
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Video Imprint Segmentation for Temporal Action Detection in Untrimmed Videos

Zhanning Gao,1,2 Le Wang,1∗ Qilin Zhang,3 Zhenxing Niu,2 Nanning Zheng,1 Gang Hua4

1Xi’an Jiaotong University, 2Alibaba Group, 3HERE Technologies, 4Microsoft Cloud and AI

Abstract

We propose a temporal action detection by spatial seg-
mentation framework, which simultaneously categorize ac-
tions and temporally localize action instances in untrimmed
videos. The core idea is the conversion of temporal detec-
tion task into a spatial semantic segmentation task. Firstly,
the video imprint representation is employed to capture the
spatial/temporal interdependences within/among frames and
represent them as spatial proximity in a feature space. Subse-
quently, the obtained imprint representation is spatially seg-
mented by a fully convolutional network. With such segmen-
tation labels projected back to the video space, both tempo-
ral action boundary localization and per-frame spatial anno-
tation can be obtained simultaneously. The proposed frame-
work is robust to variable lengths of untrimmed videos, due
to the underlying fixed-size imprint representations. The ef-
ficacy of the framework is validated in two public action de-
tection datasets.

Introduction
The prevalence of camera phones and video sharing social
media has contributed to the dramatic increase of videos on
the Internet. Majority of such videos may contain multiple
action instances with cluttered background. Such videos are
referred to as untrimmed videos, and temporal action de-
tection on untrimmed videos has drawn significant attention
recently (Oneata, Verbeek, and Schmid 2014a; Shou, Wang,
and Chang 2016; Zhao et al. 2017).

Temporal action detection requires simultaneous action
classification and localization of temporal boundaries, i.e.,
the start and end frame of each action instance. Many recent
methods (Shou, Wang, and Chang 2016; Singh and Cuz-
zolin 2016; Wang, Qiao, and Tang 2014; Dai et al. 2017;
Gao, Yang, and Nevatia 2017) leverage image based ob-
ject detection such as the R-CNN variants (Girshick 2015;
Girshick et al. 2014; Ren et al. 2017; Xu, Das, and Saenko
2017) with the “detection by classification” scheme. The
major limitation of such methods is their incapability of pro-
viding dense per-frame predictions.

To overcome such limitation, several alternative methods
have been proposed, including joint prediction of the tempo-
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ral boundaries and action categories without proposal gener-
ation (Lin, Zhao, and Shou 2017; Buch et al. 2017), dense
per-frame labeling to refine the temporal boundaries from
action proposals (Shou et al. 2017; Yeung et al. 2016). How-
ever, they all represent videos as a sequence of frames or
snippets, which inevitably incurs the variable lengths input
difficulty, especially for large-scale datasets.

A simpler alternative is proposed in this paper as the “tem-
poral Detection By spatial Segmentation” (DBS) frame-
work, which circumvents the variable lengths input diffi-
culty. As illustrated in Figure 1, temporal action detection
is recast into spatial semantic segmentation with the video
imprint representation (Gao et al. 2017b; 2018), by aligning
video frames into a fixed-size tensor feature. Such represen-
tation captures statistical characteristics while suppressing
redundancies. In addition, video imprint representation pre-
serves the local spatial layout across multiple frames, which
justifies the spatial segmentation step with a fully convo-
lutional network (FCN). Each segmented area corresponds
to a certain action category. Finally, the segmentation score
maps are reversely projected back to the video space, and
converted to dense temporal prediction labels, which refine
the temporal action boundaries proposals.

The video imprint representation directly assembles and
aligns the convolutional neural network (CNN) features to
the same fixed-size tensor maps, which allows the direct ap-
plication of the same FCN segmentation network without
modification. In addition, with precisely captured temporal
correlations, the imprint representation keeps multiple ac-
tion instances of the same category spatially proximate in
the imprint representation feature map, which makes the ac-
tion detection process more effective and efficient.

Another major advantage of the DBS framework is the si-
multaneous detection of relevant spatial regions inside each
frame and per-frame temporal predictions. This is made
possible due to preserved local spatial layout in the video
imprint. We conduct extensive experiments to evaluate our
DBS framework on two challenging datasets, i.e., the THU-
MOS’14 (Jiang et al. 2014) dataset and the ActivityNet
dataset (Heilbron et al. 2015). Experimental results show
that the DBS method achieves state-of-the-art performance.

