number of Spatial Regions MARS DukeMTMC-VideoReID
R1 R5 R10 mAP R1 R5 R10 mAP

K=2 85.3 95.1 96.6 80.3 94.7 99.0 99.6 93.8
K=4 86.3 95.7 97.1 80.8 96.2 99.3 99.6 94.9
K=8 85.5 95.3 96.9 80.4 95.2 99.1 99.4 93.8

Table 3: Performance comparison of the STA model trained with different number of spatial regions on MARS dataset and
Duke-VideoReID dataset. Here, we keep the sequence length as a constant of 4.

Model R1 R5 R20 mAP
CNN+Kiss.+MQ (Zheng et al. 2016) 68.3 82.6 89.4 49.3
SeeForest (Zhou et al. 2017) 70.6 90.0 97.6 50.7
Latent Parts (Li et al. 2017) 71.8 86.6 93.0 56.1
QAN (Liu, Yan, and Ouyang 2017) 73.7 84.9 91.6 51.7
K-reciprocal (Zhong et al. 2017) 73.9 – – 68.5
TriNet (Hermans, Beyer, and Leibe 2017) 79.8 91.4 – 67.7
RQEN (Song et al. 2017) 77.8 88.8 94.3 71.1
CSACSE (Chen et al. 2018) 81.2 92.1 – 69.4
STAN (Li et al. 2018) 82.3 – – 65.8
CSACSE (Chen et al. 2018) + Optical Flow 86.3 94.7 98.2 76.1
STA 86.3 95.7 98.1 80.8
STA + ReRank 87.2 96.2 98.6 87.7

Table 4: Comparison of the STA model with the state-of-the-arts on MARS dataset. Here, we show the results tested with
sequence length of 4 and spatial region number of 4 as well.

Model R1 R5 R20 mAP
ETAP-Net(supervised) (Wu et al. 2018) 83.6 94.6 97.6 78.3
STA 96.2 99.3 99.6 94.9

Table 5: Comparison with state-of-the-art on DukeMTMC-
VideoReID. Here, we show the results tested with sequence
length of 4 and spatial region number of 4 as well.

Comparison with the State-of-the-arts

Table 4 and Table 5 report the comparison of our proposed
STA model with the state-of-the-art techniques. On each
dataset, our approach achieves the best performance, espe-
cially on mAP. We attain R1/mAP: 86.3/80.8(87.2/87.7)
on MARS before and after re-ranking. In addition, we
achieve R1/mAP: 96.2/94.9 on DukeMTMC-VideoReID.

Results on MARS. Comparisons between our approach
and the state-of-the-art approaches on MARS are shown
in Table 4. The results show that our approach achieves
80.8% in mAP, which surpasses all existing work by more
than 4.0%. Even for the Rank-1 and Rank-5, our approach
achieves competitive results compared to the most recent
work listed in Table 4. It’s noted that the CSACSE + Op-
tical Flow method (Chen et al. 2018) incorporates optical
flow as the extra information, which not only brings in more
computation, but also causes the drawback that its whole
network cannot be trained end-to-end. Comparing to other
related work that also does not use optical flow, our ap-
proach improves the Rank-1 accuracy and mAP by 4.0%
and 15.0% respectively. After implementing re-ranking, the
Rank-1 accuracy and mAP can be improved to 87.2% and
87.7%, which outperforms the CSACSE + Optical Flow
method (Chen et al. 2018) by 11.6% on mAP.

Results on DukeMTMC-VideoReID. Table 5 shows the
video-base Re-ID performance on DukeMTMC-VideoReID
dataset. This dataset is new to the field, and there is only one
published baseline (Wu et al. 2018) on this dataset. Compar-
ing to this baseline, our approach improves more than 10%
on Rank-1 accuracy and mAP. Although there are few re-
sults reported on this dataset, we have good reason to believe
that our approach works well because it achieves 96.2% and
94.9% on Rank-1 accuracy and mAP respectively.

Conclusion
This paper addresses the large-scale video-based person re-
identification (Re-ID) problem with the proposed Spatial-
Temporal Attention (STA) module. In STA, instead of di-
rectly extracting video representation through frame-level
feature aggregation (e.g. average pooling), the 2-D spatial-
temporal map is used to calculate the more robust clip-level
feature representation without using any additional parame-
ters. The inter-frame regularization and feature fusion strat-
egy are proposed to further improve the clip-level represen-
tation. Extensive experiments conducted on two benchmarks
including MARS and DukeMTMC-VideoReID demonstrate
the effectiveness of the proposed module for large-scale
video-based person Re-ID problem comparing to the ex-
isting methods. Our current work focuses on person Re-ID
with person tracklets as inputs. A worthy future study would
be applying the module in the multi-camera video systems.
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