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Abstract
Deep neural networks have been playing an essential role in
many computer vision tasks including Visual Question An-
swering (VQA). Until recently, the study of their accuracy
was the main focus of research but now there is a trend toward
assessing the robustness of these models against adversarial
attacks by evaluating their tolerance to varying noise levels.
In VQA, adversarial attacks can target the image and/or the
proposed main question and yet there is a lack of proper anal-
ysis of the later. In this work, we propose a flexible frame-
work that focuses on the language part of VQA that uses se-
mantically relevant questions, dubbed basic questions, acting
as controllable noise to evaluate the robustness of VQA mod-
els. We hypothesize that the level of noise is negatively corre-
lated to the similarity of a basic question to the main question.
Hence, to apply noise on any given main question, we rank a
pool of basic questions based on their similarity by casting
this ranking task as a LASSO optimization problem. Then,
we propose a novel robustness measure Rscore and two large-
scale basic question datasets (BQDs) in order to standardize
robustness analysis for VQA models.

1 Introduction
Visual Question Answering (VQA) is one of the most chal-
lenging computer vision tasks in which an algorithm is
given a natural language question about an image and tasked
with producing an answer for that image-question pair. Re-
cently, various VQA models (Antol et al. 2015; Malinowski,
Rohrbach, and Fritz 2015; Noh, Hongsuck Seo, and Han
2016; Wu et al. 2016; Lu et al. 2016; Li and Jia 2016;
Ben-younes et al. 2017; Fukui et al. 2016; Kim et al. 2017)
have been proposed to tackle this problem, and their main
performance measure is accuracy. In general, any model
must have in some sense few aspects of quality relevant to
the problem it solves. Accuracy, robustness, stubbornness,
and myopia are some examples of such qualities for VQA
models that were studied by the community (Agrawal, Ba-
tra, and Parikh 2016). Obviously, some qualities are more
important than others and an overall evaluation of a model
should rationalize the interactions of these qualities if pos-
sible. In this work, we are interested only in the robustness
of VQA models to small noise or perturbation to the input
question, dubbed main question (MQ).
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Figure 1: More robust models tolerate larger noise levels.
Thus, To assess the robustness of VQA models, we apply
noise at a controllable level to the main question. We sort
a dataset of basic questions based on their similarity to the
main question and append three basic questions at a time
as noise. The robustness is then measured by Rscore as the
deterioration in accuracy over a given testing dataset.

Motivation

The idea of analyzing model robustness as well as training
robust models is already a rapidly growing research topic for
deep learning models applied to images, e.g. adversarial at-
tacks in image classification (Fawzi, Moosavi Dezfooli, and
Frossard 2017; Xu, Caramanis, and Mannor 2009). How-
ever, most VQA research study other quality aspects that test
certain signs of intelligence, such as stubbornness, compo-
sitionality, and myopia. Robustness is a concept that despite
its importance is heavily misinterpreted and commonly ne-
glected. To the best of our knowledge, we are the first to
propose a measure for the robustness of VQA models.
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Assumptions
Robustness to some noises (e.g., motion blur in images) is
more important than others (e.g., salt and pepper) because
they are more common. Additionally, some noises have con-
trollable strength, which allows for more sophisticated ro-
bustness measures (e.g., area under the performance curve
versus noise level). In this work, we are establishing a frame-
work for analyzing robustness against a type of controllable
additive noise that is relevant to VQA but is not common.
Namely, plain-text concatenation of the MQ with semanti-
cally similar questions, dubbed basic questions (BQs); refer
to Figure 1 for a visual illustration. The approach, of consid-
ering those BQs as noise, and similar concepts have merit to
them and they are studied in-depth in psychology under “de-
ductive reasoning in human thinking” despite being a con-
troversial topic (Rips 1994). For instance, a person quizzed
on the “color of the bus” in an image of a car will write down
the color of the car while acknowledging the discrepancy.
Comparably, if they were asked multiple similar questions,
they might be unhinged but answer correctly nevertheless.

