
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

HSME: Hypersphere Manifold
Embedding for Visible Thermal Person Re-Identification

Yi Hao,† Nannan Wang,‡∗ Jie Li,† Xinbo Gao†
†State Key Laboratory of Integrated Services Networks,

School of Electronic Engineering, Xidian University, Xi’an 710071, China
‡State Key Laboratory of Integrated Services Networks,

School of Telecommunications Engineering, Xidian University, Xi’an 710071, China

Abstract

Person Re-identification(re-ID) has great potential to con-
tribute to video surveillance that automatically searches and
identifies people across different cameras. Heterogeneous
person re-identification between thermal(infrared) and visi-
ble images is essentially a cross-modality problem and impor-
tant for night-time surveillance application. Current methods
usually train a model by combining classification and met-
ric learning algorithms to obtain discriminative and robust
feature representations. However, the combined loss function
ignored the correlation between classification subspace and
feature embedding subspace. In this paper, we use Sphere
Softmax to learn a hypersphere manifold embedding and con-
strain the intra-modality variations and cross-modality varia-
tions on this hypersphere. We propose an end-to-end dual-
stream hypersphere manifold embedding network(HSMEnet)
with both classification and identification constraint. Mean-
while, we design a two-stage training scheme to acquire
decorrelated features, we refer the HSME with decorrela-
tion as D-HSME. We conduct experiments on two cross-
modality person re-identification datasets. Experimental re-
sults demonstrate that our method outperforms the state-of-
the-art methods on two datasets. On RegDB dataset, rank-1
accuracy is improved from 33.47% to 50.85%, and mAP is
improved from 31.83% to 47.00%.

1.Introduction
Person re-identification (ReID) aims at identifying a per-
son from non-overlapping camera views, which has impor-
tant value in video surveillance area. For example, given a
query/probe pedestrian image, we need to retrieve all im-
ages of the same person ID in gallery images. A large
number of algorithms for Re-ID problem have been pro-
posed, such as (Zheng, Yang, and Hauptmann 2016) (Zheng,
Zheng, and Yang 2017). Recent researches mainly focus on
visible pedestrian images (Zheng et al. 2017)(Zheng et al.
2015)(Wang et al. 2018b)(Wang et al. 2016), i.e., both query
images and gallery images are captured by visible camera.
However, in night time or dark environment, visible images
become uninformative. In such case, imaging devices that
do not rely on visible light should be applied, which makes
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Figure 1: Heterogeneous pedestrian images. The top row is
visible images captured by visible camera, bottom row is
thermal images captured by thermal camera. Each column
has same identity.

heterogeneous person re-identification significant for public
surveillance applications.

However, few works have paid attention to Re-ID between
RGB cameras and infrared/thermal cameras, which is es-
sentially a cross-modality problem and widely encountered
in real-world scenarios. Wu et al. (Wu et al. 2017a) pro-
posed a one-stream zero-padding network which learned a
shared representation from heterogeneous images. Ye et al.
(Ye et al. 2018b) proposed an end-to-end framework for vis-
ible thermal person re-identification (VT-REID), which used
identity loss and ranking loss to learn a discriminative rep-
resentation.

VT-REID is a very challenging problem because of the
great difference between visible and thermal modalities. Vis-
ible and thermal images are intrinsically distinct. As shown
in Figure 1, the first row is RGB images containing three
channel information captured by visible cameras in the day,
the second row is thermal images containing one channel
information captured by thermal camera at night. Thus, they
can be regarded as heterogeneous pedestrian images. In the
view of imaging principle, the wave-length range of RGB
and thermal images are different. Moreover, human pose and
viewpoint change can also cause large intra-class discrep-
ancy in VT-REID.

