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Abstract

In this work, we propose a novel method named Weighted
Channel Dropout (WCD) for the regularization of deep Con-
volutional Neural Network (CNN). Different from Dropout
which randomly selects the neurons to set to zero in the
fully-connected layers, WCD operates on the channels in
the stack of convolutional layers. Specifically, WCD consists
of two steps, i.e., Rating Channels and Selecting Channels,
and three modules, i.e., Global Average Pooling, Weighted
Random Selection and Random Number Generator. It filters
the channels according to their activation status and can be
plugged into any two consecutive layers, which unifies the
original Dropout and Channel-Wise Dropout. WCD is totally
parameter-free and deployed only in training phase with very
slight computation cost. The network in test phase remains
unchanged and thus the inference cost is not added at all. Be-
sides, when combining with the existing networks, it requires
no re-pretraining on ImageNet and thus is well-suited for the
application on small datasets. Finally, WCD with VGGNet-
16, ResNet-101, Inception-V3 are experimentally evaluated
on multiple datasets. The extensive results demonstrate that
WCD can bring consistent improvements over the baselines.

Introduction
Recent years have witnessed the great bloom of deep Con-
volutional Neural Network (CNN), which has significantly
boosted the performance for a variety of visual tasks (He et
al. 2016; Liu et al. 2016; Wang et al. 2016). The success
of deep CNN is largely due to its structure of multiple non-
linear hidden layers, which contain millions of parameters
and thus are able to learn the complicated relationship be-
tween input and output. However, when only limited train-
ing data is available, e.g., in the field of Fine-grained Visual
Categorization (FGVC), overfitting is very likely to occur,
which would incur the performance drop.

In the previous literatures, many methods have been pro-
posed to reduce the overfitting when training CNN, such as
data augmentation, early stopping, L1 and L2 regularization,
Dropout (Srivastava et al. 2014) and DropConnect (Wan
et al. 2013). Among these methods, Dropout is one of
the most popular which has been adopted in many classi-
cal network architectures, including AlexNet (Krizhevsky,
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Sutskever, and Hinton 2012), VGGNet (Simonyan and Zis-
serman 2014), and Inception (Szegedy et al. 2015; 2016). In
Dropout, the output from the previous layer is flattened as
a one-dimensional vector and a randomly selected subset of
neurons is set to zero for the next layer (Figure 1). In most
cases, Dropout is used to regularize the fully-connected lay-
ers within CNN and not very suitable for the convolutional
layers. One of the main reasons is that Dropout operates on
each neuron, while in the convolutional layers each chan-
nel consisting of multiple neurons is a basic unit that cor-
responds to a specific pattern of input image (Zhang et al.
2016). In this work, we propose a novel regularization tech-
nique for the stack of convolutional layers1 which randomly
selects channels for the next layer.

Another inspiration of this work comes from the ob-
servation that in the stack of convolutional layers within
CNN, all the channels generated by the previous layer are
treated equally for the next layer. This is not optimal es-
pecially for high layers where the features have greater
specificity (Zeiler and Fergus 2014; Yosinski et al. 2014;
Zhang et al. 2016). For each input image, only a few chan-
nels in high layers are activated while the neuron responses
in the other channels are close to zero (Zhang et al. 2016). So
instead of totally random selection, we propose to select the
channels according to the relative magnitude of activation
status, which can be treated as a special way to model the
interdependencies across the channels. To some extent, our
work is similar in spirit to the recent SE-Block (Hu, Shen,
and Sun 2017). The detailed comparison between our work
and SE-Block will be provided below.

In summary, the main contribution of this work lies in
a novel method named Weighted Channel Dropout (WCD)
for the regularization of convolutional layers within CNN,
which is illustrated in Figure 2. Notably the basic operation
unit of WCD is the channel rather than the neuron. Specifi-
cally, we first rate the channels output by the previous layer
and assign a score for each channel. The score is obtained by
Global Average Pooling, which can acquire a global view
of activation status in each channel. Second, regarding to
the channel selection, a binary mask is generated to indicate

