
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Dual-View Ranking with Hardness Assessment for Zero-Shot Learning

Yuchen Guo,†‡ Guiguang Ding,‡ Jungong Han,§ Xiaohan Ding,‡ Sicheng Zhao,\
Zheng Wang,[ Chenggang Yan,] Qionghai Dai†

†Department of Automation, ‡School of Software, Tsinghua University, Beijing 100084, China
§School of Computing and Communications, Lancaster University, Lancaster, LA1 4YW, UK

\Department of EE and CS, UC Berkeley, USA; [Department of CST, USTB, China
]Institute of Information and Control, Hangzhou Dianzi University, China

Abstract

Zero-shot learning (ZSL) is to build recognition models for
previously unseen target classes which have no labeled data
for training by transferring knowledge from some other re-
lated auxiliary source classes with abundant labeled samples
to the target ones with class attributes as the bridge. The key is
to learn a similarity based ranking function between samples
and class labels using the labeled source classes so that the
proper (unseen) class label for a test sample can be identified
by the function. In order to learn the function, single-view
ranking based loss is widely used which aims to rank the true
label prior to the other labels for a training sample. However,
we argue that the ranking can be performed from the other
view, which aims to place the images belonging to a label be-
fore the images from the other classes. Motivated by it, we
propose a novel DuAl-view RanKing (DARK) loss for zero-
shot learning simultaneously ranking labels for an image by
point-to-point metric and ranking images for a label by point-
to-set metric, which is capable of better modeling the rela-
tionship between images and classes. In addition, we also no-
tice that previous ZSL approaches mostly fail to well exploit
the hardness of training samples, either using only very hard
ones or using all samples indiscriminately. In this work, we
also introduce a sample hardness assessment method to ZSL
which assigns different weights to training samples based on
their hardness, which leads to a more accurate and robust ZSL
model. Experiments on benchmarks demonstrate that DARK
outperforms the state-of-the-arts for (generalized) ZSL.

Introduction
The recent years have witnessed the tremendous progress
in zero-shot learning (ZSL) and there is an increasing num-
ber of new ZSL approaches every year (Xian, Schiele, and
Akata 2017). ZSL is an emerging task of object recognition
and image classification whose goal is to recognize cate-
gories whose visual exemplars are not given for model train-
ing (Lampert, Nickisch, and Harmeling 2014). It is a practi-
cal learning task in real-world applications, like Web-image
classification, because there are potentially infinite number
of categories and new concepts may emerge every day. In
addition, since the exemplars for different categories fol-
low a long-tailed distribution such that many uncommon
categories have limited visual samples (Changpinyo et al.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Elephant

Hippo

Lion

……

Image-view 
Label Ranking

Label-view 
Image Ranking

>
>

>

>
>

>

……

Hardness 
Assessment

0.74

0.21

Figure 1: Dual-view ranking with hardness assessment.

2016). In these scenarios, it becomes difficult to collect suf-
ficient labeled training samples for these categories to train
recognition models in a conventional supervised learning
way (Bishop and others 2006) and thus necessitates ZSL.

The problem of ZSL can be described as: how to tell
whether a sample belongs to a previously unseen class? If
there is no information about the unseen class, this prob-
lem is obviously unsolvable. The key assumption in previous
ZSL literatures is that each class label can be represented as
a label feature vector, such as manually defined attribute vec-
tor (Farhadi et al. 2009; Lampert, Nickisch, and Harmeling
2014), word embedding representation (Socher et al. 2013),
or their combinations (Fu et al. 2015b; Akata et al. 2015).
Now denote x ∈ Rp is the p-dimensional image feature vec-
tor like the deep feature (He et al. 2016), and yj ∈ Rq is the
q-dimensional feature vector for class cj . Zero-shot recogni-
tion is performed by computing the cross-modality similar-
ity between these features (Xian, Schiele, and Akata 2017):

c(x) = argmaxcjF (φ(x), ϕ(yj), θF ) (1)

where φ and ϕ are the image specific and label specific fea-
ture transformations respectively, F is the similarity func-
tion and θF is the function parameter of F . One simple func-
tion is the linear similarity F (φ(x), ϕ(yj), θF ) = xWy′j .
Given some auxiliary related classes with many labeled sam-
ples as knowledge source, one can train the model (φ, ϕ, and
θF ) by minimizing a loss function. Since the training source
classes and the unseen target classes are related in the label
feature space, the function learned with source classes can
be transferred and applied to the target classes. Then with
the learned function F and the feature vector y of an un-
seen class, the image-class similarity is produced by F and
the classification can be performed, even though there is no
labeled visual samples of this class available for training.
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Observation and Contribution
The loss function for training F is important for ZSL, which
is the focus of many previous works. One widely used loss
function which yields state-of-the-art performance is the
ranking based loss. The basic idea of ranking based loss is
to make the similarity between image xi and its true class’
label feature vector yi larger than the one between other
classes’ feature y 6= yi, which can be formulated as below,

min
φ,ϕ,θF

L =
∑
i

∑
y 6=yi

[ε(xi, yi, y) + F (φ(xi), ϕ(y), θF )