In this paper, we proposed an end-to-end dual-stream hy-
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Figure 2: 3D Sphere Softmax. W1 and W2 are centers of
different classes, black arrow is anchor. In part (a), anchor is
closer to W1 than W2, thus the anchor is belong to class 1.
On the contrary, the anchor is classified into class 2 in part
(b).

persphere manifold embedding network (HSMEnet) to learn
feature representations for heterogeneous pedestrian images,
which contains two separated subnets as domain-specific
models. In shallower layers, the parameters of two subnets
are specific for each domain to acquire domain-adaptive in-
formation. In deeper layers, shared parameters are used to
learn discriminative representations for matching. We use
Sphere Softmax to map the deep representation of pedes-
trian images onto a hypersphere. On this hypersphere, im-
ages of each identity can be classified with a clear boundary.
As shown in Figure 2, classification results depend on the
angle of feature vector and weight vector. And we also use
Kullback Leibler (KL) Divergence to measure the matching
extent of the two subnet’s predictions. The main idea is that
given two images of same identity from heterogeneous do-
mains, the distributions of their predict probability should be
similar. This can help the model converge to a more robust
minimum value with better generalization to test data.

(a) (b) (c)

Figure 3: complex variations in heterogeneous Re-ID, (a)
and (b) are different visible and thermal images of the same
person, (c) is another person’s images captured by visible
camera. (a) shows the variations caused by human pose, (c)
shows the variations caused by view points, (a)(b)(c) shows
the complex variations in cross-modality matching problem.

Due to human pose and viewpoint change, another
key problem for VT-REID is large intra-class discrepancy.
In cross-modality matching, variations between different
modalities are more complex than general matching prob-
lems as shown in Figure 3. In the view of the aforementioned
two kinds of variation, we design a novel reciprocal rank-

ing loss combined with cross-modality constraint and intra-
modality constraint. For intra-modality constraint, the main
idea is that the distance of anchor to cross-modality hard
positive should be smaller than the anchor to intra-modality
hard negative. For cross-modality constraint, the main idea
is that the distance of anchor to cross-modality hard posi-
tive should smaller than the anchor to cross-modality hard
negative. Since the feature vector is embedded on the hyper-
sphere by Sphere Softmax, the distance of two features only
depends on their vectorial angles.

We also propose a novel two-stage training scheme. In
the first stage, the dual-stream network is trained with ran-
domly initialized weights. In second stage, the weight ma-
trix of Sphere Softmax is decomposed into three parts by
Singular Value Decomposition(SVD). We use the product
of left-unitary matrix and singular value matrix to replace
the previous weight matrix as new weight matrix. Then we
train the network with fixed Sphere Softmax weight matrix.
As the left-unitary is orthogonal and singular value matrix
is diagonal matrix, the new weight matrix is also orthogo-
nal. Because of the orthogonal weight matrix, the deep fea-
ture representations of different person are relatively inde-
pendent. Thus, the decorrelated features can achieve better
performance in matching problem.

The main contributions are summarized as follows: 1) We
present an end-to-end dual-stream framework for represen-
tation and metric learning, which is the first to map represen-
tation learning and metric learning both onto a hypersphere
manifold. It provides a more reasonable way to combine
identity loss and ranking loss. 2) We analyze the variations
caused by cross-modality matching and propose a novel re-
ciprocal ranking loss for VT-REID problem. 3) We propose
a two-stage training scheme to extract decorrelated deep fea-
tures of heterogeneous images.

