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Abstract

We propose a hierarchically structured reinforcement learn-
ing approach to address the challenges of planning for gen-
erating coherent multi-sentence stories for the visual story-
telling task. Within our framework, the task of generating a
story given a sequence of images is divided across a two-level
hierarchical decoder. The high-level decoder constructs a plan
by generating a semantic concept (i.e., topic) for each image
in sequence. The low-level decoder generates a sentence for
each image using a semantic compositional network, which
effectively grounds the sentence generation conditioned on
the topic. The two decoders are jointly trained end-to-end us-
ing reinforcement learning. We evaluate our model on the vi-
sual storytelling (VIST) dataset. Empirical results from both
automatic and human evaluations demonstrate that the pro-
posed hierarchically structured reinforced training achieves
significantly better performance compared to a strong flat
deep reinforcement learning baseline.

Introduction
Visual storytelling is the task of generating a sequence
of coherent sentences (i.e., a story) for an ordered image
stream (Park and Kim 2015; Huang et al. 2016; Liu et al.
2017b). Inspired by the successful use of recurrent neural
network (RNN) based encoder-decoder models employed
in machine translation tasks (Cho et al. 2014; Sutskever,
Vinyals, and Le 2014), variants of encoder-decoder models
have shown promising results on the task of story genera-
tion (Huang et al. 2016).

The fundamental challenge, however, is that the strong
performance of neural encoder-decoder models does not
generalize well for visual storytelling. The task requires a
full understanding of the content of each image as well
as the relation among different images. The motivation be-
hind our approach is to build a context-aware text-synthesis
model that can efficiently encode the sequence of images
and generate a topically coherent multi-sentence paragraph
(see Fig. 2). We design a two-level hierarchical structure,
where a high-level decoder constructs a plan by generating a
topic for each image in sequence, and the low-level decoder
generates a sentence conditioned on that topic.

∗Equal Contribution.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Overview of the Hierarchically Structured Rein-
forcement Learning, consisting of a Manager, a high-level
decoder that generates topic (subgoal) sequences g1,g2,..,
and a Worker, a low-level decoder which generates word se-
quences al,1,..al,T conditioned on the selected topic gl.

Although the maximum likelihood estimation (MLE) is
commonly used as the training loss for encoder-decoder
RNNs, it may not be an appropriate surrogate for coher-
ent long span generation task such as story generation. By
only maximizing the ground truth probability, MLE can eas-
ily fail to exploit the wealth of information offered by the
task specific losses. Most recent work in image captioning
use reinforcement learning (RL) by providing sentence-level
evaluation metrics for RNN training using global reward sig-
nals (Rennie et al. 2017; Ren et al. 2017; Liu et al. 2017a)
(e.g, BLEU score). Motivated by the success of these work,
we use RL to train our hierarchically structured model.

More specifically, we propose the hierarchically struc-
tured reinforcement learning (HSRL) model to realize a two-
level generation mechanism (schematic overview is shown
in Fig. 1). Our model consists of a high-level decoder (i.e.,
Manager) and a low-level decoder (i.e., Worker). The Man-
ager aims to produce a sequence of semantically coherent
topics for an image stream so that the overall theme is dis-
tributed among each sentence in the generated story. The
topics assigned by the Manager are then supplied to the
Worker for performing the task of sentence generation, given
the surrounding image and textual context. Our Manager is
a long short-term memory (LSTM) network (Hochreiter and
Schmidhuber 1997), while the Worker is a semantic compo-
sitional network (SCN) (Gan et al. 2017), which effectively
incorporates the topical information into the sentence gener-
ation process. The Manager and Worker are trained end-to-
end jointly using a mixed MLE and self-critical reinforce-
ment learning loss (Rennie et al. 2017) to generate focused
and coherent stories.

Empirical results on the VIST dataset from both auto-
matic and human evaluations demonstrate that the two-level
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Human Generated Stories
Annotator 1: the table setting was gorgeous for the party . the little ones were hungry , 
and ready to eat . we gathered around and gave thanks for what we were thankful for . 
the little ones look goofy in their hats . we sat around the table and enjoyed the great 
meal . 
Annotator 2: today they were setting up for a birthday . it was her 2nd birthday . she 
got all kinds of presents from everyone . a whole bunch of people came to see her . 
they all had an amazing dinner and time together . 

Our Hierarchically Structured Reinforced Model
Paragraph planning: Topic 54 -> Topic 46 -> Topic 60 -> Topic 46 -> Topic 2.
Generated Story: the table was set up for the party . little girl was dressed up as well . 
the family gathered around the living room . the baby was so happy to be in the party . 
at the end of the night , the family had a great time .