1The stack of convolutional layers means the layers before
the fully-connected layers, mainly consisting of convolution lay-
ers (with ReLU) optionally followed by pooling layers, such as
conv1-pool5 in VGGNet-16.
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Figure 1: Illustration of Dropout. (a) Dropout in the fully-connected layers. (b) Dropout in the convolutional layers. The neurons
in red are randomly selected and set to zero referring to the implementation in Caffe (Jia et al. 2014).

whether each channel is selected or not, and the channels
with relatively high scores are kept with high probability.
We find that the process of generating mask according to
score can be boiled down to a special case of Weighted Ran-
dom Selection (Efraimidis and Spirakis 2006) and an effi-
cient algorithm is adopted for our purpose. Finally, a Ran-
dom Number Generator is further attached to mask to filter
channels for the next layer. It is worth noting that, WCD
is parameter-free and only added to the network in train-
ing phase with very slight computation cost. The network in
test phase remains unchanged and thus the inference cost is
not added at all. Besides, WCD can be plugged into any ex-
isting networks already pretrained on large-scale ImageNet
and requires no re-pretraining, making it appealing for the
application on small datasets.

The motivation of WCD is exactly to alleviate the overfit-
ting of finetuning CNN on small datasets, e.g., the bulk of
datasets for FGVC (Wah et al. 2011; Khosla et al. 2011;
Krause et al. 2013; Maji et al. 2013), through adding
more regularization to the stack of convolutional layers be-
sides the fully-connected layers. For example, CUB-200-
2011 (Wah et al. 2011) collects only about 30 training im-
ages for each class. By introducing more regularization,
WCD can help the network learn more robust features
from input. For the experiments, we evaluate WCD combin-
ing with the classical networks including VGGNet-16 (Si-
monyan and Zisserman 2014), ResNet-101 (He et al. 2016),
Inception-V3 (Szegedy et al. 2016) on CUB-200-2011 (Wah
et al. 2011) and Stanford Cars (Krause et al. 2013). Be-
sides, for a thorough evaluation, we also evaluate WCD on
Caltech-256 (Griffin, Holub, and Perona 2007) which fo-
cuses on generic classification. The extensive results demon-
strate that WCD can bring consistent improvements over the
baselines.

Related Work
Due to the availability to large training data and GPU ac-
celerated computation, multiple efforts have been taken to
enhance CNN for greater capacity since the massive im-
provement shown by AlexNet (Krizhevsky, Sutskever, and
Hinton 2012) on ILSVRC2012. These efforts mainly con-
sist of increased depth (Simonyan and Zisserman 2014;

He et al. 2016), enlarged width (Zagoruyko and Komodakis
2016), nonlinear activation (Maas, Hannun, and Ng 2013;
He et al. 2015), reformulation of the connection between
layers (Huang et al. 2017) and so on. Our method falls into
the scope of adding regularization to neural networks. In
this field, the previous works include Dropout (Srivastava
et al. 2014), DropConnect (Wan et al. 2013), Batch Normal-
ization (Ioffe and Szegedy 2015), DisturbLabel (Xie et al.
2016), Stochastic Depth (Huang et al. 2016) and so forth.
Specifically, Dropout randomly selects a subset of neurons
and sets them to zero, which is widely used for design-
ing novel networks. DropConnect instead randomly sets the
weights between layers to zero. Batch normalization im-
proves the gradient propagation through network by normal-
izing the input for each layer. DisturbLabel randomly re-
places some labels with incorrect values to regularize the
loss layer. Stochastic Depth randomly skips some layers in
the residual networks. In addition, (Park and Kwak 2016)
analyze the effect of Dropout on max-pooling and convo-
lutional layers. (Morerio et al. 2017) extend the standard
Dropout by introducing a time schedule to adaptively in-
crease the ratio of dropped neurons.

Among these works, Dropout (Srivastava et al. 2014) is
the most popular and more related to our method. Both work
by randomly setting a portion of responses of hidden layers
to zero in the training. However, there exist clear differences
between WCD and Dropout. First, WCD is proposed to reg-
ularize the stack of convolutional layers while Dropout is
usually inserted between the fully connected layers. Second,
WCD differs from Dropout in that it operates on the chan-
nels other than the neurons. While in the stack of convolu-
tional layers, each channel is a basic unit. Finally, the neu-
ron selection in Dropout is completely random, in contrast,
WCD selects the channels according to their activation sta-
tus. Actually, Dropout can be seen as a special case of WCD,
which will be discussed below. Both WCD and Dropout can
be combined in one network, which is exactly the practice
in our experiments.