2.Related Work
Multi-Modality Person Re-identification. Person re-
identification(Re-ID) aims at spotting a particular person
in other cameras. A comprehensive survey of person re-
identification is provided by (Zheng, Yang, and Hauptmann
2016), so in this section, we mainly sum up the multi-
modality person re-identification. Recently, a number of
multi-modality person re-identification models have been
proposed. Jungling et al. (Jungling and Arens 2010) used
infrared(IR) video for Re-ID, but they only considered the
IR-IR video matching. Nguyen et al. (Nguyen et al. 2017)
firstly applied person re-identification models to visible-
thermal images. Wu et al. (Wu, Zheng, and Lai 2017) de-
signed a depth shape descriptor which is robust to rotation
and noises. Meanwhile, Lin et al. (Lin et al. 2017) combined
attribute information with image information for visible im-
ages. These works generally use multi-modality information
to improve Re-ID performance, while we focus on cross-
modality re-identification problem. For cross-modality per-
son re-identification, Ye et al. (Ye et al. 2015) and Li et al.
(Li et al. 2017b)(Li et al. 2017a) proposed a series of text-
to-image person retrieval methods. However, these methods
cannot be directly applied to VT-REID. In VT-REID, a two-
stage framework is proposed in (Ye et al. 2018a), which
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Figure 4: Pipeline of our HSME network. It includes two parts: feature learning part for extracting sharable feature representa-
tions and metric learning part for matching. The input of the network is a batch of images from visible and thermal domains.
The CNN and FC are specific part to extract high-level features for pedestrian images, Orange part mean the visible specific
stream and blue part represents thermal. The green part named shared layers transforms the features extracted previously into
embedding space. After L2 normalization, the sharable features are mapped on a hypersphere manifold and the differences
between the two samples only depend on angles. p1 and p2 are prediction probabilities of images from two domains.

contains feature learning and metric learning. In addition,
Wu et al. (Wu et al. 2017a) introduced a deep zero-padding
network to learn the shared features for different domains.
In contrast, we present an end-to-end dual-stream learning
framework for feature learning and metric learning.

Cross-Modality Retrieval. Cross-modality retrieval
(Peng, Huang, and Zhao 2017) refers to searching instances
across different modality data. It has attracted wide atten-
tion in the past few years. Representation methods include
(Ding et al. 2016)(Zhang et al. 2014)(Qiu et al. 2017), these
methods exhibit superior performances in many tasks. As
for heterogeneous face recognition, deep feature represen-
tation learning has been considered in (He et al. 2017)(Wu
et al. 2017b) for NIR-VIS face recognition. In comparison,
the VT-REID task faces large intra-class variations besides
cross-modality variations compared with face recognition
problems, which makes these methods unsuitable for VT-
REID. Ye et al. (Ye et al. 2018b) proposed a dual-path based
network to bridge the gap between visible images and ther-
mal images. The network contains one visible image path
and one thermal image path. Under this pipeline, we design
a dual-stream framework for VT-REID, which map the deep
representation feature onto a hypersphere manifold.

Orthogonality in the Network. Xie et al. (Xie, Xiong,
and Pu 2017) orthogonalized the filters of CNN and the
orthogonalization improved the classification accuracy for
deep networks. Sun et al. (Sun et al. 2017) proposed SVD-
Net for person re-identification, which used Singular Vec-
tor Decomposition(SVD) to optimize the deep representa-
tion learning process. In (Sun et al. 2017), the restraint and

relaxation iteration(RRI) training scheme is applied for the
training process to converge. In this paper, orthogonality is
used to generate decorrelated weight vectors of Sphere Soft-
max, so that the deep representation features that distribute
on the hypersphere manifold could have less correlation as
well as stronger discrimination.

3. Proposed Method
We propose an end-to-end dual-stream hypersphere mani-
fold embedding(HSME) network for VT-REID as shown in
Figure 4. The framework contains two subnets for domain
specific feature learning, after extracting specific features,
we use other shared weight layers to transform the features
onto a common hypersphere manifold to acquire shared fea-
tures. Then identity loss and ranking loss are employed to
constrain the model to learn discriminative features. Fur-
thermore, we adopt Kullback Leibler (KL) Divergence to
measure the matching of predictions of two domains for bet-
ter performance. Finally, to acquire low-correlated features,
we modify the weight matrix of Sphere Softmax via Singu-
lar Vector Decomposition(SVD). We refer the feature corre-
lated HSME network as D-HSME network. Our framework
is divided into two parts:

Feature Learning Part. This part consists of domain spe-
cific layers and shared layers. For domain specific layers,
we use two backbone networks to extract domain-specific
features from heterogeneous modalities. These two back-
bone networks share similar structures while the parame-
ters of each network are optimized individually. We use
the AlexNet (Krizhevsky, Sutskever, and Hinton 2012) as
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the backbone network and adopt image classification model
pre-trained on ImageNet to boost the training process. The
domain-specific features are fed into shared layers to be
transformed into shared embedding space. The last layer of
shared part is l2 normalization for each feature so that fea-
tures are advantageous for metric learning part.