Interpreting Learned Topics
Topic 54 (about indoor):
(i) the house was decorated for christmas
(ii) the room was set up for the wedding
(iii) the inside of the building was very nice
(iv) the dining room was very spacious
Topic 46 (about kids & baby):
(i) little boy was excited to have his first birthday 
(ii) the kids are playing with a lot of fun
(iii) the baby was so happy to be there
(iv) my little brother is playing with his new toys 
Topic 60 (about family):
(i) the family take meal together very happily
(ii) the family gathered for a dinner party
(iii) my family and i went to a local party
(iv) the family gathered for the wedding
Topic 2 (about great time):
(i) she had a great time to cut her cake
(ii) he was so happy to see his wife
(iii) the family had a great time at the party
(iv) the kids had a great time at the table

Figure 2: Example of hierarchically structured reinforcement learning for visual storytelling. Our model generates coherent
stories by paragraph planning, i.e., predicting a sequence of topics. In order to visualize learned topics, we present sentences
generated from the corresponding topics in the test set. We manually assigned the topic names in this example for visual clarity.

decoder structure helps generate stories with improved nar-
rative quality due to the control of overall thread on the
generation of each sentence. Our benchmark analysis show
that the hierarchically structured RL model significantly out-
performs a strong flat deep reinforcement learning baseline,
showing the effectiveness of paragraph planning and rein-
forcing the storytelling task at different levels.

Related work
Early work on generating descriptions for images have
shaped the field of image/video captioning. A typical cap-
tioning model extracts a visual feature vector via a CNN,
and then sends it to a language model for generation of a sin-
gle sentence caption. Most notable work includes (Vinyals
et al. 2015; Xu et al. 2015; Fang et al. 2015; Donahue et
al. 2015; Karpathy and Fei-Fei 2015) for image caption-
ing, and (Venugopalan et al. 2015; Pan et al. 2016a; 2016b;
Yu et al. 2016; Pu et al. 2018) for video captioning.

More recently, the field has emerged into generation of
long form text with the introduction of image paragraph
generation (Krause et al. 2017) and dense video caption-
ing (Krishna et al. 2017) tasks. In this work, we focus
on visual storytelling, investigating the generation of nar-
rative paragraph for a photo stream. First initial models
used sequence-to-sequence framework (Huang et al. 2016;
Liu et al. 2017b), while a joint embedding model was fur-
ther developed in (Liu et al. 2017b) to overcome the large
visual variance issue in image streams. Later in (Yu, Bansal,
and Berg 2017), the task of album summarization and visual
storytelling are jointly considered. While we share the same
motivation as the above previous work, all of them rely on
MLE training leaving out the fundamental problems, e.g.,
exposure bias (Bengio et al. 2015) or not optimizing for the
desired objective, which we tackle in this paper.

Most recent work on training captioning and story gener-
ation has used sequence scores such as BLEU (Ranzato et

al. 2016) or CIDERr (Rennie et al. 2017) as a global reward
to train a policy with the REINFORCE algorithm (Williams
1992). These work mainly focus on single sentence genera-
tion using flat RL approaches. In contrast, our work uses a
hierarchically structured RL framework for capturing higher
level semantics of the story generation task.

Our hierarchically structured model is related to the HRL
work (Wang et al. 2018c) for video captioning; however,
they have not explored the discovery or the usage of in-
terpretable subgoals. The main novelty of our work when
compared to them is the usage of explicit topics as subgoal
representations. This yields significant improvements over
the baselines, as well as provides a clear semantic subgoal
for the sentences to be generated. In addition, one of the
other novelty of our work is the usage of the SCN as the
Worker, rather than a flat LSTM. Further, we introduce new
approaches for training the high- and low-level decoders to-
gether, rather than in an iterative manner.

Our work is also related to (Wang et al. 2018a; 2018b),
which uses adversarial training and inverse RL, respectively,
for storytelling. However, neither of them has explored mod-
eling of an explicit paragraph planning procedure. We intro-
duced a “plan-ahead” strategy by using learned topics and
proposing a hierarchically structured RL approach.

Hierarchically Reinforced Generation
Recent work in image captioning (Rennie et al. 2017;
Pasunuru and Bansal 2017), machine translation (Wu et al.
2016), and summarization (Paulus, Xiong, and Socher 2018;
Celikyilmaz et al. 2018) describe the benefits of fine-tuning
neural generation systems with policy gradient methods on
sentence-level scores (e.g. BLEU or CIDEr). While these
approaches are able to learn a rough approximation of
language when producing short sequences, they struggle
on tasks involving long sequences (e.g., summaries, im-
age paragraphs, stories, etc.). Preliminary work in introduc-
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Figure 3: Proposed Manager-Worker framework. For each sequence of images, the Manager LSTM (top) generates a topic
distribution g`, and the Worker SCN (Semantic Compositional Network) (bottom) generates sentences word by word a`,t
conditioned on the topic distribution. Dash lines indicate copy operation where the output of one node is copied as input to the
next node.

ing planning modules in a hierarchical reinforcement learn-
ing (HRL) framework has shown a promising new direc-
tion for long form generation, specifically in video caption-
ing (Wang et al. 2018c). With hierarchies, they were able
to generate coherent expressions, offering richer semantic
structures and better syntactic consistency. However, they
train the Manager and Worker policies alternately causing
slow convergence issues for the HRL framework under the
wake-sleep mode (Dayan and Neil 1996).

