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Abstract

Opinion-unaware no-reference image quality assessment
(NR-IQA) methods have received many interests recently be-
cause they do not require images with subjective scores for
training. Unfortunately, it is a challenging task, and thus far
no opinion-unaware methods have shown consistently better
performance than the opinion-aware ones. In this paper, we
propose an effective opinion-unaware NR-IQA method based
on reinforcement recursive list-wise ranking. We formulate
the NR-IQA as a recursive list-wise ranking problem which
aims to optimize the whole quality ordering directly. During
training, the recursive ranking process can be modeled as a
Markov decision process (MDP). The ranking list of images
can be constructed by taking a sequence of actions, and each
of them refers to selecting an image for a specific position of
the ranking list. Reinforcement learning is adopted to train the
model parameters, in which no ground-truth quality scores or
ranking lists are necessary for learning. Experimental results
demonstrate the superior performance of our approach com-
pared with existing opinion-unaware NR-IQA methods. Fur-
thermore, our approach can compete with the most effective
opinion-aware methods. It improves the state-of-the-art by
over 2% on the CSIQ benchmark and outperforms most com-
pared opinion-aware models on TID2013.

Introduction
Nowadays digital images are everywhere. Unfortunately, the
images are often distorted at various stages of their life cy-
cle and the distortions may lead to a reduction of the experi-
ence of human viewers. Objective image quality assessment
(IQA) refers to the technique of automatically predicting the
perceptual quality of distorted images. It plays an important
role in many applications, like image restoration, compres-
sion, transmission, super-resolution and enhancement.

IQA has gained much attention over the past decade, with
a lot of methods proposed (Bovik 2013). Existing IQA meth-
ods can be roughly classified into three categories according
to the availability of the distortion-free reference (original)
image. They are the full-reference (FR, where the reference
image is fully available, e.g., (Zhang, Shen, and Li 2014;
Wang et al. 2004)), reduced-reference (RR, where only par-
tial information about the reference is available, e.g., (Ma et
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al. 2011)) and no-reference/blind (NR/B) IQA models. NR-
IQA does not require information from the reference image.
It has a wide range of applications as usually no reference
is available in practice. Recently, many efforts have been
made to develop general-purpose (non-distortion-specific)
NR-IQA methods, which require no access to not only the
reference but also the distortion type.

A large proportion of current general-purpose NR-IQA
methods are regression-based (Gastaldo, Zunino, and Redi
2013; Kim et al. 2017). They typically first extract quality-
aware representations, e.g., natural scene statistics (NSS)
features (Mittal, Moorthy, and Bovik 2012) or learning-
based feature representations (Ye et al. 2012; Kang et al.
2014; Tang, Joshi, and Kapoor 2014; Kim and Lee 2017).
Then a regression model, implemented by an SVR or a neu-
ral network, maps the extracted features (representations) to
the quality score. This kind of methods are often considered
as “opinion-aware” (OA) since the ground-truth data for su-
pervised learning is mostly the mean opinion score (MOS).
One of the main drawbacks of these methods is the lack of
a large MOS-aware IQA database for training. Accordingly,
their performance and generalization ability are question-
able on real-world images.

Some other recent studies explore to formulate the NR-
IQA as a quality-based ranking problem. They typically do
not regress the image to a specific quality score but learn to
rank a pair of images according to their visual quality. There
are several advantages with such a formulation. One is that
the preference label (representing the relative quality of two
images) is generally more reliable and valid than the qual-
ity score (Keelan 2002). Thus building a pair-wise ranking
model for quality assessment is fully reasonable and may
probably benefit the performance (Gao et al. 2015). Another
is that learning from pair-wise rankings can be used as a
data augmentation technique. Collecting MOS is slow, cum-
bersome and expensive, which leads to the absence of large
IQA databases. In contrast, the preference labels associated
with image pairs can be intuitively generated by identifying
distortion levels (Liu, van de Weijer, and Bagdanov 2017) or
applying FR-IQA models (Ma et al. 2017b). However, there
are also problems with the pair-wise approaches (Liu 2009),
e.g., they transforms the ranking into classification on image
pairs rather than modeling it directly.