Metric Learning Part. We map the deep feature repre-
sentation onto a hypersphere manifold to train the model to
learn classification and identification problem on this hyper-
sphere. We refer this process as hypersphere manifold em-
bedding. By this way, the deep features can be more dis-
criminative and robust for matching problem. This part is
the key of HSME, which will be thoroughly illustrated from
three aspects: hypersphere manifold embedding, reciprocal
ranking loss and feature decorrelation.

3.1 Hypersphere Manifold Embedding
We use Sphere Softmax to map the deep features of samples
onto a hypersphere manifold, so that the model can learn
discriminative representations on this hypersphere. On this
hypersphere, the distance between two samples can be mea-
sured by the angle of their feature vectors, which is conve-
nient for the following metric learning process.

Revisit softmax loss. Softmax is commonly used for clas-
sification problems. For a mini-batch contains N samples,
the softmax loss can be formulated as follows:

Lsoftmax = − 1

N

N∑
i=1

log
eW

T
yi
xi

C∑
j=1

eW
T
j
x

, (1)

where C is the number of the classes, W is the weight ma-
trix of classifier, xi means the feature vector of a sample and
yi is the label of it. WT

j x means the unnormalized proba-
bilities of j − th class. Classic classification networks use a
fully connected layer as softmax layer to compute probabil-
ities, thus W is the weight of the fully connected layer. This
formula can also be written as:

Lsoftmax = − 1

N

N∑
i=1

log
e‖Wyi

‖‖xi‖ cos θyi

C∑
j=1

e‖Wj‖‖xi‖ cos θj

, (2)

‖Wj‖, ‖xi‖ is the norm of Wj , xi. θj means the angle be-
tween Wj and xi. According to this formula, we find that
both the norm and angle will influence the prediction score.

Sphere softmax loss. We fix the norm of ‖Wj‖ = 1 and
xi = 1 by L2 normalization as follows:

W
′

j =
Wj

‖Wj‖
, x

′

i =
xi
‖xi‖

(3)

then we use W
′

j and x
′

i to replace the original Wj and xi,
the new prediction probabilities can be obtained by the fol-
lowing formula:

Pj = ‖Wj‖‖xi‖ cos θj = cos θj , (4)
then we can formulate Sphere Softmax function as:

Lsphere = −
1

N

N∑
i=1

log
es cos θyi

C∑
j=1

es cos θj
, (5)

where s is the scale factor for boosting the training proce-
dure. In this paper we empirically use s = 5 for all exper-
iments. Additive margin softmax loss (Wang et al. 2018a)
and additive angular softmax loss (Deng, Guo, and Zafeiriou
2018) are similar with formula (5), when their margin or an-
gular is 0. But for those margin softmax losses, they need
a lot of experiments to find the best combination of margin
and scale factors. On the contrary, we only need to set the
scale factor for the stability of training process.

For feature of any sample, the classification result only
depends on the angle of feature and weight vector as shown
in Figure 2. Therefore, we can map the features onto a hy-
persphere manifold, so that they can be discriminated by the
angles. It’s similar with A-Softmax loss (Liu et al. 2017a)
and GA-Softmax loss (Liu et al. 2017b). But we use met-
ric learning part to constraint the features on the manifold
which is quite different with these methods.