Robustness Evaluation Framework
Figure 1, depicts the noise generation part of our robustness
evaluation. Given a plain-text question (i.e., the MQ) and a
plain-text basic questions dataset (BQD), we start by ranking
the BQs in BQD by their similarity to the MQ using some
text similarity ranking method; we formulate this ranking as
LASSO optimization problem. Then, depending on the re-
quired level of noise, we take the top, e.g. n = 3, ranked
BQs and we append them one after the other. The concatena-
tion of these BQs with MQ is the generated noisy question.
To measure the robustness of any VQA model, the accuracy
over a testing dataset with and without adding this generated
noise is compared using our proposed Rscore.

This framework is posed such that extrapolating to other
types of noise is straightforward. For example, question-
words-shuffling noise can be controlled by the hamming dis-
tance (e.g., the larger the hamming distance the higher level
of noise) whereas question-rephrasing is a noise that is not
trivially controllable. We apply the noise of choice to the
questions in a testing dataset, then evaluate the deterioration
in accuracy using Rscore. A more comprehensive robustness
evaluation of a VQA model should employ multiple types
of noise, possibly ones that could be jointly applied on the
image and the MQ at the same time.

Contributions
i We propose a novel framework to measure the robust-

ness of VQA models and test it on six different models.
ii We propose a new text-based similarity ranking method,

i.e. LASSO, and compare it against BLEU-1, BLEU-2,
BLEU-3, BLEU-4 (Papineni et al. 2002), ROUGE (Lin
2004), CIDEr (Vedantam, Lawrence Zitnick, and Parikh
2015) and METEOR (Banerjee and Lavie 2005).

iii We provide the similarity ranking of two large-scale
BQDs to test the robustness of VQA models: Gen-
eral Basic Question Dataset (GBQD) and Yes/No Basic
Question Dataset (YNBQD).

2 Related Work
There is a big effort from the community to tackle the prob-
lem of VQA (Kiros, Salakhutdinov, and Zemel 2014; Gao et
al. 2015; Xiong, Merity, and Socher 2016; Huang, Alfadly,
and Ghanem 2017a; 2017b). It is a multidisciplinary task
that involves natural language progressing (NLP), computer
vision and machine learning.

Sentence Evaluation Metrics
Sentence evaluation metrics have been widely used in dif-
ferent areas such as text summarization and machine trans-
lation. In our work, we exploit these metrics to measure
the similarity between the MQs and the BQs. BLEU (Pa-
pineni et al. 2002) is one of the most popular metrics in
machine translation that is based on precision. However, its
effectiveness was questioned by (Elliott and Keller 2013;
Kulkarni et al. 2011). METEOR (Banerjee and Lavie 2005),
however, is based on precision and recall. In addition,
ROUGE (Lin 2004) is a popular recall-based metric in the
text summarization. It tends to reward longer sentences with
higher recall. Moreover, a consensus-based metric, CIDEr
(Vedantam, Lawrence Zitnick, and Parikh 2015), rewards a
sentence for being similar to the majority of descriptions
written by a human. In our experiments, we take all of the
aforementioned metrics to rank BQDs, and our experimen-
tal results show that our proposed LASSO ranking method
achieves better ranking performance.

Sentence Embedding
There exists many method that analyze the relationship be-
tween words, phrases and sentences by mapping text into
some latent vector spaces (Pennington, Socher, and Man-
ning 2014; Kiros et al. 2015; Mikolov et al. 2013). It was
shown that if two phrases share the same context in the cor-
pus, their embedded vectors will be close to each other in
the latent space. Skip-thoughts (Kiros et al. 2015) can map
text to embedding space using an encoder-decoder architec-
ture of recurrent neural networks (RNNs). The encoder is an
RNN with gated recurrent unit (GRU) activation (Chung et
al. 2014). While the decoder is an RNN with a conditional
GRU. We use this model because it performs well on em-
bedding long sentences.

Attention Mechanism in VQA
Attention-based VQA models can attend to local image re-
gions related to the query question (Shih, Singh, and Hoiem
2016; Chen et al. 2016; Yang et al. 2016; Li and Jia 2016).
In the pooling step of (Li and Jia 2016), the authors use an
image-attention mechanism to help determine the relevance
of updated question representations to the original. As far
as we know, no work has tried to apply the mechanism of
language attention to VQA models before (Lu et al. 2016).
They propose a mechanism of co-attention that jointly per-
forms language and image attention.