In visual storytelling, a latent world state is modeled by
the words being generated. In this world, the scene in im-
ages, the players and the objects in it interact forming a co-
herent story of events. A suitable generated story must be
coherent at both the word-level, linking words and phrases in
a fluent way, and the world-level, describing events that ful-
fill the underlying topics. Motivated by this observation, we
design a network that generates a plan of sequence of top-
ics for long-form generation. These topics are used to seed
low-level text generator that produce words, conditioned on
the intent of the topic vector. Rather than using an alter-
nating policy training, we train the Manager and Worker
jointly, eliminating the problems of objective function bal-
ancing and slow convergence.

Building a sentence generator with a simple LSTM would
not be sufficient to capture the linguistic features that are in-
duced by the generated high level topics. A sentence gen-
erator that can provide an explicit semantic control over the
sentence being generated can be better implemented with the
semantic compositional network (SCN) (Gan et al. 2017),
which we adopt in this work. Specifically, SCN adopts a
mixture-of-expert design, which consists of a set of “expert
networks”. Each expert is itself an LSTM with specific pa-
rameters relating to the topics and combination of all expert
output yields globally coherent sentence generation.

In the following, we first describe the encoder and the
structure of the two-level decoders. All W matrices are pro-
jection matrices. For simplicity we omit the bias vectors
from the formulation.

Encoder
In the visual story generation task, we are given a sequence
of images {i1,. . . ,in} and a corresponding multi-sentence
story in training. The image sequences are first embedded
into image features {v1, . . . ,vn} via a pre-trained CNN (He
et al. 2016) and mean pooling is applied to generate an
image-sequence content vector v̄, which provides the whole
model a global overview of the image-sequence content.
This feature vector is then fed as initial input to the decoder.
The words in the stories are embedded into word embedding
vectors. At test time, the embeddings of the generated words
are used.

Two-Level Decoder
Our two level Manager-Worker decoder is composed of two
variants of LSTMs specifically designed for our topically
structured network.

Manager As shown in Fig. 3, the Manager is implemented
as an LSTM network, which uses the image-sequence con-
tent vector v̄ as the initial input to the LSTM. The input to
any time step of the `-th LSTM cell is the previous decoding
output s`−1, and the last hidden state h`−1,T (T -th output
state) from the Worker LSTM (explained in detail later) af-
ter completing decoding of (`− 1)-th sentence:

s` = LSTM(s`−1,h`−1,T ) (1)
c` = [v`, s`] (2)
g` = softmax(MLP(W1c`)) , (3)

where MLP[·] denotes the multi-layer perception. At each `-
th time step of the Manager, the corresponding image feature
v` is concatenated with the decoder output s`, which acts as
the context vector c` for the generation of sentence ` to fully
describe the image content. Further, a new topic distribu-
tion g` is emitted via passing the resulting context vector c`
through a softmax layer. The Manager decoder generates a
topic distribution g` at each step of the decoder.
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Worker The worker generates sentences given the context
vector c` and the subgoal g` using semantic compositional
network (SCN) (Gan et al. 2017), as illustrated in Fig. 3.

Specifically, we define two weight tensors W3 ∈
Rnh×nx×K and W4 ∈ Rnh×nh×K , where nh is the number
of hidden units, nx is the dimension of word embedding and
K is the number of topics. The k-th 2D “slice” of W3[k]
and W4[k] represents parameters of the k-th expert. All K
experts work cooperatively to generate an output a`,t:

a`,t = softmax(MLP(W2h`,t)) (4)
h`,t = σ(W3(g`)x`,t−1 + W4(g`)h`,t−1) , (5)

W3(g`) =

K∑
k=1

g`[k]W3[k], W4(g`) =

K∑
k=1

g`[k]W4[k] ,

(6)

where x`,t−1 is the embedding of word a`,t−1, and g` is a
distributed vector with topic probabilities, rather than a one-
hot vector. In order to reduce the number of model parame-
ters, instead of implementing a tensor as in Eq. (6), we de-
compose W3(g`):

W3(g`) = W3a · diag(W3bg`) ·W3c (7)

into a multiplication of three terms W3a ∈ Rnh×nf , W3b ∈
Rnf×T and W3c ∈ Rnf×nx , where nf is the number of
factors. The same factorization is also applied to W4(g`).
W3a and W3c are shared by all the topics, while the di-
agonal term, diag(W3bg`), depends on the learned topics.
Therefore, Eq. (7) implicitly defines K LSTMs. Our Worker
model can be considered as training an ensemble of up to
K LSTMs simultaneously. When the Manager emits a sub-
goal to the Worker, it also implicitly selects the correspond-
ing LSTMs according to topics’ probabilities to generate the
current sentence.