The conventional feature embedding algorithm ends up
there, but we consider that for same person from two do-
mains, the prediction probabilities should be similar. So we
use Kullback Leibler (KL) Divergence to measure the sim-
ilarity of two domains’ predictions p1 and p2. The KL dis-
tance from p1 to p2 is computed by:

DKL(p2‖p1) =
N∑
i=1

p2 log
p2
p1
, (6)

and the overall identity loss function Lidentity1 for visible
stream is defined as :

Lidentity1 = Lsphere1 +DKL(p2‖p1), (7)

and the loss function Lidentity2 for thermal stream is:

Lidentity2 = Lsphere2 +DKL(p1‖p2) (8)

3.2 Reciprocal Ranking Loss
Considering the variations from cross-modality and intra-
modality, we design a novel reciprocal ranking loss for
matching problem. By analyzing the samples of a mini-batch
in dual-stream network, we can obtain the metric relation of
a mini-batch as shown in Figure 5.

𝑉𝑘 𝑉𝑖

𝑇𝑘 𝑇𝑗

𝑉𝑗 𝑉𝑘

𝑇𝑖 𝑇k

Figure 5: Samples relation in a mini-batch. Left part uses
visible image as anchor and right part uses thermal image.
The subscripts i and j means same identities, while i and k
are different identities. V stands for visible images, T stands
for thermal images.
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Intra-modality constraint: This part aims at making the
distance between the anchor and intra-modality hard nega-
tive larger than the distance between the anchor and cross-
modality hard positive. In Figure 5, it means that the red
lines should be shorter than blue ones. The constraint can be
represented as follows:

d(vi, tj) < d(vi, vk), d(ti, vj) < d(ti, tk), (9)

then the reciprocal ranking loss for intra-modality constraint
can be formulated by:

Lintra =

N∑
i=1

max[(ρ+ d(vi, tj)− min
∀yk 6=yi

d(vi, vk)), 0]

+

N∑
i=1

max[(ρ+ d(ti, vj)− min
∀yk 6=yi

d(ti, tk)), 0]

,

(10)

where ρ is pre-defined margin for improving the discrimina-
tion of embedding features. d(vi, tj) represents the distance
between features of Vi and Tj .

Hypersphere Manifold 

Embedding

(a)

Hypersphere Manifold 

Embedding

(b)

Hypersphere Manifold 

Embedding

(b)

Figure 6: 3D sphere subspace:(a) samples are randomly dis-
tributed on the initialized subspace. (b) the identity loss dis-
tributes samples of each class around the weight vector of
the class. (c) the final loss make the samples of each class
more compact. In training stage, we will directly get the re-
sult by the final loss as shown in (c) .

Cross-modality constraint: This part aims at making the
distance of anchor to cross-modality hard positive smaller
than the anchor to cross-modality hard negative. In Figure 5,
it means the red lines should be shorter than the blue ones.
This constraint can be formulated as follows:

d(vi, tj) < d(vi, tk), d(ti, vj) < d(ti, vk), (11)

like formula (10) we also use reciprocal ranking loss with
pre-defined margin for cross-modality constraint:

Lcross =

N∑
i=1

max[(ρ+ d(vi, tj)− min
∀yk 6=yi

d(vi, tk)), 0]

+

N∑
i=1

max[(ρ+ d(ti, vj)− min
∀yk 6=yi

d(ti, vk)), 0]

(12)

For each stream, we can obtain the final loss function by
combining all of the aforementioned loss functions:

Lvisible = Lidentity1 + Lintra + Lcross (13)

Lthermal = Lidentity2 + Lintra + Lcross (14)
Training the network with Lvisible and Lthermal, we can

obtain embedding features on the hypersphere manifold, and
the whole procedure is illustrated on Figure 6.

3.3 Feature Decorrelation
For hypersphere space, the weight vector is randomly initial-
ized by truncated normal distribution function. If the weight
vectors of Sphere Softmax is highly correlated, the feature
model learned may not be discriminative enough and the
model would easily suffer from over-fitting. So we want the
weight vector be less correlated and distributed on the hy-
persphere manifold more evenly.