− F (φ(xi), ϕ(yi), θF )] ·∆(xi, yi, y) +R(F )

(2)

where ε(·) is a data-dependent margin for ranking, ∆(·) is
a data-dependent weight for the triplet (xi, yi, y), and R(F )
is a regularization term to reduce model complexity. This
general formulation can be specified to many state-of-the-
art ZSL approaches, such as DEVISE (Frome et al. 2013),
SJE (Akata et al. 2015), SYNC (Changpinyo et al. 2016),
ALE (Akata et al. 2016), and LATEM (Xian et al. 2016) if
the detailed definitions of φ, ϕ, θF , ε, ∆, and F are given.

The extraordinary performance and widely usage of rank-
ing based loss for ZSL motivate us to closely investigate it.
By summarizing previous works, we can observe that exist-
ing approaches mostly fail to consider the following issues:

1. Dual-view ranking. Most of existing approaches only
take single-view ranking into account. They perform image-
view label ranking which aims to rank the true label be-
fore any other labels for a training image. However, the
other view, i.e., label-view image ranking, is always ig-
nored, which aims to rank the images belonging to a la-
bel before images from other classes. Intuitively, zero-shot
classification shown in Eq. (1) is a cross-modality match-
ing procedure, where considering the information from both
views simultaneously usually leads to better ranking perfor-
mance (Socher et al. 2014; Karpathy, Joulin, and Li 2014).

2. Hardness assessment. In previous works, hard triplet
mining is always adopted, like setting ∆(xi, yi, y) = 1 if
ε(xi, yi, y) + F (φ(xi), ϕ(y), θF ) − F (φ(xi), ϕ(yi), θF ) >
0 or 0 otherwise. Hard training sample mining has been
shown to be an effective way for learning to rank (Schroff,
Kalenichenko, and Philbin 2015) because more attention is
paid to data on which the current model has large loss. How-
ever, it is sometimes sensitive to noise and outliers since they
always lead to large error such that the model may bias to
them from the true distribution. On the other hand, using all
triplets indiscriminately may lead to slow convergence and
bad optimum as it suffers from imbalanced easy-hard distri-
bution (Shrivastava, Gupta, and Girshick 2016). Therefore,
using hardness assessment instead of either select-or-not or
select-all strategies seems more reasonable in practice.

To combine the above issues with ranking based ZSL, in
this paper we propose a novel DuAl-view RanKing with
hardness assessment (DARK) for ZSL. In particular, we
adopt a dual-view ranking loss which simultaneously per-
forms image-view label ranking by point-to-point metric and
label-view image ranking by point-to-set metric (Zhou et al.
2017). By dual-view ranking, the similar relationship be-
tween images and labels can be better exploited. In addition,

Table 1: Notations and descriptions.

Notation Description Notation Description
xs, xu image feature ns, nu #sample
cs, cu class label p #dimension
yc class feature q #class feature

W,U, V matrix ks, ku #class

we utilize hardness assessment to assign different weights to
training triplets based on their errors under the current model.
In this way, the information of training data can be fully ex-
ploited. In summary, we make the contributions below:

1. Noticing that the majority of existing ranking based
ZSL approaches consider image-view label ranking only, we
propose a novel dual-view ranking loss which jointly mini-
mizes the image-view label ranking loss and label-view im-
age ranking (DARK) loss, where a point-to-point metric and
a point-to-set metric are adopted for them respectively con-
sidering the data properties in different views. To our best
knowledge, it is the first ZSL work using dual-view ranking.

2. Different from select-or-not or select-all strategies for
choosing training triplets, we apply a hardness assessment
method to triplets and then assign different training weights
to different triplets based on the error under the current
model, which better captures the knowledge in training data.

3. We conduct extensive experiments on four benchmark
datasets for (generalized) zero-shot classification. Empirical
results demonstrate DARK outperforms the state-of-the-arts.

Preliminary and Related Work
Preliminary and Notation
The problem of ZSL is defined as follows. we have two dis-
joint class sets Cs = {cs1, ..., csks} and Cu = {cu1 , ..., cuku}
denoting seen classes and unseen classes respectively with
Cs ∩ Cu = ∅, where ks and ku are the number of classes
in seen set and unseen set. From the image perspective, a
training image set Ds = {xs1, ..., xsns

} is given where each
image xsi is associated with one seen class csi ∈ Cs. We use
{xsi , ysi }

ns
i=1 to learn the similarity function between images

and classes. At the test stage, an image xu is given and our
goal is to predict its class in the unseen classes cu ∈ Cu,
which is the standard setting of ZSL. In the generalized ZSL
(GZSL) (Xian et al. 2017), an image xt is given which is
from Cs ∪ Cu, unlike the standard ZSL. The classification is
performed by Eq. (1). To enable similarity measure between
images and classes, each class c ∈ Cs∪Cu has a feature vec-
tor yc ∈ Rq , which can be class attribute vector (Lampert,
Nickisch, and Harmeling 2014) or word2vec output (Socher
et al. 2013). We show some important notations in Table 1.