Besides, WCD is similar to the recent SE-Block (Hu,
Shen, and Sun 2017) in some degree, both of which share
the similar structures (please refer to the paper for details).
As aforementioned, due to the selection according to rela-
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Figure 2: Illustration of Weighted Channel Dropout. GAP: Global Average Pooling, WRS: Weighted Random Selection, RNG:
Random Number Generator. The channels are selected according to the activation status. The red ones are set to zero and the
green are rescaled from the corresponding input channels.

tive magnitude of activation status, WCD can be treated as a
special way to explore the channel relationship, which is the
focus of SE-Block. However, compared to SE-Block, first of
all, WCD is totally parameter-free and added only in train-
ing phase, thus leaving the inference cost not added at all.
Second, when combining SE-Block with the existing net-
works, it requires re-pretraining the whole model on large-
scale ImageNet before finetuning on other datasets. Unlike
SE-Block, WCD can be plugged into any existing networks
and does not need to re-pretrain the whole model, thus fit-
ting well for the application on small datasets. Finally, WCD
is usually applied to high convolutional layers within CNN
while SE-Block mainly affects early convolutional layers.
From this perspective, WCD and SE-Block are complemen-
tary to each other.

Our Approach
WCD is designed to provide regularization to the stack
of convolutional layers within CNN. Taking VGGNet (Si-
monyan and Zisserman 2014) as an example, Dropout is
inserted among the last three fully-connected layers, while
no regularization is deployed in the layers before pool5.
When finetuning VGGNet on small datasets, more regu-
larization is wished since the overfitting is severe. Here
we present some notations which will be used in the fol-
lowing. Formally, in two consecutive convolutional layers,
X = [x1, x2, · · · , xN ] denotes the output of previous layer,
X̃ = [x̃1, x̃2, · · · , x̃Ñ ] denotes the input to next layer, N
and Ñ are the number of channels, xi and x̃i are the i-th
channel. In almost all cases, X̃ = X , i.e., there are Ñ = N
and

x̃i = xi, i = 1, 2, · · · , N (1)

Differently, WCD randomly selects the channels from X to
construct X̃ according to the activation status in each chan-
nel. It is worth noting that the previous or the next layer
could also be pooling layer and so on. Without loss of gen-
erality, here we discuss the case of two consecutive convo-
lutional layers. Next we will present the details of WCD,
which consists of two steps (i.e., Rating Channels and Se-

lecting Channels) and three modules (i.e., Global Average
Pooling, Weighted Random Selection and Random Number
Generator). In our method, we still have Ñ = N .

Step 1: Rating Channels
According to the observation in previous works (Zeiler and
Fergus 2014; Yosinski et al. 2014; Zhang et al. 2016), the
features in high layers of CNN have great specificity (i.e.,
class-specific in the context of image classification) and only
a small fraction of channels are activated for each input im-
age (Zhang et al. 2016). Thus, instead of treating all channels
equally and conducting random selection, we propose to first
rate the channels and assign each channel a score, which is
used as the guidance for channel selection in the following
step.

Global Average Pooling (GAP). In deep CNN, a neuron
in high layers corresponds to a local patch in the input im-
age and a channel consisting of multiple neurons represents
a specific pattern (Zhang et al. 2016). In order to rate each
channel, we adopt a simple but effective method, i.e., Global
Average Pooling, to acquire a global view of activation sta-
tus in each channel. Formally,

scorei =
1

W ×H

W∑
j=1

H∑
k=1

xi(j, k) (2)

where W and H are the shared width and height of all chan-
nels. There are more sophisticated strategies (Sánchez et al.
2013; Yang et al. 2009; Lin, RoyChowdhury, and Maji 2015;
Gao et al. 2016) to obtain the score which need further ex-
ploration. It is normal to assume that scorei > 0 since
ReLU is appended behind each convolutional layer in mod-
ern CNNs (Simonyan and Zisserman 2014; He et al. 2016;
Szegedy et al. 2016).