In a n-dimension space, a set of orthogonal bases contain
n orthogonal vectors. For softmax layer in the network, the
shape of weight matrix is m× n(m ≥ n), m means the em-
bedding size of deep features and n means the class number
of samples. We assume that if we can use a set of orthogo-
nal vectors in the m-dimensional hypersphere as the weight
matrix, the feature learned by the model would be more dis-
criminative. Thus, we propose a two-stage training strategy
to modify the weight vectors.

We first briefly introduce the two-stage training strategy:
Stage1:The general training procedure: We randomly ini-

tialize Sphere Softmax weight matrix by truncated normal
distribution function. Then we train the model till conver-
gence. All parameters of this model are trained.

stage2:The decorrelated training procedure: We perform
SVD on the weight matrix of softmax layer as follows:

W = USV T , (15)
where W is the weight matrix of the softmax layer, U is the
left-unitary matrix, S is the singular value matrix, and V is
the right-unitary matrix. Then we replace the weight matrix
with US. Finally, we fix the weight of softmax layer and
train the network again till convergence. The optimization
details are summarized in Algorithm 1.

Algorithm 1 Training Feature Decorrelated HSMEnet

Input: a HSMEnet with pre-trained weight, Re-ID train-
ing data
Output: a feature decorrelated HSMEnet(D-HSME)
stage1: train the HSMEnet until convergence
Decorrelation Decompose W with SVD decomposition,
and then replace W by US
stage2: train the HSMEnet with fixed W until conver-
gence

Considering two arbitrary weight vectors Wi,Wj on the
hypersphere, which belong to i-th and j-th classes respec-
tively, and the angle between these two vectors is θij . fi and
fj are two samples belong to i-th class and j-th class. After
training stage 1, fi and fj will be constrained into the neigh-
bors of Wi and Wj . The radius of each neighbors are small
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enough, the angle between them is θ̂ij ≈ θij . When training
stage 2 is finished, the new weight vectors of i-th and j-th
classes are W

′

i and W
′

j , and they are orthogonal, the angle
between them is θ

′

ij = 90◦. The angle between new features
which represents the two samples is close to 90◦.

Hypersphere Manifold 

Embedding

Hypersphere Manifold 

Embedding

(a) (b)

Figure 7: Feature decorrelation: (a) original weight matrix
on hypersphere, (b) orthogonal weight matrix. While the
weight matrix is transformed to orthogonality, the samples
around different weight vector distributes with larger mar-
gin than former.

After all training stages, the weight matrix is transformed
from high-correlated status to low-correlated status. The
transformation is shown in Figure 7. Due to the large angle
between each weight vector, the features of different sam-
ples also have larger angle than previous embedding result.

4. Experimental Results
4.1 Datasets and Evaluation
Datasets. Two public cross-modality person re-
identificaition datasets are adopted to evaluate our al-
gorithm. (Nguyen et al. 2017) provided a visible-thermal
dataset RegDB, which contains 412 persons. Each person
has 10 different visible and thermal images captured by
visible and thermal camera. We follow the evaluation
protocol in (Ye et al. 2018a), where the dataset is randomly
split into training dataset and testing dataset. We repeat this
split procedure for 10 trials to achieve stable results.

SYSU-MM01(Wu et al. 2017a) include RGB and in-
frared(IR) images of 491 identities that captured from 6
cameras, which include two IR cameras and four RGB cam-
eras. The dataset contains 287,628 RGB images and 15,792
IR images. The training data and testing data is already
splited by (Wu et al. 2017a). The training set contains 395
persons, and the testing set contains 96 persons. We adopt
single-shot all-search mode evaluation protocol, since it’s
more challenging as mentioned in (Wu et al. 2017a).

Evaluation. For both RegDB and SYSU-MM01 dataset,
multiple groundtruths exist in the gallery set. Hence, We use
standard cumulated matching characteristics(CMC) curve
and mean average precision(mAP) to evaluate our algorithm.