In this paper, we develop a new NR-IQA method based
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on reinforcement recursive ranking. The recursive list-wise
ranking formulation and reinforcement learning make our
approach radically different from previous regression- and
pair-wise comparison based NR-IQA methods. Specifically,
we use image lists as instances in learning and separate the
ranking as a sequence of nested sub-problems. During train-
ing, the recursive ranking process is formulated as a Markov
decision process (MDP), and the model parameters can be
trained by policy-based reinforcement learning. Our method
does not require human opinion scores for training, and thus
is “opinion-unaware” (OU). Moreover, it allows for end-to-
end training with the standard back-propagation.

The major contributions of this paper are as follows.

• We formulate the opinion-unaware NR-IQA as a recursive
list-wise ranking problem, which directly learns to rank a
list of images with implicit quality measures. Unlike pair-
wise approaches, our method directly optimizes the whole
quality ordering and can achieve better performance on
the ordering-based evaluation criteria (e.g., SROCC).

• The ranking process is separated as a sequence of nested
sub-problems and can be modeled as an MDP, in which
the model parameters can be effectively trained by rein-
forcement learning. Moreover, the reinforcement learning
allows for a flexible step-wise training with weak supervi-
sion, in which no ground-truth ranking lists are necessary.

• Another benefit of our method is that its training does not
require MOSs, which are critical for the learning of most
opinion-aware NR-IQA methods. Thus it can be trained
on a large database with diverse image contents to achieve
better generalization ability. Experimental results demon-
strate the superior performance of our method compared
with current opinion-unaware methods.

To the best of our knowledge, it is the first time to exploit
reinforcement learning with list-wise learning to rank for
NR-IQA. The core code of our method will be released at
https://github.com/m2408gj/RRLRIQA.

Related Work
We introduce previous related works in this part, including a
brief review of opinion-unaware, DNN-based and ranking-
based NR-IQA methods.

Opinion-unaware NR-IQA
Opinion-unaware NR-IQA models do not require subjective
scores for training, and thus are of great interest given the
fact that obtaining human judgments is expensive and time-
consuming. Natural image quality evaluator (NIQE) (Mit-
tal, Soundararajan, and Bovik 2013) is one of the pioneering
models. It builds a multivariate Gaussian (MVG) model for
fitting NSS features. The quality of a testing image is mea-
sured by the distance between the MVG model constructed
from the image itself and that from a set of pristine images.
Later (Zhang, Zhang, and Bovik 2015) extended NIQE to
integrated local (IL-) NIQE by introducing three additional
types of statistical features and performing the quality pre-
diction in a local manner. (Xue, Zhang, and Mou 2013) pro-
posed a quality-aware clustering (QAC) method. It assigns

each patch a quality score with a FR-IQA metric. Then clus-
tering is applied to the image patches at different quality
levels, and the cluster centroids act as a codebook for qual-
ity estimation. A simple yet effective method for extending
opinion-aware NR-IQA models to opinion-unaware ones is
presented by (Ye, Kumar, and Doermann 2014). Instead of
training on subjective scores, the authors proposed to train
models on synthetic scores derived from FR-IQA metrics.

DNN-based OA NR-IQA
Recently, significant progresses have been made in NR-IQA
by exploring DNNs for better quality-aware feature extrac-
tion. For example, deep belief network (DBN) has been ex-
plored in (Tang, Joshi, and Kapoor 2014), where the belief
network is employed to generate better representations from
pre-extracted features. (Kang et al. 2014) first applied a shal-
low CNN to NR-IQA by regressing raw image patches on
subjective scores without hand-crafted features. (Kim and
Lee 2017) developed a deep CNN model where the local
targets in patch-wise training are derived by FR-IQA met-
rics. To achieve image-wise training, (Lu et al. 2015) pre-
sented a multi-patch aggregation method with two strate-
gies, i.e., fully-connected and statistics sorting. (Gu et al.
2018) proposed to extract features and perform quality esti-
mation within a vector regression framework, which can be
integrated with different CNNs and benefit the performance.
Generative adversarial network (GAN) based NR-IQA mod-
els have been proposed by (Lin and Wang 2018) and (Ren,
Chen, and Wang 2018). Typically a generative network is de-
veloped to restore the original “distortion-free” images from
distorted ones, and then the quality assessment can be done
by a evaluation network similar to FR-IQA metrics.