Multiple Modality Fusion Approaches in VQA
The VQA task considers features from both the question and
image and can be viewed as a multimodal feature fusion
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task. The authors of (Kiros, Salakhutdinov, and Zemel 2014;
Ben-younes et al. 2017; Fukui et al. 2016; Kim et al. 2017)
have tried to focus on modeling the interactions between
two different embedding spaces. In (Kiros, Salakhutdinov,
and Zemel 2014), the authors demonstrate the success of
the bilinear interaction between two embedding spaces in
deep learning for fine-grained classification and multimodal
language modeling. Multimodal Compact Bilinear (MCB)
pooling (Fukui et al. 2016) exploits an outer product be-
tween visual and textual embedding. Moreover, Multimodal
Low-rank Bilinear (MLB) pooling (Kim et al. 2017) uses a
tensor to parametrize the full bilinear interactions between
question and image spaces. MCB and MLB are efficiently
generalized in (Ben-younes et al. 2017).

Robustness of Neural Network
In (Fawzi, Moosavi Dezfooli, and Frossard 2017), the au-
thors analyze the robustness of deep models by adding some
perturbations into images and observe how the prediction re-
sult is affected. In (Kafle and Kanan 2017), the authors men-
tion that VQA models can produce different answers by us-
ing slight variations of a query question implying that VQA
models do not actually comprehend the asked question.

3 Methodology
Our goal is to evaluate the robustness of VQA models over
the MQs in the testing set of the popular VQA dataset (An-
tol et al. 2015). For each (image, MQ) pair in the testing
set, we concatenate to MQ the most three similar questions
(i.e., BQs) to MQ, obtained by a certain similarity ranking
method, over a large-scale basic questions dataset (BQD) as
in Figure 1. Finally, we compute the accuracy before and af-
ter adding this noise and compare them using Rscore. In this
section, we will go through the details of this procedure.

Datasets Preparation
Our BQD is the combination of only unique questions from
the training and validation sets of “real images” in the VQA
dataset (Antol et al. 2015), which is a total of 186027 ques-
tions. However, because there will be questions in the testing
set of 244302 questions that is also in this BQD, we will ex-
clude them only when executing the similarity ranking.

We will need feature representations of our questions in
both the testing set and the BQD. We will use the Skip-
thought vector (Kiros et al. 2015) which exploits an RNN
encoder with GRU (Chung et al. 2014) activation to map
any English sentence to a feature vector v ∈ R4800.

Similarity Ranking
We can project the problem of finding similar questions to a
given MQ using this BQD and a similarity ranking method.
We will consider two categories of question similarity rank-
ing methods; direct similarity and sparse combination.

Direct Similarity We will need a text similarity (or dis-
similarity) scoring method, that takes two sentences and re-
turn a similarity (or dissimilarity) score of how “close” (or
“far”) are those two semantically from each other. By com-
puting the score of a given MQ to all BQs in the BQD we can

directly rank the questions from the most to the least similar.
Here, we will use seven scoring methods; BLEU-1, BLEU-
2, BLEU-3, BLEU-4, ROUGE, CIDEr and METEOR.

Sparse Combination We will need the feature represen-
tations of all the questions and a distance measure to de-
termine a sparse combination of BQs needed to represent a
given MQ. This can be modelled as follows:

min
x

distance (Ax,b) + λ ‖x‖1 , (1)

where b is the feature vector of the MQ, A is the matrix of
feature vectors of all questions in BQD as its columns, and
λ is a trade-off parameter that controls the sparsity of the
solution. Note that all these vectors are normalized to a unit
`2-norm. To cast this as a LASSO optimization problem

distance(q,p) =
1

2
‖q− p‖22

Different distance metric could give different results espe-
cially if they make sense for the latent embedding space.
The ith element of the solution x is the similarity score of
the BQ encoded in the ith column of A. We reiterate the im-
portance of making sure that b is not one of the columns of
A. Otherwise, and because we are encouraging sparsity, the
ranking will give all other BQs a zero similarity score.