The remainder of the paper is organized as follows. We
first discuss related work about temporal action detection,
semantic segmentation and video imprint generation. Then,
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Figure 1: Overview of the temporal detection by spatial seg-
mentation framework for temporal action detection. Based
on the video imprint (Gao et al. 2017b; 2018), video frames
are nonlinearly projected into the video imprint, as visual-
ized at the bottom left “black cube”. FCN-based network is
utilized to segment the imprint representation and the cor-
responding prediction score maps are visualized as a “blue
cube” at the bottom center. With the obtained segmentation
prediction scores reverse projected back to the video space,
the temporal action boundaries (the start and end frames)
can be determined.

we present the details of our “temporal detection by spatial
segmentation” framework. The evaluation results and dis-
cussions are presented in the experiment section. Finally, we
conclude the paper at the last section.

Related work
Temporal action detection aims to detect the tempo-
ral boundaries and categories of the action instances in
untrimmed videos. Many existing work regard the detec-
tion problem as a classification problem combined with
a action proposal generation process (Jiang et al. 2014;
Oneata, Verbeek, and Schmid 2014b; Singh and Cuzzolin
2016), i.e., the “detection by classification” framework.

Under the “detection by classification” framework, a
plenty of CNN structures have been explored to enhance
the action classification, such as two-stream architectures
(Simonyan and Zisserman 2014) and 3D convolutional net-
works (C3D) (Tran et al. 2015). S-CNN (Shou, Wang, and
Chang 2016) is a multi-stage CNN based on C3D, which
improves the performance by adding a localization network.

Structured Segment Networks (SSN) (Zhao et al. 2017) aims
to model the temporal structure by a structured temporal
pyramid. These methods all need an action proposals gen-
eration step to generate action candidates. To provide more
accurate proposals, there are also abundant work in the lit-
erature on generating temporal action proposals (Escorcia et
al. 2016; Zhao et al. 2017; Gao et al. 2017a).

The drawbacks of the “detection by classification” frame-
work are that the detected action boundaries are prede-
termined by the action proposals and only the segment-
level predictions are obtainable. To overcome these limi-
tations, Lin et al. (Lin, Zhao, and Shou 2017) propose a
single shot action detector (SSAD) with 1D temporal con-
volutional layers to skip the proposal generation step. (Xu,
Das, and Saenko 2017) combine the activity proposal and
classification stages with a Region Convolutional 3D Net-
work (R-C3D). Shou et al. (Shou et al. 2017) propose a
Convolutional-De-Convolutional (CDC) network to preform
dense action prediction which can generate more flexible
temporal boundaries. However, most of the existing meth-
ods need to feed the videos or segmented proposals into the
classifier frame by frame or snippet by snippet, which makes
the inference process to be quite complicated due to the vari-
able lengths of the videos.

Video imprint representation. To build compact video
representation, the video imprint model is proposed for
event analysis (Gao et al. 2017b; 2018). As a generative
model, the video imprint can automatically capture the inter-
dependences in image/frame features. Instead of combining
with memory network (Sukhbaatar et al. 2015) for weakly
supervised recounting task, we propose to convert the task
of temporal action detection to a spatial semantic segmen-
tation task based on the video imprint. In this way, we can
handle the videos of variable lengths with a fixed-size video
imprint tensor to efficiently localize and recognize the tem-
poral action instance.

Semantic segmentation. Recently, FCN has become a
standard pipeline for the image semantic segmentation task.
By constructing the deep neural network with fully convolu-
tional layers, FCN can provide pixel-wise predictions for the
input image. For the semantic segmentation task, FCN and
its variants have demonstrated state-of-the-art performance
(Chen et al. 2016; Zhao et al. 2016; Zheng et al. 2015). Most
of further improvements on FCN mainly focused on multi-
scale feature learning (Zhao et al. 2016) and using CRF to
refine the segmentation results (Zheng et al. 2015). We ex-
ploit the FCN to segment the video imprint so as to identify
the temporal action instances. Considering the structure of
the video imprint, our FCN only consists of standard convo-
lutional layers. FCNs with more complicated structure can
certainly be employed, but this is not the focus of this work.

Methods
In this section, we present the “temporal detection by spatial
segmentation” framework as shown in Figure 1.