In our method, the network can be trained with no access
to MOSs. The training is performed by reinforcement learn-
ing, which is very different from previous CNN-based meth-
ods. Our model has the potential to be applied in many prac-
tical situations where the quality orderings are more conve-
nient to obtain than the opinion scores.

Ranking-based NR-IQA
This type of methods target at ranking images instead of as-
signing quality scores. Pair-wise learning to rank is the most
widely used framework. (Gao et al. 2015) exploited prefer-
ence image pairs and formulated the learning of the mapping
from image features to preference label as one of classifica-
tion. (Liu, van de Weijer, and Bagdanov 2017) treated learn-
ing from rankings as a data augmentation strategy. A Siam-
ese network is first trained on synthetically generated rank-
ing data for pair-wise comparison, and then fine-tuned with
subjective scores for absolute quality score estimation. Qual-
ity discriminable image pairs, each one assigned with a per-
ceptual uncertainty, are explored by (Ma et al. 2017b). The
perceptual uncertainty serves as a weight of the correspond-
ing image pair in the loss function. (Ma et al. 2016) applied
pair-wise rank learning to retargeted NR-IQA to measure the
retargeted image qualities by their orders.

Our approach differs from previous ranking-based meth-
ods in mainly two points. The first one is the formulation of
the ranking with an MDP, which allows to train the model at
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Figure 1: Illustration of our approach. The correct ranking list of the given four images can be generated by taking four actions.
The first one refers to choosing the image with the best quality in these four candidate images (in this case, the blue one).
The chosen image is ranked at the first position in the ranking list and then removed in the following three steps. The second
action selects the best-quality image from the remaining three candidates (the green one). The chosen image is placed to the
second ranking position and removed in next two steps. The process is continued until the ranking list is determined. During
training, our approach allows for the full back-propagation of derivatives through the network. The dark-yellow arrows indicate
the back-propagation at the second step.

each ranking position. The other one lies in that we consider
the ranking positions of a list of images directly. The perfor-
mance may probably benefit from making the ranking posi-
tion information explicit to the learning process (Liu 2009).

NR-IQA via Reinforcement Recursive
List-wise Ranking

Basic Principle
In image quality research one is interested in the relation-
ship between the quality of images. Understanding the qual-
ity ordering of images is usually important. For example, for
applications like image restoration, it is necessary to identify
whether the quality of an image is improved after process-
ing. In this study, we formulate the NR-IQA as a recursive
ranking problem. Then a reinforcement list-wise approach is
developed to tackle the quality-based ranking.

We explore to use image lists as learning instances mainly
to optimize the quality ordering directly. The ranking is per-
formed recursively by separating the ranking problem as a
sequence of nested sub-problems. Specifically, the recursive
ranking process in terms of quality estimation can be formu-
lated as a Markov decision process (MDP) during training.
The ranking list of N images can be generated by making a
sequence ofN decisions. An example of the ranking process
is illustrated in Figure 1. The t-th decision (t ∈ {0, 1, . . . ,
N − 1}) refers to selecting an image from remaining candi-
dates (there areN−t images left) according to a policy. The
chosen image is ranked at the position t in the ranking list
and then removed in following steps. The process is repeated
until all images are ranked.

One can see that the generated ranking list is correct if and
only if the selected image always has the best quality among

the candidates at every step. If so, the images will be ranked
from the best-quality to the worst-quality. Accordingly, the
learning is realized by rewarding or punishing each decision
made by the agent depending on whether the chosen image
has the best-quality. Finally, an optimal policy is achieved.
Given any image list, the image with the best quality will al-
ways have a great probability to be selected according to the
policy. We detail the specific MDP for ranking-based NR-
IQA and the reinforcement learning in next two subsections.