Related Work
As introduced above, many existing ZSL approaches with
ranking based loss can be summarized as Eq. (2) with differ-
ent function settings. For simplicity, denote R(xi, yi, y) =
ε(xi, yi, y)+F (φ(xi), ϕ(y), θF )−F (φ(xi), ϕ(yi), θF ). DE-
VISE (Frome et al. 2013) sets F (φ(x), ϕ(y), θF ) = xWy′,
ε(xi, yi, y) = 1 if y 6= yi or 0 otherwise, and ∆(xi, yi, y) =
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1 ifR(xi, yi, y) > 0 or 0 otherwise. LDF (Li et al. 2018) use
similar definitions like DEVISE. ALE (Akata et al. 2016)
has similar settings like DEVISE but sets ∆(xi, yi, y) to a
positive ranking based score instead of 1 for triplets with
R(xi, yi, y) > 0. For SJE (Akata et al. 2015), ∆(xi, yi, y) =
1 if R(xi, yi, y) > 0 ∧ y = argmaxyR(xi, yi, y) or
0 otherwise. LATEM (Xian et al. 2016) adopts multiple
matching matrices Wm and defines F (φ(x), ϕ(y),Wm) =
max1≤m≤M φ(x)Wmϕ(y)′. SYNC (Changpinyo et al.
2016) defines F (φ(x), ϕ(y), θF ) = xϕ(y)′ and ∆(xi, yi, y)
like SJE, where ϕ is a label feature transformation based on
phantom classes. SSE (Zhang and Saligrama 2015) utilizes
sparse coding for φ and intersection function or rectified lin-
ear unit for ϕ, and defines F (φ(x), ϕ(y), θF ) = φ(x)ϕ(y)′.
Obviously, it can be observed that these approaches only
consider the image-view ranking and utilize hard triplet min-
ing with select-or-not strategy. For example, SJE selects
only the hardest negative label to construct the triplet for
model training, whereas the other triplets have no effect on
the loss.

Apart from ranking based loss, there is another line adopt-
ing regression based loss which aims to generate large sim-
ilarity for (xi, yi) and small similarity for (xi, y 6= yi).
Representative works include CMT (Socher et al. 2013)
with squared loss between φ(x) and y, EZZSL (Romera-
Paredes and Torr 2015) with squared loss between xWy′

and one-hot label vector, SAE (Kodirov, Xiang, and Gong
2017) with squared loss from xW to y and from yW ′ to x,
Deep-SCoRe (Morgado and Vasconcelos 2017) with cross-
entropy loss between φ(x)Wy′ and one-hot label vector,
GSC-Net-SLE (Wu et al. 2018) with cross entropy loss be-
tween φ(x)W s and the one hot vector of seen classes and
soft cross entropy loss between φ(x)Wu and any yuj , and
EXEM (Changpinyo, Chao, and Sha 2017) on the other
hand consider the distance between ϕ(y)W ′ and xc where
xc is the center of features belonging to class c. Regres-
sion based loss mainly focuses on only the absolute value of
F (φ(x), ϕ(y), θF ). However, we can notice that the classi-
fication step in Eq. (1) is fundamentally a ranking operation
in which case the relative similarity score is more important.

There are some complicated ZSL approaches proposed
in recent years, like sample transfer based ZSL (Guo et
al. 2017b), sample synthesis based ZSL (Jurie, Bucher, and
Herbin 2017), GAN based ZSL (Zhu et al. 2018), and etc.
It is easy to observe that they also rely on the class-image
similarity F (φ(x), ϕ(y), θF ) in an implicit or explicit way.

Dual-view Ranking with Hardness Assessment
Objective Function
DARK also follows Eq. (1) for zero-shot classification and
thus its goal is to train a similarity function F . As discussed
above, ranking based loss achieves state-of-the-art perfor-
mance such that we also base DARK on ranking based loss.
Different from previous single-view ranking loss, in this
work we further consider two extra issues, dual-view rank-
ing which additionally considers the label-view image rank-
ing, and hardness assessment which assigns different train-
ing weight to different triplets based on their current loss.

Dual-view Ranking. The similarity function F performs
cross-modality matching between image feature and label
feature. Intuitively, when training F , simultaneously consid-
ering image-view label ranking and label-view image rank-
ing is beneficial for training a good image-label matching
model, which inspires us to propose the dual-view ranking.
In particular, the image-view label ranking focuses on rank-
ing the true label of an image before any other labels, i.e.,
F (φ(xi), ϕ(yi), θF ) > F (φ(xi), ϕ(y), θF ) for ∀y 6= yi. To
achieve this goal, one can use labeled samples from the seen
classes to train F by minimizing the loss function in Eq. (2).