Video imprint generation
The video imprint has shown enormous potential in repre-
senting videos which contain complex events and human ac-
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tivities (Gao et al. 2017b; 2018). By capturing the spatial in-
terdependence among image/frame features, it can remove
the redundancy across the images/frames and preserve the
local spatial layout among frames. We employ the video im-
print for temporal action detection for two reasons. First, the
video imprint can handle variable video lengths with a fixed-
size tensor structure which can simplify the input format of
the action detection system. Second, with precisely captured
temporal correlations across video frames, the content con-
sistencies are captured on the imprint map and the similar
action instances are simultaneously detected by identifying
the corresponding region at once, which makes the inference
process more effective and efficient.

Both the tessellated counting grid (TCG) model (Pe-
rina and Jojic 2015) and epitome model (Jojic, Frey, and
Kannan 2003) is adopted to generate the video imprint
for event analysis(Gao et al. 2017b; 2018). The epitome
has different location distributions compared with the TCG
(discrete categorical versus Gaussian), and the input fea-
tures of the epitome can be more flexible and the train-
ing stage is more efficient. Therefore, we employ the epit-
ome instead of the TCG to generate the video imprint. For-
mally, the epitome E is a set of dependent Gaussian distri-
butions
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The parameters µpx,yq and Σpx,yq are estimated by
marginalizing the joint distribution, i.e., optimizing the log
likelihood of the data with an iterative EM algorithm. The E
step is
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where hpx´m,y´n,dqptq “ fpx´m,y´n,dqptq ´ µpx,yqpdq,
d P r0, . . . , D ´ 1s, qpm,nqptq is the posterior probability
ppWpm,nqptq|Fptqq. In practice, we also adopt the efficient
two-step scheme (Gao et al. 2018) to accelerate the learning
process, and employ
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µpx,yq

)

px,yqPE
as the descriptors of

the video imprint.

Fully convolutional networks
The video imprint contains the local spatial layout among
frames and each location may correspond to a certain part
of the action instance. It is possible to map the location cat-
egory to the frame-level action prediction via the posterior
probability qpm,nqptq. This goal is quite similar to semantic
segmentation, which predicts the category of each pixel of
the input image. Inspired by current methods for semantic
segmentation (Long, Shelhamer, and Darrell 2015), we pro-
pose to use the fully convolutional networks (FCN) to per-
form the temporal action detection task by segmenting the
video imprint, i.e., temporal detection by spatial segmenta-
tion.

A standard FCN structure is employed in our framework
(see Figure 1). The grid size of video imprint is usually set
to a small number (X “ Y “ 24, 32, 48, 64 in our ex-
periment) because the CNN features have been pooled to
compact high-level feature maps. Hence, the pooling layer is
omitted and only the standard convolutional layer is adopted
to construct the FCN structure. The influence of the FCN’s
architectures and parameters will be discussed in the exper-
iment section.

Training FCN
The FCN cannot be trained directly with temporal ac-
tion instance annotations. Instead, the action category
should be annotated per location on the grid of train-
ing video imprints, i.e., the annotation map A “

rap0:X´1,0:Y´1qp0q, . . . , ap0:X´1,0:Y´1qpC ´ 1qs, where C
is number of the action categories. We utilize the poste-
rior probability qpm,nqptq, which capture the distribution of
each frame on the imprint grid, to convert temporal frame-
level annotations of the action instances to spatial imprint-
level annotations. First, the frames tIptqutPr0,1,...,T s of the
training video are grouped into distinctive sets according
the frame-level annotation. Each set consists of the frames
with the same action category or the background, i.e., Tc “

tt|annpIptqq “ cu where c is the action identifier of the
frame Iptq. Then, we construct an active map for each set
Tc to filter out the locations on the imprint where no frames
with current action category are assigned, the active map is
computed as

apx,yqpcq “

#

1 if px, yq PWpm,nq and
ř

tPTc
qpm,nq ą τ

0 otherwise
, (5)
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Figure 2: Illustration of the annotation maps converted from
the temporal action boundaries and categories.
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Figure 3: The statistical result of the value qpm,nqptq from
random selected videos. The maximum qpm,nqptq from ten
thousand video frames are collected. The vertical axis is
shown in log-scale.

where px, yq P E and c is the identifier of the action cate-
gories. We set τ “ 4 according to (Gao et al. 2018).