MDP for Quality-based Ranking
Here we introduce how to formalize the ranking in terms of
quality as an MDP. An MDP formally describes the environ-
ment for reinforcement learning and mathematically can be
represented as a tuple < S,A,P,R, γ >, i.e., the state set,
the action set, the state transition probability matrix, the re-
ward function and the discount factor. In the following, we
first give an overview of the MDP for quality-based ranking
and then detail the designs.

Ranking Process: The quality ordering of a list of images
can be directly inferred if we have a method that can always
pick out the image with the best quality. Formally, given an
image list (I1, I2, . . . , IN ), we aim to rank these images ac-
cording to their perceptual quality from the best to the worst.
There are N (i.e., the size of the list) ranking positions, and
each of them corresponds to a time step in MDP. At time step
t ∈ {0, 1, . . . , N − 1}, t images with better quality have
already been picked out and removed from the image list.
The agent finds the best-quality image from the remaining
ones. This image will be selected and placed to the ranking
position t. Then it is removed from the image list in the fol-
lowing steps. The process is continued until all the images
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are ranked, and accordingly the quality ordering of the given
images is determined.

States: The state st of our MDP at the time step t is de-
fined as the remaining images (candidates) that need to be
further ranked in terms of the quality, denoted as {It1, It2,
. . . , ItNt}. Nt is the number of the remaining images. One
can observe that the presented state st is Markov because it
fully defines the candidate images that the agent can select
in subsequent processes.

Actions: The action set At contains all possible actions
that the agent can take in the current state st. At time step t,
we aim to pick out the image with the best quality from the
remaining image list {It1, It2, . . . , ItNt}. Thus the set At can
be represented as {1, 2, . . . , Nt}, namely the list indexes of
the images. An action at ∈ At being taken means that the
quality of the at-th image is considered to be the best among
the remaining ones.

Policy: A policy π(a|s) fully defines the behaviour of an
agent, and mathematically is a distribution over possible ac-
tions given states. In our framework, we use a network for
encoding raw images and softmax to generate the possibili-
ties of the at-th image being picked out by the agent at the
time step t, i.e.,

π(at|st) =
exp[f(Itat)]∑
a∈At exp[f(Ita)]

, (1)

where f(·) represents the network output, which is designed
to be a single scalar. The aim of the model learning is to find
an optimal policy that can distinguish the perceptual quality.

Transition: Taking actions will change the states of envi-
ronment. The state transition P defines the transition proba-
bilities from current states to new ones. At time step t in our
MDP, image Itat is selected for the ranking position t and
then removed in subsequent steps. Accordingly, the state at
time step t+ 1, i.e., st+1 = {It+1

1 , It+1
2 , . . . , It+1

Nt+1
}, is

st+1 = P(st, at) = st \ {Itat}. (2)
Reward Function: The immediate reward functionR indi-

cates whether or not an action is encouraged in current state
with an award or a punishment. In our case, it is natural to
consider the reward function as an indicator of whether the
selected image has the best quality among the candidates.
Specifically, a binary reward functionR(st, at) is presented.
R(st, at) equals to 1 if the quality of the selected image Itat
is indeed the best in {It1, It2, . . . , ItNt}, and equals to 0 oth-
erwise.

Reinforcement Learning and Implementation
Policy Optimization Policy based reinforcement learning
is an optimization problem. Given a policy πθ with the pa-
rameters θ, the optimization is to find the best θ that maxi-
mizes a policy objective function J(θ). Policy gradient algo-
rithms are widely used for the optimization. They search for
a local maximum of J(θ) by ascending the policy gradient,
i.e., ∆θ = α∇θJ(θ), where α is the step-size and ∇θJ(θ)
is the policy gradient.