We also follow this general loss function but make two
modifications. The first is that we use hardness assessment
for ∆(xi, yi, y) which will be introduced later instead of the
select-or-not strategy with hard triplet mining. The second
is that we use a density adaptive margin ε instead of a con-
stant margin used in previous approaches (Frome et al. 2013;
Akata et al. 2016; Xian et al. 2016; Li et al. 2018). In partic-
ular, we use the softplus function to define it as follows:

εDA(xi, yi, y) = m · log(1 + exp(F (φ(xi), ϕ(yi), θF )))
(3)

where m ∈ (0, 1) is a constant to control the scale. The rea-
son why we use density adaptive margin instead of a con-
stant one is as follows. It has been observed that image data
has various density in different parts of feature space (Socher
et al. 2013; Guo et al. 2017a). In addition, different images
may have totally different similarity scores since they have
different properties. It is natural that the same margin for
different data may have different meanings. For example,
an image might have small similarity scores to all labels
because there are just a few similar labels to its true label
such that a small margin is sufficient to distinguish between
its true label and other labels, while another image might
have large similarity scores to many labels since there are
many similar labels to it such that the same margin is not
discriminative enough. So it is more reasonable if the mar-
gin is set based on the data itself. In addition, if we use the
approximation log(1 + ex) ≈ x, we have R(xi, yi, y) ≈
F (φ(xi), ϕ(y), θF )− (1−m)F (φ(xi), ϕ(yi), θF ). To min-
imize the loss, the model should have larger value for the
second term because of the factor 1 −m. This idea is very
similar to the large-margin loss (Liu et al. 2016) which has
been demonstrated to result in a more discriminative model.

From the other view, we propose to perform label-view
image ranking too. In this view, we hope that the images
belonging to a class c have larger score to yc than the im-
ages from the other classes. Moreover, unlike the image-
view ranking which uses a point-to-point metric, we propose
to use a point-to-set metric (Zhou et al. 2017) instead for
label-view ranking. Analogous to Eq. (2), the ranking loss
function for label-view image ranking is defined as below,

min
φ,ϕ,θF

Llabel =
∑
c∈Cs

∑
ĉ6=c

[ε(yc,Sc,Sĉ) + Fset(Sĉ, ϕ(yc), θF )

− Fset(Sc, ϕ(yc), θF ))] ·∆(yc,Sc,Sĉ) +R(F )
(4)

where Sc denotes all images belonging to label c, and Fset
is a point-to-set metric between a point y to a set of data S.

8362



Since a label vector represents the general semantic charac-
teristics of a class, it is more reasonable to use all images of
this class to compute the point-to-set similarity for ranking
where the label is matched to the general visual information
of all images. The point-to-set metric is defined as follows:

Fset(Sĉ, ϕ(yc), θF ) =
∑
x∈Sĉ

wxF (φ(x), ϕ(yc), θF ) (5)

where F is the similarity function introduced before, andwx
is the weight for image x. In particular, it is expected the im-
ages which are highly representative for a class to have large
weight because they can capture the general characteristics
of this class, which leads to the following definition for wx:

wx =
1

Z
exp{−||x− 1

|Sĉ|
∑
x̂∈Sĉ

x̂||22} (6)

where Z =
∑
x̂∈Sĉ wx̂ is a normalization factor. This defi-

nition considers the distance between x and the class’ visual
center and assigns large weight to the images which are close
to the center indicating they are representative for this class.

In addition, the margin ε(yc,Sc,Sĉ) is defined in a density
adaptive way like Eq. (3) by simply replacing F with Fset.

With the image-view label ranking loss in Eq. (2) denoted
as Limage and the label-view image ranking loss in Eq. (4),
the proposed dual-view ranking loss is the weighted aver-
age of them which considers both parts simultaneously and
optimizes them jointly. The definition is given as follows:

Ldual =
1

ns
Limage +

1

ks
Llabel (7)

Hardness Assessment. The dual-view loss in Eq. (7) is
based on triplet loss and we can directly use hard triplet min-
ing like in many previous works. In this work, we propose to
perform hardness assessment for triplets which assigns large
weight for hard triplets and small weight for easy triplets.
The widely used hard triplet mining adopts a select-or-not
strategy which ignores easy triplets. However, hard triplet
mining focuses mainly on the large-loss triplets which are
more likely to be noise and outliers. On the other hand, the
general knowledge about a class is shared by the majority of
the images belonging to this class. Therefore, if the model
yields small loss for most of the images, we can believe that
it has captured the important information to recognize this
class. In this case, hard triplet mining may push the model
away from the best one and to fit the outliers, which is un-
expected. On the contrary, if we assign the same weight to
all triplets, no matter how hard they are, the easy ones may
dominate the loss function such that the training procedure
converges slowly. To take the advantages from both sides
into account, it is a reasonable choice to perform hardness
assessment for triplets and assign different weights to them.