Implementation details. We use AlexNet as backbone
net for both visible and thermal streams. The size of fully

connected layer in shared layers is set as 1024 and the num-
ber of sample pairs in a mini-batch is set as 64 for both
datasets. Dropout rate is set as 0.5. We also use random crop-
ping for data augmentation. We set the scale factor of Sphere
Loss as 5. Two Momentum optimizers are utilized for both
visible and thermal streams. The artificial margin ρ is set to
0.5. The training step of stage1 is equal to stage2, which is
1000 for RegDB and 10000 for SYSU-MM01 dataset.

4.2 Comparison with State-of-the-arts
Competing algorithms. We compare HSMEnet with
the state-of-the-art methods. Several other cross-modality
matching methods are included for comparison. Most of
the results are provided in (Ye et al. 2018b) and (Wu et al.
2017a). The competing methods include some feature learn-
ing methods(TONE, HOG, MLBP, LOMO, zero-padding,
one-stream and two-stream networks(Wu et al. 2017a)). In
addition, some metric learning methods are also compared,
including XQDA and HCML(Jungling and Arens 2010).

Comparisons on RegDB and SYSU-MM01 are shown
in Table 1. Compared with current works, HSMEnet out-
performs existing state-of-the-art methods by a large mar-
gin on RegDB dataset. We report rank-1 = 41.34%, mAP
= 38.82% on RegDB, and rank-1 = 18.03%, mAP =
19.98% on SYSU-MM01.. Meanwhile, compared with
HSME, D-HSMEnet achieves significant improvement, We
report rank-1 = 50.85%, mAP = 47.00% on RegDB, and
rank-1 = 20.68%, mAP = 23.12% on SYSU-MM01.

Compared with previous best work BDTR for RegDB
dataset, our D-HSMEnet improves approximately 8% ∼
17% on re-identification rate and nearly 17% on mAP. For
large-scale SYSU-MM01 dataset, the proposed method also
achieves better performance compared with BDTR.

The advantage of our proposed method can be summa-
rized as two folds: 1) End-to-end hypersphere manifold em-
bedding network can extract discriminative features, which
can be discriminated just by angles between them. 2) The
proposed reciprocal ranking loss with dual-stream network
take the complex variations for VT-REID into consideration,
so that the embedding features are robust.

4.3 Ablation Study
We conduct the experiments to verify the effectiveness of the
components of our framework on both RegDB and SYSU-
MM01 datasets. We report the results with only identity loss,
only ranking loss and HSME without KL distance as shown
in Table 3.

RegDB dataset. The rank-1 accuracy is 38.15% for the
ranking loss while the mAP is 30.62%. Although the CMC
value is close to the result for HSME, but the mAP of rank-
ing loss still has large margin compared with HSME. The
results illustrate that identity loss can improve mAP for our
model. And applying the KL distance to identity loss can
improve the rank-1 accuracy and mAP value.

SYSU-MM01 dataset. The rank-1 accuracy is 13.58%
for the ranking loss while the mAP is 16.63%. As shown
in Table 3, ranking loss works better than identity loss. And
the KL distance significantly improves the performance for
all evaluation metrics.
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Datasets RegDB SYSU-MM01
Methods r=1 r=10 r=20 mAP r=1 r=10 r=20 mAP
HOG 13.49 33.22 43.66 10.31 2.76 18.25 31.91 4.24
MLBP 2.20 7.33 10.90 6.77 2.12 16.23 28.32 3.86
LOMO 0.85 2.47 4.10 2.28 1.75 14.14 26.63 3.48
One-stream 13.11 32.98 42.51 14.02 12.04 49.68 66.74 13.67
Two-stream 12.43 30.36 40.96 13.42 11.65 47.99 65.50 12.85
Zero-Padding 17.75 34.21 44.35 18.90 14.80 54.12 71.33 15.59
TONE 16.87 34.03 44.10 14.92 12.52 50.72 68.69 14.42
TONE+XQDA 21.94 45.05 55.73 21.80 14.01 52.78 68.60 14.42
TONE+HMCL 24.44 47.53 56.78 20.80 14.32 53.16 69.17 16.16
BCTR 32.67 57,64 66.58 30.99 16.12 54.90 71.47 19.15
BDTR 33.47 58.42 67.52 31.83 17.01 55.43 71.96 19.66
Ours(HSME) 41.34 65.21 75.13 38.82 18.03 58.31 74.43 19.98
Ours(D-HSME) 50.85 73.36 81.66 47.00 20.68 62.74 77.95 23.12