According to the policy gradient theorem, the policy gra-
dient can be calculated as

∇θJ(θ) = Eπθ [∇θ log πθ(a|s) Qπθ (s, a)] , (3)

Algorithm 1: MDP for Quality-based Ranking
Input: IQA training data set D, size of training image

list N , learning rate α, number of batches Mb,
batch size Mbz , and discount factor γ

Output: trained network
Initialize network with res-50 pre-trained on ImageNet;
for i = 1; i ≤Mb do

∆θ = 0;
for j = 1; j ≤Mbz do

Initialize s0 = {I01 , I02 , . . . , I0N0
}: randomly

select N images (N0 = N ) from D ;
Feed the selected images to the network that
generates {fθ(I01 ), fθ(I

0
2 ), . . . , fθ(I

0
N0

)} ;
for t = 0; t < N do

Sample an action at ∈ At according to
πθ(at|st) ;

Assign the reward rt+1 = R(st, at);
Remove the selected image Itat out of the
candidate list (moving to st+1);

for t = 0; t < N do
vt =

∑Nt−1
k=0 γk rt+k+1 ;

∇θlog πθ(at|st) =
1

πθ(at|st)
∑
a∈At

∂ πθ(at|st)
∂fθ(Ita) ∇θfθ(Ita) ;

∆θ = ∆θ +
∑
t ∇θlog πθ(at|st) vt ;

Update the parameters: θ = θ + α∆θ ;
return trained network;

where the action-value Qπθ (s, a) is the expected long-term
return starting from the state s, taking an action a, and then
following the policy πθ.

In this work, we adopt the Monte-Carlo Policy Gradient,
a.k.a., REINFORCE, to learn the parameters. There are two
keys, namely to update parameters by stochastic gradient as-
cent, and to use the return in episodic environments, denoted
as vt, as an unbiased sample of Qπθ (st, at) in Eq. (3). The
return vt is the total discounted reward from time-step t

in a sampled episode, i.e., vt =
∑Nt−1
k=0 γk rt+k+1, where

rt+k+1 = R(st+k, at+k).

Implementation and Training We detail the training pro-
cess in Algorithm 1. The parameters of the presented model
are given by the parameters of the network for encoding im-
ages in Eq. (1). The network is practically implemented by
res-50 (He et al. 2016) (substituting the softmax layer with
a 1-D fully connected layer), a generic classification model
pre-trained on ImageNet.

At each iteration, we randomly select N images from the
data set for training. The selected images are fed to the net-
work to obtain the outputs, with which an episode can be ef-
ficiently sampled (all images are passed through the network
only once). The gradients of the network parameters are cal-
culated at each time step within the episode and accumu-
lated. Such a process is repeated Mbz times (i.e., mini-batch
size), and then the parameters are adjusted.
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Table 1: Performance comparison with opinion-unaware NR-IQA methods. The four distortions types for generating
training data are included, i.e., JP2K, JPEG, WN and BLUR. Then LIVE, CSIQ and TID2013 contain 808 (including
references), 600 and 500 testing images, respectively. We use the res-50 after fine-tuning on the same training data as
the baseline.

Dataset LIVE CSIQ TID2013

IQA methods SROCC LCC SROCC LCC SROCC LCC

SSIM (Wang et al. 2004) 0.963 0.950 0.902 0.896 0.867 0.871
VSI (Zhang, Shen, and Li 2014) 0.970 0.921 0.960 0.959 0.949 0.955

QAC (Xue, Zhang, and Mou 2013) 0.869 0.855 0.842 0.874 0.806 0.805
NIQE (Mittal, Soundararajan, and Bovik 2013) 0.920 0.912 0.871 0.875 0.796 0.807
ILNIQE (Zhang, Zhang, and Bovik 2015) 0.918 0.913 0.880 0.905 0.842 0.858
dipIQ (Ma et al. 2017b) 0.946 0.954 0.917 0.931 0.872 0.888

baseline 0.838 0.734 0.764 0.793 0.754 0.797
RRLRIQA 0.949 0.952 0.915 0.934 0.885 0.909

Note that we implement the learning in an efficient way.
A standard and intuitive implementation of our method is to
pass the candidate images through the network at each time
step when sampling an episode. This would require to pass
the network for a total of (N0 + 1)N0/2 times. We reduce
the cost to N0 passes by storing the networks. The episode
can be directly built based on the stored network outputs.