Robustness Evaluation
In the VQA dataset (Antol et al. 2015), a predicted answer
can be considered partially correct if it matched the answers
of less than three human annotators. The overall accuracy is:

AccuracyVQA =
1

N

N∑
i=1

min

{∑
t∈Ti

I[ai = t]

3
, 1

}
(2)

where I[·] is the indicator function, N is the total number
of examples, ai is the predicted answer, and Ti is human
annotators answer set of the ith image-question pair.

The Rscore of VQA Models First, we measure the accu-
racy of the model on the clean testing set and denote it as
AccVQA. Then, we append the top ranked k BQs to each of
the MQs and recompute the accuracy of the model on this
noisy dataset and we call it AccBQD. Finally, we compute
the absolute difference Accdiff = |AccVQA − AccBQD| and
report the robustness

Rscore = clamp1
0

(√
m−

√
Accdiff√

m−
√
t

)
(3)

Here, we apply this min-max clipping of the score

clampb
a(x) = max (a,min (b, x))

where 0 ≤ t < m ≤ 1. The parameters t and m are the tol-
erance and maximum robustness limit, respectively. In fact,
Rscore is designed to decrease smoothly from 1 to 0 as Accdiff
moves from t to m and remains constant outside this range.
The rate of change of this transition is exponentially decreas-
ing from exponential to sub-linear in the range [t,m]. The
reasoning behind this is that we want the score to be sensi-
tive if Accdiff is small, but not before t, and less sensitive if
it is large, but not after m. Note that Rscore will be penalized
even if AccVQA was less than AccBQD, i.e. when we observe
an improvement in the accuracy after adding the noise.
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Basic Questions Datasets
The size of the BQD has a great impact on the noise gen-
eration method. Basically, the more questions we have, the
more chance it has to contain similar questions to any given
MQ. On the other hand, solving Eq 1 for each question in
the VQA testing set of 244302 questions for the 186027
unique questions in both training and validation set can be-
come computationally expensive. Luckily, we need to do it
at most once. We set λ = 10−6 and keep the top-k BQs for
each MQ produced by solving Eq 1, where k = 21. The
resultant BQD will have 244302 instance of this format:

{Image, MQ, 21 (BQ+ corresponding similarity score)}

We keep the same output 10 answers, annotated by differ-
ent workers through AMT (Amazon Mechanical Turk), for
each instance as specified by the VQA dataset (Antol et al.
2015) in the open-ended and multiple-choice (18 choice)
tasks. Approximately 90% of the answers only have a sin-
gle word and 98% of the answers have no more than three
words. In addition, these datasets contain 81434 testing im-
ages from the MS COCO dataset (Lin et al. 2014).

Because most of the VQA models have the highest ac-
curacy performance in answering yes/no questions, we have
collected two BQDs; Yes/No Basic Question Dataset (YN-
BQD) and General Basic Question Dataset (GBQD). Now,
in practice, our proposed BQDs can be used directly to test
the robustness of VQA models without running the LASSO
ranking method again. In our experiments, we will compare
using LASSO (i.e., sparse combination) to using other seven
direct similarity metrics in building BQDs.

4 Experiments and Analysis
To analyze our proposed framework, we will perform our
experiments on six VQA models; LQI denoting LSTM Q+I
(Antol et al. 2015), HAV denoting HieCoAtt (Alt, VGG19)
and HAR denoting HieCoAtt (Alt, Resnet200) (Lu et al.
2016), MU denoting MUTAN without Attention and MUA
denoting MUTAN with Attention (Ben-younes et al. 2017),
and MLB denoting MLB with Attention (Antol et al. 2015).
On top of that, we will limit ourselves to the open-ended task
on the test-dev partition from the 2017th VQA Challenge
(Antol et al. 2015), denoted here as dev, unless otherwise
specified like using the test-std partition, denoted std.