Table 1: Comparison with the sate-of-the-art methods on the RegDB and SYSU-MM01 datasets. Thermal images for gallery,
visible images for query. CMC(%) and mAP(%)

Visible to Thermal
Methods r=1 r=10 r=20 mAP

TONE+HCML 24.44 47.53 56.78 20.08
Zero-Padding 17.75 56.42 67.52 31.83

BDTR 33.47 58.42 67.52 31.83
Ours(HSME) 41.34 65.21 75.13 38.82

Ours(D-HSME) 50.85 73.36 81.66 47.00

Thermal to Visible
Methods r=1 r=10 r=20 mAP

TONE+HCML 21.70 45.02 55.58 22.24
Zero-Padding 16.63 34.68 44.25 17.82

BDTR 32.72 57.96 68.86 31.10
Ours(HSME) 40.67 65.35 75.27 37.50

Ours(D-HSME) 50.15 72.40 81.07 46.16

Table 2: Comparison with different query settings on RegDB
dataset. CMC(%) and mAP(%)

Comparing the results on both datasets, we can observe
that ranking loss can get better performance than identity
loss. Furthermore, KL distance can improve a lot on SYSU-
MM01 than on RegDB. We assume that this is because the
variations of SYSU-MM01 are more complex than RegDB,
such like human pose, lighting and view point. The re-
sults of this part can verify that the combination of all dif-
ferent losses work best for the cross-modality person re-
identification.

4.4 Different query settings

Table 2 shows the performance of different query settings as
(Ye et al. 2018b). Results shows in table 3 illustrate that our
method is robust to different query settings. Both HSME and
D-HSME outperform the competing methods by a large gap
on both settings. We assume that this advantage is caused by
the symmetry of our framework.

RegDB r=1 r=10 r=20 mAP
Only ranking loss 38.15 61.95 70.81 30.62
Only identity loss 22.02 45.47 56.26 22.42

HSME(woKL) 41.18 65.94 75.48 38.61
HSME 41.34 65.21 75.13 38.82

SYSU-MM01 r=1 r=10 r=20 mAP
Only ranking loss 13.58 54.90 72.99 16.63
Only identity loss 12.92 46.93 64.64 15.36

HSME(woKL) 16.37 56.48 74.24 18.93
HSME 18.03 58.31 74.43 19.98

Table 3: Components comparison on RegDB and SYSU-
MM01 datasets. The woKL means fusion of ranking
loss and identity loss without KL distance. CMC(%) and
mAP(%)

Conclusion
In this paper, an end-to-end learning framework hypersphere
manifold embedding(HSME) network is proposed for het-
erogeneous person re-identification problem. Through the
HSMEnet, samples from different domains are mapped onto
a hypersphere, so that features on this hypersphere can be
discriminated by the angles between them. The recipro-
cal ranking loss designed for complex variations of cross-
modality Re-ID are adopted for robust features. We further
improve the HSME by decorrelating the weight matrix of
the Sphere Softmax layer(D-HSME). Due to the elimination
of correlation of the weight vectors, the learned embedding
features suit the retrieval task better on the hypersphere man-
ifold. Significant performance improvement is achieved on
RegDB and SYSU-MM01 datasets.
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