Our model allows for the full back-propagation of deriva-
tives through the network (end-to-end training with the stan-
dard back-propagation). At time step t, the gradient of pa-
rameters is∇θlog πθ(at|st) vt = ∇θπθ(at|st)vt/πθ(at|st).
The term∇θπθ(at|st) can be calculated as

∇θπθ(at|st) =
∑
a∈At

∂ πθ(at|st)
∂fθ(Ita)

∇θfθ(Ita) . (4)

Deployment One can see that a good policy requires that
the network output f(·) should be indicative of image qual-
ity. An image with better perceptual quality should have a
higher probability to be selected, a.k.a., larger network out-
put, than the one with poorer quality. Therefore, the quality
index during deployment can be implemented by the learned
network. It can practically generate implicit quality mea-
sures for input images.

Experiments
Experimental Protocol
Databases: Four public IQA databases are used in our ex-
periments, namely LIVE (Sheikh, Sabir, and Bovik 2006),
CSIQ (Larson and Chandler 2010), TID2013 (Ponomarenko
et al. 2015), and Waterloo Exploration (Ma et al. 2017a).
The characteristics of these databases, including the num-
ber of source images (references), the number of degraded
images and the number of distortion types, are summarized
in Table 2. Note that MOSs are not available in Waterloo
Exploration, and thus the database can hardly be used for
training OA NR-IQA models.

Evaluation Criteria: Following many previous works, we
adopt two criteria for the performance evaluation: the Spear-
man rank order correlation coefficient (SROCC) and the lin-
ear correlation coefficient (LCC). SROCC is a measure of

Table 2: Characteristics of benchmark databases for eval-
uating NR-IQA methods.

IQA
Database

Source
Images

Distorted
Images

Distortion
Types

Score
Types

LIVE 29 779 5 DMOS
CSIQ 30 886 6 DMOS

TID2013 25 3000 24 MOS
Waterloo 4744 94880 4 -

the monotonic relationship between the ground-truth scores
and predicted ones. LCC measures the linear correlation be-
tween the ground-truth and model prediction. Note that the
use of LCC requires a nonlinear function, i.e., f̂ = β1(1/2
−1/(1 + exp(β2(f − β3)))) + β4x+ β5, to map raw model
predictions to targeting quality scale.

Comparison with OU Methods

The performance of our approach, compared with two FR-
IQA and four representative OU NR-IQA methods, is shown
in Table 1. The detailed setting of the inputs in Algorithm 1,
as well as the strategy of the training data construction, are
given in the following. We denote our method as RRLRIQA
(reinforcement recursive list-wise ranking).

Training Set Construction: As previously done in (Ma
et al. 2017b), our training dataset contains 700 source im-
ages (collected from the Waterloo database). We generate
four types of distortions with five levels. They are JP2K and
JPEG compression, white Gaussian noise (WN) and Gaus-
sian blur (BLUR). Accordingly, there are a total of 14700
images (700 references and 14000 distorted ones). Each im-
age is assigned with an objective score by performing VSI, a
state-of-the-art and efficient FR-IQA measure. During train-
ing, we randomly select 10 images (i.e., N = 10) and crop a
patch from each one (with size of 224×224) for building an
episode. The training is performed with no access to MOSs.
The reward, indicating whether the chosen image has the
best quality, is determined by the assigned objective scores.
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Table 3: Performance comparison with opinion-aware NR-IQA methods. We partition the database into a training and
a testing subsets. The models are trained on the partitioned training set and then tested on the other one. The procedure
is repeated and the median SROCC and LCC values are reported. Note that all types of distortions are included in this
experiment. The best two methods are highlighted in boldface.