Comparing Similarity Ranking Methods
In addition to building GBQD and YNBQD using LASSO,
we also generate them using the other similarity metrics (i.e.,
BLEU-1, BLEU-2, BLEU-3, BLEU-4, ROUGE, CIDEr and
METEOR) as described in the Methodology section. Then,
for each MQ, we split the top-21 ranked BQs into seven par-
tition each of which contains three consecutive BQs to con-
trol the noise level. More concretely, partition 1, which is
(BQ1, BQ2, BQ3), has smaller noise than partition 7, which
is (BQ19, BQ20, BQ21), as illustrated in Figure 1, with par-
tition 0 being the empty partition. Finally, some VQA mod-
els limit the number of words in the MQ, which might lead to
trimming the appended noise (i.e. the BQs in the partition).
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(a) LASSO GBQD
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(b) LASSO YNBQD

Figure 2: Compares the accuracy of six VQA models with
increasing noise levels from both GBQD and YNBQD. The
x-axis is the partition index with 0 meaning MQ without
noise. We can see a monotonous trend as the noise increases.

Figure 2 shows the accuracy of the six VQA models with
the noise coming from GBQD and YNBQD generated by
our proposed LASSO similarity ranking method. We can see
that the accuracy is decreasing as the partition index in-
creases, i.e. confirming our assumption of treating these BQs
as noise and that the noise level is increasing as the similarity
score of the BQs decreases. However, we repeated the same
experiments on GBQD generated by the other similarity
ranking methods in Figure 3 and we couldn’t see this trend
anymore. The plots became less monotonous and acting ran-
domly as we move from partition 1 to partition 7. Also, we
observe a big drop in accuracy starting from partition 1 ren-
dering these similarity measures ineffective in this context.
In spite of that, various work (Xu et al. 2015; Mostafazadeh
et al. 2016; Karpathy and Fei-Fei 2015; Vinyals et al. 2015;
Fang et al. 2015) still use them for sentence similarity evalu-
ation because of their simple implementation. This fact sig-
nifies the need to develop better similarity metrics, which in
turn can be directly evaluated using this flexible framework.

Evaluating Rscore with LASSO Ranking
LASSO Ranking prevails over the other seven similarity met-
rics. In Table 1, We present two qualitative LASSO ranking
examples to showcase the limitations. In Tables 2 and 3, we
compare the six VQA models on GBQD and YNBQD and
report their Rscore on only partition 1 with t = 5 × 10−4

and m = 2 × 10−1. As we can see, generally speaking,
attention-based models (i.e. HAV, HAR, MUA and MLB)
are more robust than non-attentive ones (i.e. LQI and MU)
with HieCoAtt being the most robust. However, MU (non-
attentive) is more robust on YNBQD than MUA (the at-
tentive version), while it is not the case on GNBQD. This
shows how Rscore is strongly tied to the domain of the BQD
and that we can only compare models under the same BQD.
Note that, we studied only one property of the BQD domain,
which is the type of the answer (i.e., yes-no vs. general).
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(a) ROUGE, BLEU-4, BLEU-3, BLEU-2 and BLEU-1
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Figure 3: Compares the accuracy of six VQA models with increasing noise levels from GBQD generated by BLEU-1, BLEU-2,
BLEU-3, BLEU-4, ROUGE, CIDEr and METEOR. We could not observe a trend as the noise level increase like in Figure 2.

Rank MQ: How old is the car? Score
BQ01 How old is the truck? 0.2952
BQ02 How old is this car? 0.2401
BQ03 How old is the vehicle? 0.1416
BQ04 What number is the car? 0.1195
BQ05 What color is the car? 0.0933
BQ06 How old is the bedroom? 0.0630
BQ07 What year is the car? 0.0630
BQ08 Where is the old car? 0.0368
BQ09 How old is the seat? 0.0330
BQ10 How old is the cart? 0.0320
BQ11 What make is the blue car? 0.0281
BQ12 How old is the golden retriever? 0.0280
BQ13 What is beneath the car? 0.0239
BQ14 Is the car behind him a police car? 0.0223
BQ15 How old is the pilot? 0.0198
BQ16 How old are you? 0.0172
BQ17 How old is the laptop? 0.0159
BQ18 How old is the television? 0.0157
BQ19 What make is the main car? 0.0149
BQ20 What type and model is the car? 0.0148
BQ21 What is lifting the car? 0.0145