At last, the annotation map for the video imprint is pro-
duced by concatenating the active map of each category. Fig-
ure 2 shows an example of annotation maps converted from
the temporal action boundaries and categories1. Supervised
with the annotation maps of the training video imprints, the
FCN can be trained end-to-end from scratch.

Inference stage
The whole inference stage consists of three steps: First, con-
struct the video imprint representation of the input video.
Then, feed the video imprint into the FCN and output the
location-level prediction score maps P. At last, convert the
prediction score maps P into frame-level prediction scores
according to the distribution q of the input video imprint.
We adopt the same strategy with (Shou et al. 2017) to gener-
ate the final temporal boundaries of the action instances. In
addition, different from previous work, we can also predict
the category related areas inside each frame since the local
spatial layout is preserved in the video imprint.

Converting location-level prediction score maps into
frame-level prediction score is quite similar to the event re-

1Since the video imprint is generated based on high-level CNN
features, it cannot be directly visualized. For ease of illustration, we
accumulate the frames on the location with the maximum qpm,nqptq
and draw the mean image.

counting step of (Gao et al. 2017b; 2018). The event re-
counting task computes the recounting map of each frame by
weighted sum of the sub-windows on the weights map. The
output is a heat map which indicates the importance score
of each area inside the frame that related to a certain event
category. In the action detection task, this spatial to tempo-
ral conversion is based on the prediction score maps P with
multiple channels corresponding to action categories. For-
mally, the prediction score maps of each frame pptq can be
computed with

pptq “
ÿ

px,yqPE

qpx,yqptqPpx,yq, (6)

where Ppx,yq is a tensor with size W ˆ H ˆ C (C is
the category number), which denotes the prediction score
maps cropped from P in the window Wpx,yq. The prediction
scores for each frame are then obtained with the sum over
the spatial grid of pptq. In practice, the computation of Equa-
tion (6) is time consuming with large t and C. However, as
shown in Figure 3, we have observed that the distribution q is
quite sparse, and each video frame is assigned to one of the
locations on the video imprint with high probability (close
to 1). Hence, instead of summing over the sub-windows, we
can simply compute the pptq by cropping Ppx,yq in the win-
dow Wpx,yq with highest qpx,yq, i.e., the pptq is computed
as

pptq “ Ppx,yq, where px, yq “ argmax
px,yq

qpx,yqptq. (7)

Experiments
Dataset and evaluation protocol
We evaluate our method on both the per-frame labeling
task and the temporal action detection task with the THU-
MOS’14 (Jiang et al. 2014) and ActivityNet (Heilbron et al.
2015) datasets. We also employ parts of UCF101 (Soomro,
Zamir, and Shah 2012) to augment the training data.

THUMOS’14 has 1010 videos for validation and 1574
videos for testing. This dataset does not provide the training
set. Following the standard practice, our method is trained
on the validation set and evaluated on the testing set.

ActivityNet v1.2 contains 9682 videos in 100 classes,
and ActivityNet v1.3 contains 19994 videos in 200 classes.
Those videos are divided in three subsets, i.e., training, val-
idation and testing, with 2 : 1 : 1. Since the labels of the
testing set are unreleased, we present the evaluation results
on the validation set for comparison.

Per-frame labeling task aims to predicting accurate la-
bels for every frame. Following conventional metrics (Ye-
ung et al. 2015), we treat the per-frame labeling task as a
retrieval problem. All frames in the test set are ranked by
their confidence scores for a certain category and the Aver-
age Precision (AP) is computed with the confidence scores
for the category. Then, the mean AP (mAP) are computed
by averaging the APs over all action categories.

Temporal action detection task is evaluated, following
the conventions, by mean Average Precision (mAP) at dif-
ferent IoU thresholds. For the THUMOS’14 dataset, the IoU
thresholds are t0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7u. The mAP at
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0.5 IoU threshold is used for comparing results from dif-
ferent methods. For the ActivityNet, the IoU thresholds are
t0.5, 0.75, 0.95u. The average mAP with IoU r0.5 : 0.05 :
0.95s is used for comparing results from different methods.

Implementation details
CNN feature extraction. Given an input video, we sam-
ple 5 frames per second (5 fps) to extract the CNN features.
Similar to (Zhao et al. 2017), we employ the two-stream
CNNs models (Simonyan and Zisserman 2014) to extract
both appearance and motion features of each video frame.
We adopt the output from the last convolutional layer of the
CNN models as the frame-level descriptors to generate the
video imprint representation. Both appearance and motion
based CNN features are employed to evaluate our “temporal
detection by spatial segmentation” framework.