For simplicity, we denote R(xi, yi, y) = ε(xi, yi, y) +
F (φ(xi), ϕ(y), θF ) − F (φ(xi), ϕ(yi), θF ). Obviously, a
larger R means larger loss, indicating a harder triplet. Then
we use the sigmoid function to define the training weight:

∆(xi, yi, y) = (1 + exp(−R(xi, yi, y)))−1 (8)

For ∆(yc,Sc,Sĉ), we analogously define R(yc,Sc,Sĉ) =
ε(yc,Sc,Sĉ) + Fset(Sĉ, ϕ(yc), θF )− Fset(Sc, ϕ(yc), θF ).

Algorithm 1 Training DARK

Require: Training data xi, yi ∈ Cs;
Ensure: Model parameters U and V ;

1: Randomly initialize U and V ;
2: Compute wx by Eq. (6)
3: repeat
4: Compute current embeddings xiU and ycV ;
5: Compute εimageDA and εlabelDA by Eq. (3);
6: Compute ∆image and ∆label by Eq. (8);
7: Update U = U − τ ∂LDARK

∂U with Eq. (10);
8: Update V = V − τ ∂LDARK

∂V with Eq. (11);
9: until Convergence or maximum iterations;

10: Return U and V ;

The sigmoid function looks like the step function in hard
triplet mining. It approaches to 1 for hard triplets and 0 for
easy triplets. However, sigmoid function is softer around the
boundary, i.e, R ≈ 0. More importantly, it assigns small
weight to easy triplets instead of 0 such that the easy triplets
still have influence on the loss function. Due to the large
number of easy triplets, their information can be captured
by the model based on our method while it is totally ignored
if their weight is 0 like in conventional hard triplet mining.
In this way, the information in both hard and easy triplets are
utilized for training at the same time, while the select-or-not
strategy fails to achieve this goal by ignoring the easy ones.

Overall Objective Function. With the dual-view rank-
ing in Eq. (7), the hardness assessment in Eq. (8), and the
density-adaptive margin in Eq. (3), we obtain the overall ob-
jective function of DARK, which is formulated as below:

min
φ,ϕ,θF

LDARK

=
1

ns

∑
i

∑
y 6=yi

[εimageDA (xi, yi, y) + F (φ(xi), ϕ(y), θF )

− F (φ(xi), ϕ(yi), θF )] ·∆image(xi, yi, y)

+
1

ks

∑
c∈Cs

∑
ĉ 6=c

[εlabelDA (yc,Sc,Sĉ) + Fset(Sĉ, ϕ(yc), θF )

− Fset(Sc, ϕ(yc), θF ))] ·∆label(yc,Sc,Sĉ) +R(F )

(9)

In particular, since we use dual-view ranking instead of sin-
gle view ranking, we propose to use image specific projec-
tion and label projection respectively, i.e, we have φ(x) =
xU and ϕ(y) = yV where U ∈ Rp×r is the image-
view linear projection and V ∈ Rq×r is the label-view lin-
ear projection. We define F (φ(x), ϕ(y), θF ) = φ(x)φ(y)′.
One may notice that if we let W = UV ′, we have
F (φ(x), ϕ(y), θF ) = xWy′ which seems simpler. In fact,
DARK focuses on dual-view ranking which considers image
embedding and label embedding jointly. On the other hand,
xWy′ can be regarded as single image embedding prob-
lem (i.e., (xW )y′) or single label embedding (x(yW ′)′). In
addition, as suggested by Akata et al. (2016), if we have
r < min(p, q), this decomposition can reduce the number
of variables significantly from pq to (p+ q)r, which simpli-
fies the optimization and improves the model efficiency. For
the regularization term, we set R(F ) = λ(||U ||2F + ||V ||2F ).
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Optimization
There are two matrix variables in the objective function.
Obviously, optimizing them simultaneously is very difficult
since this will lead to a non-convex and non-smooth prob-
lem. So we propose to use an iterative algorithm which al-
ternatively optimizes one matrix while fixing the other in a
gradient descent way. One may notice that the margin ε and
the weight ∆ is dependent on U and V too, which makes the
partial derivatives complicated. Since our algorithm is based
on gradient descent method, the parameter change in one it-
eration is quite small, and thus we fix ε and ∆ as constants
when optimizing U and V and update them afterwards. The
partial derivatives of LDARK with respect to U and V are:

∂LDARK
∂U

=
1

ns

∑
i

∑
y 6=yi

x′i(y − yi)V ·∆image(xi, yi, y) + λU

+
1

ks

∑
c∈Cs

∑
ĉ6=c

(
∑
x̂∈Sĉ

wx̂x̂
′ −

∑
x∈Sc

wxx
′)ycV ·∆label(yc,Sc,Sĉ)

(10)

∂LDARK
∂V

=
1

ns

∑
i

∑
y 6=yi

(y − yi)′xiU ·∆image(xi, yi, y) + λV

+
1

ks

∑
c∈Cs

∑
ĉ6=c

y′c(
∑
x̂∈Sĉ

wx̂x̂−
∑
x∈Sc

wxx)U ·∆label(yc,Sc,Sĉ)

(11)

We use the gradients above to gradually and iteratively up-
date U and V respectively with a tiny step size, e.g., 10−3.
We summarize the optimization algorithm in Algorithm 1.