Dataset LIVE CSIQ TID2013

IQA methods SROCC LCC SROCC LCC SROCC LCC

SSIM (Wang et al. 2004) 0.948 0.945 0.876 0.861 0.742 0.790
VSI (Zhang, Shen, and Li 2014) 0.952 0.948 0.942 0.928 0.897 0.900

BRISQUE (Mittal, Moorthy, and Bovik 2012) 0.939 0.942 0.756 0.797 0.572 0.651
CORNIA (Ye et al. 2012) 0.942 0.943 0.714 0.781 0.549 0.613
FRIQUEE (Ghadiyaram and Bovik 2016) 0.948 0.962 0.839 0.863 0.669 0.704
BIECON (Kim and Lee 2017) 0.958 0.960 0.815 0.823 0.717 0.762
RankIQA (Liu, van de Weijer, and Bagdanov 2017) 0.981 0.982 - - 0.780 0.799
H-IQA (Lin and Wang 2018) 0.982 0.982 0.885 0.910 0.879 0.880
QAC (Xue, Zhang, and Mou 2013) 0.874 0.868 0.486 0.654 0.390 0.495
NIQE (Mittal, Soundararajan, and Bovik 2013) 0.908 0.908 0.627 0.725 0.317 0.426
ILNIQE (Zhang, Zhang, and Bovik 2015) 0.902 0.906 0.822 0.865 0.521 0.648

baseline 0.950 0.954 0.876 0.905 0.712 0.756
RRLRIQA 0.956 0.962 0.907 0.916 0.806 0.833

Training Setting: We adopt the adaptive moment estima-
tion optimizer (ADAM) (Kingma and Ba 2015) to train the
model. The learning rate α and the batch-size Mbz are set as
10−5 and 10, respectively. The training process is repeated
9000 times, i.e., Mb = 9000. Our MDP is discounted. In ex-
periments, the discount factor γ is set as 0. We will discuss
the performance effects of γ later.

Table 1 lists the comparisons (tested on LIVE, CSIQ and
TID2013), where the method with the best performance is
highlighted in boldface. All the results are reported by our-
selves with realized codes or models. To demonstrate the ef-
fectiveness of the presented reinforcement list-wise method,
we use the res-50 after fine-tuning on the same training data
(i.e., the same 14700 training images) as the baseline. The
ground-truth for fine-tuning is the objective scores derived
by VSI. During testing, we randomly sample 10 patches with
size of 224 × 224 for each image. The quality estimation is
the average over the network outputs of the selected patches
(both for the baseline and RRLRIQA).

One can see that RRLRIQA achieves state-of-the-art per-
formance on these three databases. It delivers higher results
than other competitors on TID2013, and is comparable to
dipIQ on LIVE and CSIQ. Moreover, although RRLRIQA
and baseline are both based on res-50, we observe consistent
performance gains of our RRLRIQA on the three databases
over the baseline. This may be because the objective scores
are capable of indicating whether an image is of higher qual-
ity than others, but are not accurate enough and nosier for
training OA NR-IQA methods.

Comparison with OA Methods

The second part of the experiments is to compare RRLRIQA
with OA NR-IQA methods by training and testing on MOS-
aware databases. The detailed settings are as follows.

Training and Testing Settings: The experiment is con-
ducted on the entire LIVE, CSIQ, and TID2013 databases.
We divide each database into two subsets: 80% for training
and 20% for testing. Specifically, the distorted images are
grouped according to their references. On LIVE, CSIQ, and
TID2013, we randomly select 23, 24 and 20 groups for train-
ing respectively, while retaining the other groups for testing.
This is to ensure that no image contents used in testing have
been seen by the models during training. The training-testing
partition is repeated 20 times and the median is reported to
reduce the influence of random selection.

MOSs are used for training OA methods for compari-
son, including BRISQUE, CORNIA, FRIQUEE, BIECON,
RankIQA and H-IQA. The results of first four methods are
given by (Kim et al. 2017), and those of the other two are re-
ported by original authors. Three OU methods are included,
namely QAC, NIQE and ILNIQE. Their results, taken from
(Zhang, Zhang, and Bovik 2015), are reported on the testing
subsets. We use the res-50 fine-tuned on the training subsets
as the baseline. MOSs are employed as the ground-truth for
fine-tuning. Our RRLRIQA is also trained on the partitioned
training subsets. The training configurations are the same as
in the last subsection. The reward is still given by the objec-
tive scores for a fair comparison with OU methods.