Step 2: Selecting Channels
After obtaining a score for each channel, it comes to how
to select the channels to construct X̃ . Here We use a binary
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Algorithm 1 Weighted Random Selection
Input: scorei > 0, maski = 0, i = 1, 2, · · · , N ,
wrs ratio.
Output: maski, i = 1, 2, · · · , N . The probability of
maski = 1 is pi = scorei∑N

j=1 scorej
.

1: For each i, ri = random(0, 1) and keyi = r
1

scorei
i .

2: Select the M = N ∗ wrs ratio items with the largest
keyi and set the corresponding maski to 1.

maski to indicate whether xi is kept or not. The probability
pi of keeping the channel xi is set to

pi =
scorei∑N
j=1 scorej

(3)

That is to say, maski has the probability pi to be set to 1,
and the channels with relatively high scores are more likely
to be kept. In the following we will present the algorithm to
achieve this goal, taking the computation cost and efficiency
into account.

Weighted Random Selection (WRS). We find that the
process of generating mask according to score can be
boiled down to a special case of Weighted Random Selec-
tion (Efraimidis and Spirakis 2006). An efficient algorithm
is adopted for our purpose, which is illustrated in Algo-
rithm 1. Specifically, first, for channel xi with scorei, a ran-
dom number ri ∈ (0, 1) is generated and a key value keyi is
computed as

keyi = r
1

scorei
i (4)

Then M items with the largest key values are selected and
the corresponding maski are set to 1. Here wrs ratio = M

N
is a hyper-parameter of WCD, indicating how many chan-
nels are kept after WRS. The algorithm is computationally
efficient, which can set maski to 1 with the probability pi
shown in Equation 3. Please refer to (Efraimidis and Spi-
rakis 2006) for more details about the algorithm.

Random Number Generation (RNG). Going further, for
small datasets, the training usually starts from the models
pretrained on ImageNet instead of from scratch. In high con-
volutional layers within the pretrained model, the disparity
between channels is large, i.e., only a few channels are as-
signed relatively high activation values with the others close
to zero (Zhang et al. 2016). If we totally select channels
according to score in these layers, it is possible that for a
given image, the sequence of selected channels is basically
the same in each forward process2, which is not desired. To
alleviate this, we further propose to add a binary Random
Number Generator rng with the parameter q tomaski. Thus
in the case that maski is set to 1, xi still has the probability
1− q to be not selected.

2For example, suppose that pi � pj , ∀j 6= i, maski is almost
certain to be set to 1
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Figure 3: The schema to combine WCD with the existing
networks. (a) WCD with VGGNet. (b) WCD with ResNet.
(c) WCD with Inception.

Summary
On the whole, X̃ is constructed as follows:

x̃i =

{
αxi if maski = 1 and rng = 1

0 otherwise
(5)

where maski has the probability pi to be set to 1, rng gen-
erates 1 with the probability q, x̃i = 0 means that all the
neurons in its W ×H zone are set to zero. The coefficient α
is used to reduce the bias between training and test data. In
our implementation, α is empirically set to

α =

∑N
j=1 scorej∑
j∈M̃

scorej
(6)

where M̃ denotes the set of channels which are finally se-
lected, the numerator is to sum the scores of all channels
and the denominator is to sum the scores of selected chan-
nels. WCD is added only in training phase, while at infer-
ence time, all channels are sent into the next layer.

Moreover, let keep ratio denote the ratio of how many
channels are kept for X̃ in training3, and we have

keep ratio =
|M̃ |
N
≈ wrs ratio× q (7)

where |M̃ | denotes the number of elements in M̃ ,wrs ratio
and q are two hyper-parameters of WCD. Usually we have
0 < wrs ratio < 1 and 0 < q < 1. Besides, WCD also
unifies the following special cases:

1. wrs ratio = 1, 0 < q < 1. X̃ is constructed by totally
random selection from the channels in X , which is de-
noted as Channel-Wise Dropout. When W = H = 1, it is
equivalent to the original Dropout.

2. 0 < wrs ratio < 1, q = 1. The channels with maski =
1 will be surely kept.