Discussion
Complexity. The time complexity of Algorithm 1 is as
follows. The complexity for random initialization (line 1)
is O(pr + qr), for computing wx (line 2) is O(nsp), for
computing current embeddings (line 4) is O(nspr + ksqr),
for computing F (x, y, U, V ) for all image-class pairs is
O(nsksr) since the embeddings xU and yV are given,
for computing Fset(Sĉ, ϕ(yc), U, V ) for all (ĉ, c) pairs is
O(nsks) given F (x, y, U, V ), for computing density adap-
tive margin (line 5) εimageDA and εlabelDA (line 6) is O(1) for
one image-view triplet or label-view triplet, for computing
hardness assessment based weight ∆image and ∆label is also
O(1) for either kind of triplet, for updating U (line 7) by Eq.
(10) isO(nskspr), and for updating V (line 8) by Eq. (11) is
O(nsksqr). Suppose the objective function converges in T
iterations, the total time complexity isO(T (nsks(pr+ qr+
r+1)+nspr+ksqr)+pr+qr+nsp), which is linear to the
number of training samples. In addition, we can observe that
the gradients in Eq. (10) and Eq. (11) are image-wise decou-
pled if

∑
x ∈ Scwxx is pre-computed, which indicates that

the total gradients are the summation of the gradient from
each individual image. In this case, we do not need all ns
images in an iteration. Alternatively, we can use mini-batch
based optimization which samples a subset of training im-
ages (e.g., 256) in one iteration for training. Moreover, since
ε and ∆ do not change dramatically in one iteration consid-
eringU and V are updated with tiny stepsize, we do not need

Table 2: The statistics of datasets.

AwA2 aPY SUN CUB
#seen class 40 20 645 150

#(train) seen sample 23, 527 5, 932 10, 320 7, 057
#(test) seen sample 5, 882 1, 483 2, 580 1, 764

#unseen class 10 12 72 50
#unseen sample 7, 913 7, 924 1, 440 2, 967
#class attribute 85 64 102 312

to update ε and ∆ in every iteration. In experiments, we up-
date them every 10 iterations. By using mini-batch gradient
descent with b images in every iteration, the complexity is
O(Tbks(pr + qr + r) + bpr + kspr) for the iterative part
(line 3 to 9), which is much more efficient in practice.

Relationship to existing works. The objective function
in Eq. (9) is formulated in a general way. In fact, many ex-
isting ZSL approaches can be regarded as a special case
of DARK. In particular, DARK considers dual-view rank-
ing where the image-view ranking has the same framework
as existing works, as summarized in Eq. (2). By setting
the weight of Llabel to 0, ε to a constant like 1, and ∆ to
step function, Eq. (9) is similar to the objective function
of DEVISE (Frome et al. 2013), ALE (Akata et al. 2016),
and many other works (Akata et al. 2015; Xian et al. 2016;
Li et al. 2018). The difference between DARK and them is
that we introduce label-view ranking with point-to-set met-
ric into the loss function. To our best knowledge, this is the
first ZSL work that utilizes dual-view ranking. In addition,
DARK takes the hardness of triplets into account and adopts
soft weight, while previous works mostly adopt select-or-not
strategy which ignores the information in many easy triplets.

Experiment
Setting
In the experiment, we utilize four widely used standard
benchmark datasets for ZSL. The first dataset is Animals
with Attributes2 (AwA2) (Xian et al. 2017) with 50 animal
species of which 40 are used as seen classes and the other
10 as unseen classes. The second dataset is aPascal-aYahoo
(aPY) (Farhadi et al. 2009). It has 20 classes from Pascal
VOC challenge like “person” and “dog” as the seen classes,
and 12 related classes like “centaur”” and “wolf” collected
from Yahoo search engine. The third dataset is SUN (Pat-
terson and Hays 2012) scene recognition dataset with 717
different scenes of which 645 are used as seen classes and
the other 72 as unseen classes. The last dataset is CUB (Wah
et al. 2011) bird fine-grained recognition dataset with 200
kinds of birds of which 150 are used as seen classes and
the other 50 as unseen classes. For each dataset, some seen
class images are used for model training and the other seen
class images together with all unseen class images are uti-
lized as the test set. For each image, the ResNet-101 (He
et al. 2016) pre-trained on ImageNet is employed as feature
extractor producing 2, 048-dimensional image feature. For
each class, the class attribute vector is regarded as the label
feature vector. For fair comparison, we use the seen-unseen
split, train-test split, image feature, and label feature given
by Xian et al. (2017). The statistics are shown in Table 2.