Rank MQ: What is the cat sitting on? Score
BQ01 Where is the cat sitting on? 0.2812
BQ02 What is this cat sitting on? 0.1079
BQ03 What is cat sitting on? 0.0548
BQ04 What is the cat on the left sitting on? 0.0526
BQ05 What is the giraffe sitting on? 0.0499
BQ06 What is the cat sitting in the car? 0.0469
BQ07 That is the black cat sitting on? 0.0462
BQ08 What is the front cat sitting on? 0.0423
BQ09 What is the cat perched on? 0.0414
BQ10 What’s the cat sitting on? 0.0408
BQ11 What is the cat leaning on? 0.0370
BQ12 What object is the cat sitting on? 0.0351
BQ13 What is the doll sitting on? 0.0289
BQ14 How is the cat standing? 0.0226
BQ15 What is the cat setting on? 0.0220
BQ16 What is the cat walking on? 0.0217
BQ17 What is the iPhone sitting on? 0.0210
BQ18 What is the cat napping on? 0.0210
BQ19 What is the dog sitting at? 0.0201
BQ20 What is the birds sitting on? 0.0183
BQ21 What is the sitting on? 0.0182

Table 1: Demonstrates the limitations of LASSO ranking with two examples and their corresponding similarity scores despite
performing well in our experiments. From the table, we readily see how the misspellings and sentence re-phrasings can affect
the quality of the generated BQD. This can be attributed to the limitation of the encoding and with better semantic encoders and
appropriate distance metrics this framework should improve out-of-the-box without any significant changes. In addition, one
can utilize the feature vectors to filter out the unique questions to form the BQD instead of relying on raw string comparisons.

8453



Rscore = 0.30 Other Num Y/N All Diff
dev: partition 1 37.78 34.93 68.20 49.96 10.20
dev: partition 2 37.29 35.03 65.62 48.67 11.49
dev: partition 3 34.81 34.39 62.85 46.27 13.89
dev: partition 4 34.25 34.29 63.60 46.30 13.86
dev: partition 5 33.89 34.66 64.19 46.41 13.75
dev: partition 6 33.15 34.68 64.59 46.22 13.94
dev: partition 7 32.80 33.99 63.59 45.57 14.59
std: partition 1 38.24 34.54 67.55 49.93 10.52
dev: partition 0 47.16 37.32 81.45 60.16 -
std: partition 0 47.57 36.75 81.56 60.45 -

(a) MUTAN without Attention model evaluation results.
Rscore = 0.48 Other Num Y/N All Diff

dev: partition 1 44.44 37.53 71.11 54.63 5.85
dev: partition 2 42.62 36.68 68.67 52.67 7.81
dev: partition 3 41.60 35.59 66.28 51.08 9.4
dev: partition 4 41.09 35.71 67.49 51.34 9.14
dev: partition 5 39.83 35.55 65.72 49.99 10.49
dev: partition 6 39.60 35.99 66.56 50.27 10.21
dev: partition 7 38.33 35.47 64.89 48.92 11.56
std: partition 1 44.77 36.08 70.67 54.54 5.78
dev: partition 0 49.14 38.35 79.63 60.48 -
std: partition 0 49.15 36.52 79.45 60.32 -

(b) HieCoAtt (Alt, VGG19) model evaluation results.
Rscore = 0.36 Other Num Y/N All Diff

dev: partition 1 49.31 34.62 72.21 57.12 8.67
dev: partition 2 48.53 34.84 70.30 55.98 9.81
dev: partition 3 48.01 33.95 69.15 55.16 10.63
dev: partition 4 47.20 34.02 69.31 54.84 10.95
dev: partition 5 45.85 34.07 68.95 54.05 11.74
dev: partition 6 44.61 34.30 68.59 53.34 12.45
dev: partition 7 44.71 33.84 67.76 52.99 12.80
std: partition 1 49.07 34.13 71.96 56.95 8.73
dev: partition 0 57.01 37.51 83.54 65.79 -
std: partition 0 56.60 36.63 83.68 65.68 -

(c) MLB with Attention model evaluation results.