The cases that either wrs ratio or q is set to 0 make no
sense. WCD can be also treated as a more generic version

3The keep ratio is set for the convenience of description in the
following, which is not directly used to select channels in WCD.
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Figure 4: Example images. (a) CUB-200-2011. (b) Stanford
Cars. (c) Caltech-256.

of Channel-Wise Dropout and brings additional flexibility.
For instance, since the channels with high scores are more
likely to be selected, the selected channels remain discrimi-
native even with a low keep ratio and would not hinder the
convergence of network.

Application
WCD can be theoretically plugged into any two consecu-
tive layers within CNN. In practice, it is usually used to
regularize the stack of convolutional layers. The schema to
integrate WCD with the classical networks including VG-
GNet (Simonyan and Zisserman 2014), ResNet (He et al.
2016) and Inception (Szegedy et al. 2016) are displayed in
Figure 3. Specifically, inspired by the observation that the
channels in early convolutional layers are more related to
each other (Tompson et al. 2015) , we mainly deploy WCD
behind the high layers, such as pool4 and pool5 in VGGNet-
16, res5a and res5c in ResNet-101. To stress again, as a
lightweight parameter-free module, WCD is added to these
networks only in training phase and the network in test phase
is unchanged. Besides, it requires no re-pretaining on Ima-
geNet and thus can be easily deployed when finetuning these
networks on small datasets.

Experiment
Experimental Setup
In this section, we evaluate WCD combining with VGGNet-
16 (Simonyan and Zisserman 2014), ResNet-101 (He et al.
2016), Inception-V3 (Szegedy et al. 2016) on CUB-200-
2011 (Wah et al. 2011), Stanford Cars (Krause et al. 2013)
and Caltech-256 (Griffin, Holub, and Perona 2007). On
these datasets, the scale of training set is rather small and
thus overfitting is more likely to occur.

All the models are implemented with Caffe (Jia et al.
2014) on Titan-X GPUs. WCD is added to the networks in
training phase with the original layers remaining unchanged.
The hyper-parameters including wrs ratio and q are set by
cross validation and keep consistent on the similar datasets

Table 1: The parameter settings of WCD on CUB-200-2011
and Stanford Cars.

VGGNet-16 ResNet-101 Inception-V3
layer 1 pool4 res5a reduction b

wrs ratio 1 0.8 0.8 0.8
q 1 0.9 0.9 0.9

layer 2 pool5 res5c inception c2
wrs ratio 2 0.9 0.8 0.8

q 2 0.5 0.9 0.9

Table 2: The performance comparison on CUB-200-2011
and Stanford Cars.

CUB Cars
VGGNet-16 72.31% 86.11%
WCD-VGGNet-16 76.10% (+3.79%) 88.28% (+2.17%)
ResNet-101 76.45% 87.84%
WCD-ResNet-101 77.22% (+0.77%) 88.37% (+0.53%)
Inceptin-V3 83.98% 93.17%
WCD-Inception-V3 84.52% (+0.54%) 93.41% (+0.24%)

such as CUB-200-2011 and Stanford Cars. The training
starts from the model pretrained on ImageNet. Stochastic
gradient descent (SGD) is used for the optimization. The ini-
tial learning rate is set to 0.001 and reduces to its 1/10 three
times until convergence. In all experiments, the images are
randomly flipped and cropped before passing into the net-
works, and no other data augmentation is used. The infer-
ence is done with one center crop of the test images. Finally,
the top-1 accuracy is taken as the metric for evaluation.

CUB-200-2011 & Stanford Cars
CUB-200-2011 (Wah et al. 2011) is a widely-used fine-
grained dataset which collects images in 200 birds species.
For each class, there are about 30 images for training. Some
example images are shown in Figure 4(a).

VGGNet-16, ResNet-101, Inception-V3 are adopted as
the baselines. The parameters of integrating WCD with these
networks are shown in Table 1. For all three networks, WCD
is deployed behind the last two layers conducting the fea-
ture dimension reduction in the stack of convolutional lay-
ers, e.g., pool4 and pool5 in VGGNet-16, res5a and res5c
in ResNet-101. Please refer to (Simonyan and Zisserman
2014), (He et al. 2016) and (Szegedy et al. 2016) for the
details of network structures. As shown in Table 2, WCD
can bring consistent improvements over the baselines. For
VGGNet-16, WCD achieves a significant 3.79% improve-
ment over the base model.