8364



Table 3: (Generalized) ZSL performance comparison on benchmarks. ZSL is evaluated by ACC and GZSL is evaluated by H.

AwA2 aPY SUN CUB Average
ACC H ACC H ACC H ACC H ACC H

DEVISE (Frome et al. 2013) 59.7 27.8 39.8 9.2 56.5 20.9 52.0 32.8 52.00 22.68
CONSE (Norouzi et al. 2013) 44.5 1.0 26.9 0.0 38.8 11.6 34.3 3.1 36.13 3.93

CMT (Socher et al. 2013) 37.9 15.9 28.0 19.0 39.9 13.3 34.6 8.7 35.10 14.23
SJE (Akata et al. 2015) 61.9 14.4 32.9 6.9 53.7 19.8 53.9 33.6 50.60 18.68

EZZSL (Romera-Paredes and Torr 2015) 58.6 11.0 38.3 4.6 54.5 15.8 53.9 21.0 51.33 13.10
SSE (Zhang and Saligrama 2015) 61.0 14.8 34.0 0.4 51.5 4.0 43.9 14.4 47.60 8.40

ALE (Akata et al. 2016) 62.5 23.9 39.7 8.7 58.1 26.3 54.9 34.4 53.80 23.33
SYNC (Changpinyo et al. 2016) 46.6 18.0 23.9 13.3 56.3 13.4 55.6 19.8 45.60 16.13

LATEM (Xian et al. 2016) 55.8 20.0 35.2 0.2 55.3 19.5 49.3 24.0 48.90 15.93
SAE (Kodirov, Xiang, and Gong 2017) 54.1 2.2 8.3 0.9 40.3 11.8 33.3 13.6 34.00 7.13

PSR (Annadani and Biswas 2018) 63.8 32.3 38.4 21.4 61.4 26.7 56.0 33.9 54.90 28.58
ICINESS (Guo et al. 2018) 64.2 36.3 42.4 23.1 62.9 30.3 59.8 39.4 57.33 32.28

ZKL (Zhang and Koniusz 2018) 70.5 30.8 45.3 20.5 61.7 25.1 57.1 35.1 58.65 27.88
DARK 68.9 38.3 47.1 27.0 66.0 32.8 62.5 41.6 61.13 34.93

Two ZSL tasks are considered in the experiment. The first
task is stardard ZSL, where we only use images from Cu
as test data and the goal is to assign a label c ∈ Cu to the
test sample. As introduced above, DARK utilizes Eq. (1) for
classification. We use the average per-class top-1 accuracy
(Xian et al. 2017) to evaluate the performance as follows:

ACCC =
1

|C|
∑
c∈C

#correct predictions in c
#samples in c

(12)

where C = Cu. We use all samples from the seen classes,
including both train and test in Table 2, to train the model.

The second task is generalized ZSL (GZSL) where a test
sample may come from both Cu and Cs and the goal is to
assign a label c ∈ Cs ∪ Cu to the test sample. Because the
model is likely to assign larger values to seen classes (Chao
et al. 2016), we slightly modify the prediction as follows:
ĉg(x) = argmaxc∈Cs∪CuF (φ(x), ϕ(c), θF )− γI(c ∈ Cs)

(13)
where we simply use γ = 0.2 in this paper. In GZSL, the
test data contains two parts. One is the unseen samples and
the other is the test seen samples (the fourth row in Table 2).
We only use the train seen samples (the third row in Table 2)
as the training set. The harmonic mean of the accuracies on
seen classes and unseen classes is used as evaluation metric:

H =
2×ACCCs ×ACCCu
ACCCs +ACCCu

(14)

Implementation
Since we use a linear similarity for F , the scales of x and
y have influence on the output score. To remove this influ-
ence, we normalize x and y to unit length. When computing
density adaptive margin by Eq. (3), we set m = 0.5. For the
regularization term, we set λ = 0.01. For mini-batch based
gradient descent, each batch contains b = 512 images. The
margin ε and weight ∆ are updated every 10 iterations since
they change a little in one iteration. The parameter r for U
and V are set to 64 consistently. The iteration in Algorithm 1
is conducted for 200 times. The learning rate (stepsize) τ is
set to 0.01 initially and then to 0.001 at the 150-th iteration.

Benchmark Comparison
We compare DARK to many related state-of-the-art ZSL ap-
proaches on four benchmark for ZSL and GZSL approaches.
Since our work focuses on inductive ZSL, some transduc-
tive ZSL approaches (Fu et al. 2015a; Kodirov et al. 2015;
Guo et al. 2016) are not used as baseline approaches. We use
Accuracy (ACC) for standard ZSL performance evaluation
and harmonic mean (H) for GZSL performance evaluation.