Rscore = 0.34 Other Num Y/N All Diff
dev: partition 1 51.51 35.62 68.72 56.85 9.13
dev: partition 2 49.86 34.43 66.18 54.88 11.10
dev: partition 3 49.15 34.50 64.85 54.00 11.98
dev: partition 4 47.96 34.26 64.72 53.35 12.63
dev: partition 5 47.20 33.93 64.53 52.88 13.10
dev: partition 6 46.48 33.90 64.37 52.46 13.52
dev: partition 7 46.88 33.13 64.10 52.46 13.52
std: partition 1 51.34 35.22 68.32 56.66 9.11
dev: partition 0 56.73 38.35 84.11 65.98 -
std: partition 0 56.29 37.47 84.04 65.77 -

(d) MUTAN with Attention model evaluation results.
Rscore = 0.45 Other Num Y/N All Diff

dev: partition 1 46.51 36.33 70.41 55.22 6.59
dev: partition 2 45.19 36.78 67.27 53.34 8.47
dev: partition 3 43.87 36.28 65.29 51.84 9.97
dev: partition 4 43.41 36.25 65.94 51.88 9.93
dev: partition 5 42.02 35.89 66.09 51.23 10.58
dev: partition 6 42.03 36.40 65.66 51.12 10.69
dev: partition 7 40.68 36.08 63.49 49.54 12.27
std: partition 1 46.77 35.22 69.66 55.00 7.06
dev: partition 0 51.77 38.65 79.70 61.81 -
std: partition 0 51.95 38.22 79.95 62.06 -

(e) HieCoAtt (Alt, Resnet200) model evaluation results.
Rscore = 0.19 Other Num Y/N All Diff

dev: partition 1 29.24 33.77 65.14 44.47 13.55
dev: partition 2 28.02 32.73 62.68 42.75 15.27
dev: partition 3 26.32 33.10 60.22 40.97 17.05
dev: partition 4 25.27 31.70 61.56 40.86 17.16
dev: partition 5 24.73 32.63 61.55 40.70 17.32
dev: partition 6 23.90 32.14 61.42 40.19 17.83
dev: partition 7 22.74 31.36 60.60 39.21 18.81
std: partition 1 29.68 33.76 65.09 44.70 13.48
dev: partition 0 43.40 36.46 80.87 58.02 -
std: partition 0 43.90 36.67 80.38 58.18 -

(f) LSTM Q+I model evaluation results.

Table 2: Compares the accuracy and Rscore of six VQA models with increasing noise levels from GBQD generated by LASSO
evaluated on dev and std. The results are split by the question type; Numerical (Num), Yes/No (Y/N), or Other. There is a
multitude of things to consider here in order to give a well-informed interpretation of these scores. One of which is the way
Accdiff is defined in Eq 1. The absolute value can be replaced with a ReLU (i.e., max(x, 0)) but this is a design decision which
is widely accepted in the literature of adversarial attacks. As we can see, the accuracy of all tested models decrease as they are
evaluated on noisier partitions ranked by LASSO (i.e., partition 7 has a higher noise level than partition 1).
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Rscore = 0.30 Other Num Y/N All Diff
dev: partition 1 33.98 33.50 73.22 49.96 10.13
dev: partition 2 32.44 34.47 72.22 48.67 11.18
dev: partition 3 32.65 33.60 71.76 46.27 11.36
dev: partition 4 32.77 33.79 71.14 46.30 11.53
dev: partition 5 32.46 33.51 70.90 46.41 11.81
dev: partition 6 33.02 33.18 69.88 46.22 12.00
dev: partition 7 32.73 33.28 69.74 45.57 12.18
std: partition 1 34.06 33.24 72.99 49.93 10.43
dev: partition 0 47.16 37.32 81.45 60.16 -
std: partition 0 47.57 36.75 81.56 60.45 -

(a) MUTAN without Attention model evaluation results.
Rscore = 0.48 Other Num Y/N All Diff

dev: partition 1 40.80 30.34 76.92 54.49 5.99
dev: partition 2 39.63 30.67 76.49 53.78 6.70
dev: partition 3 39.33 31.12 75.48 53.28 7.20
dev: partition 4 39.31 29.78 75.12 52.97 7.51
dev: partition 5 39.38 29.87 74.96 52.95 7.53
dev: partition 6 39.13 30.74 73.95 52.51 7.97
dev: partition 7 38.90 31.14 73.80 52.39 8.09
std: partition 1 40.88 28.82 76.67 54.37 5.95
dev: partition 0 49.14 38.35 79.63 60.48 -
std: partition 0 49.15 36.52 79.45 60.32 -