Table 3 shows the results, from which we have several ob-
servations. First, our model outperforms the three OU com-
petitors by a large margin, e.g., about 28% SROCC im-
provement than ILNIQE on TID2013. Second, RRLRIQA
achieves state-of-the-art performance in comparison with re-
cent OA NR-IQA methods. It reaches the best performance
on CSIQ, and the second best on TID2013 even without
access to MOS for training. Finally, our model works con-
sistently better than the baseline. RRLRIQA achieves about
3% and 9% higher SROCC than the baseline on CSIQ and
TID2013, respectively. This may be because learning from
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Figure 2: SROCC and LCC with respect to the discount fac-
tor γ. The models are trained on the collected training data
and tested on LIVE and TID2013.

rankings can be considered as a data augmentation strategy
since various image lists can be generated from a database
for training our model. It may help to reduce the overfitting.

Discussion on Performance Issues
In this subsection, we discuss two performance issues about
the proposed RRLRIQA, namely the effects of the discount
factor γ and the size of an image list in learning.

Discount Factor The effect of the discount factor γ is in-
vestigated in this part. We compare four models with γ being
set as 0, 0.1, 0.6 and 1.0 during training. These four models
share the same training data (the collected 700 images and
their distorted versions) and training configurations. LIVE
and TID2013 are used for testing.

One can see from Figure 2 that the performance decreases
if we increase the γ value. It is probably because the long-
term returns are not capable of indicating whether the best-
quality image is selected at each time step (especially when
γ = 1), which leads to the performance degradation.

Size of Training Image List In our method, an image list
with size of N is used as an instance (i.e., for building an
episode) in learning. We then conduct an experiment to ex-
plore the effect of this training parameter. Figure 3 shows the
SROCC and LCC metrics with N being set to be 5, 10 and
15. The three models are all trained on the collected training
data and tested on LIVE and TID2013.

It can be seen from Figure 3 that the performance benefits
from a relatively large list size. The models with N being
set as 10 and 15 significantly achieve better results than the
one with N = 5. Moreover, we also notice that the per-
formance of the model trained with a large list size is gen-
erally more stable. To show that, we test the model every
300 training iterations (the training is performed 9000 itera-
tions). The standard deviations of the obtained SROCCs are
0.0119/0.0080 (N = 10/15) on LIVE, and 0.0183/0.0124
(N = 10/15) on TID2013. But training such a model will
cost more time. In our experiments, N is set to be 10 as a

SROCC LCC

5N =

SROCC LCC

0.871

0.883

0.949 0.949 0.952 0.950
LIVE

TID2013

0.826

0.885 0.881

0.851

0.909 0.906

10N = 15N =

Figure 3: SROCC and LCC with respect to the size of train-
ing image list, i.e., N . The models are trained on the col-
lected training data and tested on LIVE and TID2013.

trade-off between the performance and training efficiency.

Conclusion
In this paper, we develop an effective OU NR-IQA method
with reinforcement recursive list-wise ranking. We formu-
late the NR-IQA as a recursive ranking problem and use im-
age lists as learning instances. The recursive ranking process
is separated as a sequence of nested sub-problems and can be
modeled as an MDP during training. The model parameters
can be effectively trained by the policy gradient algorithm.
Experimental results show that our approach achieves state-
of-the-art performance compared with current OA and OU
NR-IQA methods.

We believe that our method can give some useful insights
to the NR-IQA community, not only the reinforcement list-
wise ranking model but also the way to develop OU meth-
ods. Our method can be further extended. For example, we
plan to explore the ranking uncertainty (different people may
have different opinions about the quality ordering of images)
in our future work. Moreover, since reinforcement learning
allows for a step-wise training, designing different training
strategies at different time steps for a potential performance
improvement is also very interesting.
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