Data augmentation. Existing methods based on “de-
tection by classification” framework (Zhao et al. 2017;
Lin, Zhao, and Shou 2017) require the annotations of tempo-
ral boundaries in the training stage to compute the location
loss. Only video data with action temporal boundaries can be
used as training data. However, after converting the temporal
boundaries to the annotation maps which implicitly encode
the temporal annotation information, the FCN can be sim-
ply supervised by the annotation maps. Hence, we can use
the trimmed action video data to enhance our model.

We propose two data augmentation strategies to enhance
our FCN model: (a) Leverage extra trimmed action video
data, e.g., UCF101 (Soomro, Zamir, and Shah 2012). Since
the UCF101 contains the same 20 categories with THU-
MOS’14, we can treat the UCF101 video as a action instance
with temporal boundary covering the whole video. Thus, we
can obtain the annotation map without background label 2.
(b) To emphasize the effects of the positive action instances
during the training process, we crop the action instances into
separate videos by their temporal annotated boundaries and
treat them as individual training videos to generate the video
imprints. The gains from the data augmentations are signifi-
cant (see Table 3).

Training details with FCN. The FCN consists of sev-
eral convolutional layers, each layer uses 3 ˆ 3 kernel size
and the same channels with the input video imprint. The
activation units are ReLU for the mid convolutional layers
and softmax for the last convilutional layer. The categorical
crossentropy loss function is adopted for the training pro-
cess, and the FCN is trained with the adaptive moment esti-
mation (Adam) algorithm (Kingma and Ba 2014). The FCN
can be easily trained with quick convergence due to small
amount of parameters. In our experiments, the number of
epoch is set to 10, and the batchsize is set to 16.

Post-processing. For the imprint descriptors in the video
imprint, we apply the same post-processing method with
(Gao et al. 2018), i.e., first power normalized and then PCA-
whitened (The feature dimension is reduced to 512 from
1024) and l2-normalized. We employ the TAG (Zhao et al.
2017) method to generate the action proposals. Then, the ac-

2The locations without frames assigned in the video imprint are
filtered out during the training and inference process.

Grid size (X,Y) (24,24) (32,32) (48,48) (64,64)

Imprint generation (s) 0.51 1.18 1.85 3.01

Inference (ms) 25.7 33.5 55.1 97.2

mAP 27.8 29.2 31.5 31.7

Table 1: Temporal action detection performance and the run-
ning time for video imprint generation and the FCN infer-
ence process with different size of video imprint. IoU thresh-
old of mAP is set to 0.5.

C1: C21
C2: C512´ C21
C3: C512´ C512´ C21
C4: C512´ C512´ C512´ C21
F3: F512´ F512´ F21

Architecture C1 C2 C3 C4 F3
mAP 27.4 29.8 31.5 30.7 29.6

Table 2: Temporal action detection performance with differ-
ent architectures of FCN. “C512” denotes the convolutional
layer with 3ˆ3 kernel size and 512 output channels. “F512”
denotes the convolutional layer with 1ˆ 1 kernel size.

tion proposals are filtered according to the frame-level pre-
diction scores and the temporal boundaries of each proposal
are refined with the same strategy proposed in (Shou et al.
2017), which first performs Gaussian kernel density estima-
tion for the frame-level prediction scores of each proposal,
i.e., obtain the mean µ̂ and standard deviation σ̂, and then
shrink the temporal boundaries of the proposal until reach a
frame with the prediction score greater than µ̂´ σ̂.

Parameter analysis
Grid size of the video imprint. Since the video imprint
is computed based on the epitome model, the window size
should be the same with the input CNN feature maps (In
our case, W “ H “ 7). We evaluate the performance of
the action detection task with different video imprint size,
i.e., with X “ Y “ 24, 32, 48, 64. Table 1 shows the de-
tection performance with different pX,Y q. We also evaluate
the running time for video imprint generation and the FCN
inference process. We report the average GPU (Titan Xp
with 12GB memory) running time with the THUMOS’14
test set (average video duration time is 230s). Compared
with video imprint generation, the inference time is negli-
gible. As a trade off between the computation efficiency and
performance, we set |E| “ 48ˆ 48 in the following experi-
ments.