(b) HieCoAtt (Alt, VGG19) model evaluation results.
Rscore = 0.37 Other Num Y/N All Diff

dev: partition 1 46.57 32.09 76.60 57.33 8.46
dev: partition 2 45.83 32.43 75.29 56.47 9.32
dev: partition 3 45.17 32.52 74.87 55.99 9.80
dev: partition 4 45.11 32.31 73.73 55.47 10.32
dev: partition 5 44.35 31.95 72.93 54.74 11.05
dev: partition 6 43.75 31.21 72.03 54.00 11.79
dev: partition 7 43.88 32.59 71.99 54.19 11.60
std: partition 1 46.11 31.46 76.84 57.25 8.43
dev: partition 0 57.01 37.51 83.54 65.79 -
std: partition 0 56.60 36.63 83.68 65.68 -

(c) MLB with Attention model evaluation results.

Rscore = 0.23 Other Num Y/N All Diff
dev: partition 1 43.96 28.90 71.89 53.79 12.19
dev: partition 2 42.66 28.08 70.05 52.32 13.66
dev: partition 3 41.62 29.12 69.58 51.74 14.24
dev: partition 4 41.53 29.30 67.96 51.06 14.92
dev: partition 5 40.46 27.66 68.03 50.39 15.59
dev: partition 6 40.03 28.44 66.98 49.84 16.14
dev: partition 7 39.11 28.41 67.44 49.58 16.40
std: partition 1 43.55 28.70 71.76 53.63 12.14
dev: partition 0 56.73 38.35 84.11 65.98 -
std: partition 0 56.29 37.47 84.04 65.77 -

(d) MUTAN with Attention model evaluation results.
Rscore = 0.53 Other Num Y/N All Diff

dev: partition 1 44.42 36.39 76.94 56.90 4.91
dev: partition 2 43.37 34.99 76.10 55.90 5.91
dev: partition 3 42.22 33.97 75.80 55.11 6.70
dev: partition 4 42.52 34.21 75.33 55.09 6.72
dev: partition 5 42.81 34.69 75.21 55.23 6.58
dev: partition 6 42.27 35.16 74.50 54.73 7.08
dev: partition 7 41.95 35.14 73.64 54.22 7.59
std: partition 1 44.93 35.59 76.82 57.10 4.96
dev: partition 0 51.77 38.65 79.70 61.81 -
std: partition 0 51.95 38.22 79.95 62.06 -

(e) HieCoAtt (Alt, Resnet200) model evaluation results.
Rscore = 0.08 Other Num Y/N All Diff

dev: partition 1 20.49 25.98 68.79 40.91 17.11
dev: partition 2 19.81 25.40 68.51 40.40 17.62
dev: partition 3 18.58 24.95 68.53 39.77 18.25
dev: partition 4 18.50 24.82 67.83 39.43 18.59
dev: partition 5 17.68 24.68 67.99 39.09 18.93
dev: partition 6 17.29 24.03 67.76 38.73 19.29
dev: partition 7 16.93 24.63 67.45 38.50 19.52
std: partition 1 20.84 26.14 68.88 41.19 16.99
dev: partition 0 43.40 36.46 80.87 58.02 -
std: partition 0 43.90 36.67 80.38 58.18 -

(f) LSTM Q+I model evaluation results.

Table 3: Compares the accuracy and Rscore of six VQA models with increasing noise levels from YNBQD generated by LASSO
evaluated on dev and std. The results are split by the question type; Numerical (Num), Yes/No (Y/N), or Other. We notice that
the Rscore of some models under YNBQD is better than GBQD (e.g., HAR) and vice versa (e.g., MUA). So, the Rscore can only
be compared in different models if they have the same BQD because it can show certain biases in the models under investigation
that are related to the type of the BQD. For example, we can clearly see how HAR is more robust towards Yes/No questions than
general questions. Whereas, HAV is apparently agnostic to this property (i.e., the answer type being Yes/No versus general).
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5 Conclusion
In this work, we propose a novel framework, a semantic
similarity ranking method, two large-scale basic question
datasets and robustness measure (Rscore) as a benchmark to
help the community build accurate and robust VQA models.
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