The performance comparison on for benchmarks and two
tasks is summarized in Table 3. We can notice that DARK
achieves observable improvement over the other baselines
in almost all cases. In particular, DARK improves ZSL ACC
by 2.48 and GZSL H by 2.65 respectively on average com-
pared to the best baseline approachesThe other baseline ap-
proaches mainly adopt image-view label ranking while ig-
noring the label-view image ranking, and employ hard triplet
mining which ignores many relatively easy triplets. To ad-
dress these issues, we propose to perform dual-view ranking
which takes images and labels into account simultaneously.
In addition, hardness assessment is applied to all triplets to
assign different training weights to them based on their cur-
rent error such that the information is fully utilized.

We notice that some baseline approaches have some sim-
ilar ideas to DARK. The first approach is ALE (Akata et
al. 2016) which assigns different training weights to triplets
based on the current ranking order of labels. The differ-
ence between ALE and DARK is that 1) ALE does not
consider the label-view ranking and 2) ALE only consid-
ers the hard triplets instead of all triplets such that some in-
formation is unavoidably lost. Another two approaches are
SAE (Kodirov, Xiang, and Gong 2017) and ZKL (Zhang and
Koniusz 2018) which consider dual-view information. The
difference is below. 1) SAE and ZKL utilize regression loss
making xiW close to yi and yiW ′ close to xi. However, as
shown in Eq. (1), ZSL classification is a ranking problem
and it fails to model the ranking information in an explicit
way. 2) They treat all training samples with the same weight
indiscriminately such that they may be dominated by easy
examples.
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Figure 2: The effect of dual-view ranking and hardness assessment on ZSL accuracy (ACC).
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Figure 3: The effect of dual-view ranking and hardness assessment on GZSL harmonic mean (H).

Ablation Study
It is necessary to verify the effect of dual-view ranking and
hardness assessment, which are the contributions of this
work, on the performance. In particular, we denote DARK-
L1 as the version which removes the label-view ranking and
DARK-H as the version which removes the hardness assess-
ment by setting ∆ to step function instead of the sigmoid. If
we remove both parts, DARK has only image-view ranking
such that it is very similar to previous works, and thus we use
ALE as a performance reference. We compare ALE, DARK-
L, DARK-H, and DARK on four benchmark datasets. The
ZSL ACC comparison is shown in Figure 2 and the GZSL H
comparison is shown in Figure 3. From the results, we can
observe the following interesting phenomenons.

Firstly, by comparing DARH-L and DARK-H to ALE, it
can be noticed combining label-view ranking or hardness as-
sessment individually with image-view ranking consistently
leads to better performance. On the other hand, removing
either one of them from DARK results in observable perfor-
mance drop. Both observations clearly indicate that label-
view ranking and hardness assessment are beneficial for
learning good image-class similarity function for ZSL.

Secondly, we can observe that label-view ranking plays
an important role in DARK. The main motivation of DARK
is to consider the ranking information from both image view
and label view. The results demonstrate that considering la-
bel view ranking contributes a lot to ZSL. In addition, if we
only consider dual-view ranking and ignore hardness assess-
ment, i.e., DARK-H, the average ACC and H are 60.73 and
32.85 respectively, which are better than the state-of-the-
arts. The results validate that considering dual-view rank-
ing is superior to only image-view ranking. In fact, ZSL is

1DARK minus label-view ranking, analogous to DARK-H.

modeled as a cross-modality matching problem as in Eq. (1)
where the knowledge from both modalities is useful (Karpa-
thy, Joulin, and Li 2014). However, many previous ZSL ap-
proaches failed to take this important issue into account.

Thirdly, hardness assessment consistently improves the
performance, which can be verified by comparing DARK-H
to DARK or DARK-L to ALE. In fact, ZSL can be regarded
as a special metric learning problem, where each class has
only one label vector and many image vectors. Hard triplets
contain important information but are more likely to be out-
liers of a class. If the attention is paid only to them, the ma-
jor characteristics of a class may be ignored. In fact, as each
class has only one label vector, it is more important to find
the general information from images instead of some spe-
cific features from hard samples. On the other hand, if we
treat them with the same weight the easy ones may domi-
nate the loss function which is harmful for learning (Bishop
and others 2006). We propose to assign weight to triplets
based on Eq. (8) which is capable of taking both sides into
account.

Conclusion
In this paper we consider ZSL problem. Many previous ZSL
works learn the image-class similarity function by ranking
based loss which aims to rank true label of an image before
other labels. We argue that this image-view label ranking is
not sufficient to construct an effective ZSL model and pro-
pose a novel dual-view ranking loss which further performs
label-view image ranking by putting images belonging to a
class before images from other classes using a point-to-set
metric. In addition, previous works fail to well utilize the
hardness of samples which either use only the hard ones or
all samples with the same weight. We propose to perform
a hardness assessment and then assign to triplets different
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weights based on the current loss, resulting in a more ac-
curate and robust model. Experiments on four benchmark
datasets demonstrate that DARK significantly outperforms
the state-for-the-art approaches for (generalized) ZSL.
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