Architectures of FCN. Table 2 shows the action detec-
tion results with different network architectures of FCN.
“C512” denotes the convolutional layer with 3 ˆ 3 kernel
size and 512 output channels. To evaluate the influence of
the kernel size, we also explore the FCN with 1 ˆ 1 kernel
size (Architecture F3: F512´ F512´ F21). As shown in
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TH14-val
‘ ‘ ‘

ˆ
‘

TH14-gt ˆ
‘

ˆ
‘ ‘

UCF20 ˆ ˆ
‘ ‘ ‘

No. of samples 200 2.8k 2.9k 5.3k 5.5k

mAP 24.6 28.2 27.1 27.5 31.5

Table 3: The influence of data augmentation in the training
stage. “TH14-val” denotes the original training data, i.e.,
the validation set of THUMOS’14. “TH14-gt” denotes the
training data generated with groundtruth action instances of
THUMOS’14. “UCF20” denotes the video data extracted
form UCF101 which have the same action categories with
THUMOS’14. the video imprint is generated with appear-
ance based CNN features and X “ Y “ 48. IoU threshold
of mAP is set to 0.5.

IoU 0.1 0.2 0.3 0.4 0.5

RGB 50.7 48.7 44.4 38.8 31.5
Flow 50.3 48.5 45.1 38.5 31.2

R+F 56.7 54.7 50.6 43.1 34.3

Table 4: The action detection performance with different
feature modalities. “RGB” denotes the appearance CNN fea-
ture. “Flow” denotes the motion CNN feature. “R+F” shows
the fusion results.

Table 2, the FCN with 3 convolutional layers (C3) outper-
forms the other architectures. The convolutional operation
can leverage the local spatial information to improve the ac-
tion detection performance. Hence, we adopt the C3 archi-
tecture in the following experiments.

Data augmentation strategies. We conduct an ablation
study to evaluate the influence of our two data augmentation
strategies. Table 3 demonstrates the action detection perfor-
mance with different data augmentation strategies. “TH14-
gt” and “UCF20” denote the two datasets generated with
our proposed data augmentation strategies, and both can en-
hance the model and improve the action detection perfor-
mance. An interesting finding is that only with the trimmed
video data can also train our “temporal detection by spatial
segmentation” framework. This result verifies the capacity
of the video imprint to capture and model the temporal cor-
relations into local spatial layout on the imprint map.

Two-stream CNN features. We employ the two-stream
CNN model to extract both appearance and motion features.
Table 4 shows the action detection performance with dif-
ferent feature modalities. We also combine these two fea-
tures with later fusion strategy, i.e., averaging the prediction
scores from different features. It shows that the appearance
and motion features both can be represented with video im-
print. In addition, combining two-stream feature can further
boost the action detection performance.

Methods mAP

Single-frame CNN (Yeung et al. 2015) 34.7
Two-steam(Simonyan and Zisserman 2014) 36.2
LSTM (Donahue et al. 2015) 39.3
MultiLSTM (Yeung et al. 2015) 41.3
CDC (Shou et al. 2017) 44.4

DBS 47.8

Table 5: The per-frame labeling performance on THU-
MOS’14.

Comparison with state-of-the-art
Per-frame labeling. The per-frame labeling task aims to
predict accurate labels for every frame of the input video.
In Table 5, we compare our method with some state-of-
the-art methods. Our method is denoted as DBS (“temporal
detection by spatial segmentation”). The DBS outperforms
the models based either on CNN (Simonyan and Zisserman
2014) or LSTM (Donahue et al. 2015; Yeung et al. 2015),
and also the CDC (Shou et al. 2017) model which can oper-
ate on spatial and temporal dimensions simultaneously.

Temporal action detection. We compare our method
with other methods on the THUMOS’14 and ActivityNet
datasets. As shown in Table 6, our method achieves supe-
rior action detection results and outperforms previous work
when IoU ě 0.4 on THUMOS’14 (mAP “ 34.3 with
IoU “ 0.5). Table 7 and Table 8 show the temporal action
detection performance on ActivityNet v1.2 and v1.3, respec-
tively. Despite the simple and efficient inference process,
our method also achieves significant improvement compared
with other methods. In addition, the gain of our method
is gradually increased with larger IoU threshold, i.e., our
method tends to produce more accurate temporal boundaries
for action instances. We achieves mAP@0.5IoU “ 27.8
on ActivityNet v1.2 and mAP@average “ 26.1 on Activi-
tyNet v1.3 which outperform existing methods. In addition,
although the ActivityNet dataset holds more training videos,
the annotated action instances per category is instead less
than the THUMOS’14 (about 70 instances per category for
ActivityNet and 300 instances for THUMOS’14). Hence,
more annotated action instances per category may further
boost the performance on the ActivityNet dataset.