Compared to CUB-200-2011, Stanford Cars (Krause et
al. 2013) is a fresh domain concentrating on the categoriza-
tion of cars, such as Make, Model and Year, as shown in
Figure 4(b). There are about 40 training images for each of
196 classes. The parameter settings of WCD are the same
as those on CUB-200-2011 shown in Table 1, and the per-
formance comparison is also shown in Table 2. This dataset
is more distinguishable than CUB-200-2011 and the base-

8429



Table 3: The parameter settings of WCD and performance
comparison on Caltech-256. *-reported on the reduced test
set consisting of 20 images per class.

VGGNet-16 ResNet-101 Inception-V3
layer 1 pool5 res5c inception c2

wrs ratio 1 0.8 0.8 0.8
q 1 0.9 0.9 0.9

Baseline 72.31% 78.00% 79.52%

With WCD 72.86% 78.30% 80.61%
(+0.55%) (+0.30%) (+1.09%)

Baseline* 70.91% 77.28% 78.81%

With WCD* 71.83% 77.94% 79.92%
(+0.92%) (+0.66%) (+1.11%)

lines are relatively high, while the models with WCD still
consistently outperform the baselines.

Discussion. The recent work (Zheng et al. 2017) lists the
performance reported on CUB-200-2011 and Stanford Cars,
where the methods can be roughly divided into two cate-
gories. The first one is to encode CNN features for more
discriminative representation, such as Bilinear CNN (Lin,
RoyChowdhury, and Maji 2015) and Compact Bilinear
CNN (Gao et al. 2016). The second is to exploit the at-
tention mechanism, such as RA-CNN (Fu, Zheng, and Mei
2017) and MA-CNN (Zheng et al. 2017). Our method does
not belong to either of the above categories and the focus of
this paper is not to report state-of-the-art performance. WCD
is a fairly generic method to alleviate the overfitting when
finetuning CNN on small datasets, which can be integrated
into these existing models. We take some preliminary exper-
iments to combine WCD with Compact Bilinear CNN (Gao
et al. 2016), and find that WCD can help outperform this
strong baseline (84.88% vs. 84.01%)4.

Caltech-256
Both CUB-200-2011 and Stanford Cars belong to the field
of fine-grained visual categorization. In order to obtain a
thorough evaluation of WCD, here we further evaluate it
on Caltech-256 (Griffin, Holub, and Perona 2007) which
focuses on generic classification. Some example images of
Caltech-256 are shown in Figure 4(c), which display larger
inter-class difference than fine-grained datasets. There is no
split way provided in the dataset, and for each class we ran-
domly select 20 images for training with the rest as test set.
The experimental settings are a little different from those
on CUB-200-2011 and Stanford Cars. Specifically, WCD
is appended behind the last layer conducting the feature di-
mension reduction in the stack of convolutional layers, such
as pool5 in VGGNet-16, res5c in ResNet-101. The perfor-
mance comparison as well as the parameter details is shown
in Table 3. It can be seen that, WCD also works well on
Caltech-256 and helps achieve superior performance over
the base model.

Discussion. We notice that Caltech-256 (Griffin, Holub,

4WCD is added after pool5 with the other settings unchanged.

Table 4: The ablation study of WCD. The results are re-
ported on CUB-200-2011.

Approach Settings Accuracy
A VGGNet-16 baseline 72.31%

B VGGNet-16+
pool5 Dropout dropout ratio = 0.5 73.90%

C VGGNet-16+
pool5 SE-Block

SE-Block not pretrained 72.71%

D SE-Block pretrained 73.05%

E VGGNet-16+
pool5 WCD

wrs ratio = 0.9
q = 0.5

75.60%

F

VGGNet-16+
pool5 WCD

wrs ratio = 1
q = 0.45

75.02%

G wrs ratio = 0.45
q = 1

73.28%

H wrs ratio = 0.9
q = 0.5

75.60%

I

VGGNet-16+
pool5 WCD

wrs ratio = 1
q = 0.25

73.16%

J wrs ratio = 0.25
q = 1

72.16%

K wrs ratio = 0.5
q = 0.5

75.33%

and Perona 2007) exhibits long-tail distribution where the
number of images for each class largely varies from each
other. Thus we further report the results on the reduced test
set containing the same number of images for each class.
Specifically, the training set remains unchanged, and we ran-
domly select another 20 images from each class as the test
set which has no overlap with the training set. The perfor-
mance comparison is shown in the last two rows of Table 3,
which further validate the effectiveness of WCD.