Efficiency analysis. Due to the compact video imprint
and the simple FCN architecture, our method is more
memory-efficient (less than 200M) compared with CDC
(Shou et al. 2017) (around 1GB) which also provide dense
labeling results. As shown in Table 1, the inference is quite
efficient as the CDC even combine both RGB and flow
stream. For the RGB stream, we can process a 50s long
video in one second, including the feature extraction step
and the video imprint generation step. Since the predic-
tion results are generated by one-time inference with the
whole video, our method shall be more efficient for long
untrimmed videos.

Visualization of temporal action detection and spatial
prediction results. Figure 4 shows some temporal action
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IoU threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(Richard and Gall 2016) 39.7 35.7 30.0 23.2 15.2 — —
(Yeung et al. 2016) 48.9 44.0 36.0 26.4 17.1 — —
(Yuan et al. 2016) 51.4 42.6 33.6 26.1 18.8 — —
S-CNN (Shou, Wang, and Chang 2016) 47.7 43.5 36.3 28.7 19.0 10.3 5.3
CDC (Shou et al. 2017) 49.1 46.1 40.1 29.4 23.3 13.1 7.9
SSAD (Lin, Zhao, and Shou 2017) 50.1 47.8 43.0 35.0 24.6 — —
R-C3D (Xu, Das, and Saenko 2017) 54.5 51.5 44.8 35.6 28.9 — —
SS-TAD (Buch et al. 2017) — — 45.7 — 29.2 — 9.6
SSN (Zhao et al. 2017) 66.0 59.4 51.9 41.0 29.8 — —
CBR-TS (Gao, Yang, and Nevatia 2017) 60.1 56.7 50.1 41.3 31.0 19.1 9.9

DBS 56.7 54.7 50.6 43.1 34.3 24.4 14.7

Table 6: The action detection performance on THUMOS’14, measured by mAP at different IoU threshold.

IoU threshold 0.5 0.75 0.95 Avg

SSN-SW (Zhao et al. 2017) — — — 18.2
(Xiong et al. 2017) 41.1 24.1 5.0 24.9
SSN-TAG (Zhao et al. 2017) — — — 25.9

DBS 44.0 27.5 7.4 27.8

Table 7: The action detection performance on validation set
of ActivityNet v1.2.

IoU threshold 0.5 0.75 0.95 Avg

(Dai et al. 2017) 36.2 21.1 3.9 —
(Heilbron et al. 2017) 40.0 17.9 4.7 21.7
(Xiong et al. 2017) 39.1 23.5 5.5 24.0

DBS 43.2 25.8 6.1 26.1

Table 8: The action detection performance on validation set
of ActivityNet v1.3.

detection results by our methods. In addition, some spatial
prediction results, i.e., the score map obtained with Equation
(7) are also presented in Figure 4. We use heat map to de-
note the score map related to the predicted action category.
We can see that the spatial prediction map can coarsely infer
the spatial areas inside the detected frames that correlates to
the predicted action category.

Conclusion and future work
We propose a temporal detection by spatial segmentation
(DBS) framework for the temporal action detection task.
In contrast to previous work, the DBS framework reformu-
late the temporal action detection problem into a semantic
segmentation task on the video imprint representation. By
converting all video frames into the fixed-size video im-
print, long-term content consistencies and spatial interde-
pendences among frame-level features can be captured and
reflected by spatial proximity in such feature space. Subse-
quently, we employ an FCN to conduct efficient and effec-
tive segmentation on the video imprint representation to gen-
erate accurate temporal action detection results. The experi-
ments show that our method achieves state-of-the-art perfor-
mance for the action detection task. In addition, the specific
areas inside each frame relevant to a specific action category
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Figure 4: Visualization of temporal action detection and spa-
tial prediction results. The heat map is used to denote the
spatial prediction results which is the score map of the pre-
dicted action category.

can also be illustrated, thanks to the video imprint represen-
tation. As the potential future research, we plan to develop
an end-to-end training algorithm to assistant the video im-
print generation with temporal instance annotations.
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