Ablation Study
In this subsection, we take extensive experiments to analyze
the behaviors of WCD.

Channel dropout analysis. WCD is based on the obser-
vation that in high convolutional layers of CNN (pretrained
on ImageNet or finetuned on the specific dataset), for an in-
put image, only a few channels are activated with relatively
high values while the neuron responses in the other channels
are close to zero. The phenomenon is validated by the exper-
iments in (Zhang et al. 2016). Noticing that the experiments
in (Zhang et al. 2016) were performed on image patches, we
conduct the similar experiments on full images and get the
same observations. For example, for the input images ran-
domly selected from CUB-200-2011, nearly half of chan-
nels in the pool5 of VGGNet-16 hold the responses that are
zero or very close to zero.

Comparison with Dropout and SE-Block. As shown
in the first part of Table 4, a Dropout layer is inserted af-
ter pool5 of VGGNet-16 (Row B), and then a SE-Block is
added at the same place (Row C and Row D). For SE-Block,
VGGNet-16 with it is first directly finetuned on the specific
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Figure 5: Effect of WCD on network training. The exper-
iments are conducted on CUB-200-2011 with VGGNet-16
as the base model. Best viewed in color.

dataset from the pretrained model on ImageNet. Then, given
that SE-Block contains two fully-connected layers, we fur-
ther re-pretrain the whole model on ImageNet before fine-
tuning on small datasets. The resulting accuracy is a little
better than that without re-pretraining, but still inferior to
that with WCD (Row E).

Special cases of WCD. Row F and Row G of Table 4 are
the two special cases of WCD as aforementioned, i.e., either
wrs ratio or q is set to 1. The comparison between Row F
and Row H shows the effectiveness of WCD compared to
Channel-wise Dropout, while the comparison between Row
G and Row H indicates the necessity of RNG in WCD. Be-
sides, the results in the last three rows of Table 4 further
demonstrates the superiority of WCD, indicating that WCD
enables a low keep ratio (≈ wrs ratio× q = 0.25). It may
suit for the cases where the training images are very rare,
such as in medical image analysis (Qayyum et al. 2017).

Effect on network training. Figure 5 shows the effect of
WCD on training with the settings shown in Table 1. It can
be seen that, the curve of training error with WCD drops
more slowly while the resulting test error is lower, proving
that WCD can reduce overfitting in the training phase.

Computation cost of WCD. Table 5 provides some com-
plexity statistics of WCD, which indicates that the compu-
tation cost introduced by WCD is negligible. Besides, these
additional cost is introduced only in training phase and the
inference cost is not increased at all.

Conclusion
In this work, we deal with the regularization of CNN by
proposing a novel method named WCD for the stack of con-
volutional layers. Specifically, WCD filters the channels ac-
cording to their activation status for the next layer. It consists
of two steps, i.e., Rating Channels and Selecting Channels,

Table 5: Computation cost introduced by WCD. The statis-
tics are obtained on a Titan GPU with batch size = 32. The
training time is averaged over the first 100 iterations.

GPU memory
(MB)

Training time
(sec/iter)

VGGNet-16 5753 0.74
WCD-VGGNet-16 5817 0.83

and three modules, i.e., Global Average Pooling, Weighted
Random Selection and Random Number Generator. As a
whole, WCD is a lightweight component which can be inte-
grated into any existing models with negligible computation
cost introduced only in training phase. Its characteristics,
e.g., parameter-free and no need to re-pretrain on ImageNet,
make it well-suited for the application on small datasets.
Finally, the experimental results with VGGNet-16, ResNet-
101, Inception-V3 on multiple datasets show the robustness
and superiority of WCD. For the future work, we plan to
apply WCD to other types of visual tasks, such as object
detection.
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