After a special end-of-sentence token is generated, the last
hidden state h`,T of the Worker is sent to the Manager to
emit the next subgoal g`+1 distribution. This decoder de-
fines the Worker policy, which maps the current state to the
vocabulary distribution given the goal distribution to sample
the next word.

Loss Functions
Training a story generator using MLE produces stories that
are locally coherent, but lack the topical content of the im-
age thread. Using a scoring function that rewards the model
for capturing story semantics, the model learns to produce
generations that better represents the world state. We design
loss functions to train the policies based on this goal.

Manager Loss The Manager constructs a plan by gener-
ating a semantic concept (i.e., topic) for each image in se-
quence and is trained using MLE objective conditioned on
the previous output and the current state information from
the Worker h`−1,T . It minimizes the negative log likelihood
of predicting the next topic in the story given ground-truth

topics g∗` :

LMmle(θm) = −
n∑
`=1

log pθm(g∗` |g∗1 , . . . , g∗`−1, hl−1,T ) , (8)

where θm is the parameter vector of the Manager. This
high-level semantic concept constrains the Worker’s sen-
tence generation policy. In the experiments, we define how
we extract the ground-truth topic sequences g∗1...n from the
stories.

Worker Loss The Worker is responsible for generating
sentences word by word. We define two different loss func-
tions for the Worker training. The first is the MLE loss,
which corresponds to the maximum-likelihood training:

LWmle(θw) = −
n∑
`=1

T∑
t=1

log pθw (y∗`,t|y
∗
`,1, . . . , y

∗
`,t−1, g`, c`) , (9)

where θw is the parameter vector of the Worker; y∗` is the
ground-truth sentence and y∗`,t denotes the t-th word in sen-
tence y∗` . The generation is conditioned on the goal distribu-
tion g` from the Manager and the context vector c`.

For the second loss, we assume the worker policy is
stochastic and we learn it using the self-critical approach
of (Rennie et al. 2017). In self critical training, the model
learns to gather more rewards from its generations by ran-
domly sampling sequences that achieve higher reward than
its best greedy samples. Two separate output sequences are
sampled at each training iteration t: The first ŷ is gen-
erated by randomly sampling from the model’s distribu-
tion pθw(ŷ`,t|ŷ`,1, . . . , ŷ`,t−1, g`, c`). The model’s own out-
puts are the inputs at the next time step, acting similarly
to test time conditions. Once the sentence is generated,
a reward r̂ is obtained. A second sequence y?, is gener-
ated by greedily sampling from the model’s distribution
pθw(y?`,t|y?`,1, . . . , y?`,t−1, g`, c`) at each time step t and a re-
ward r? is obtained. The following loss is used to train the
self-critical RL method using the generated sequences and
both rewards:

LWrl (θw) = −(r? − r̂)· (10)
n∑
`=1

T∑
t=1

log pθw(ŷ`,t|ŷ`,1, . . . , ŷ`,t−1, g`, c`) .

The model encourages generating sequences that receive
more reward than the best sequence that can be greedily
sampled from the current policy. This way, self-critical train-
ing allows the model to explore sequences that yield higher
reward than the current best policy.

Mixed Worker Loss Minimizing the RL loss in Eq. (10)
alone does not ensure the readability and fluency of the gen-
erated sentences. The model quickly learns to generate sim-
ple sequences that exploit the teacher for higher rewards de-
spite producing nonsensical sentences. To remedy this, a bet-
ter way is to optimize a mixed objective (Wu et al. 2016;
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Pasunuru and Bansal 2017) that balances learning for gener-
ating coherent story sentences with maintaining generator’s
language model:

LWmix = γLWrl + (1− γ)LWmle , (11)

where γ ∈ [0, 1] is a scaling factor balancing the importance
of LWrl and LWmle. For annealing and faster convergence, we
start with γ = 0 (i.e., minimizing the cross-entropy loss),
and gradually increase γ to a maximum value γmax < 1.

Policy Learning
We investigate 3 objectives to combine the Manager and
Worker policies in an end-to-end learning framework.

Cascaded Training The Manager and the Worker are
trained independently. The manager is trained using the
MLE loss LMmle = −

∑n
`=1 log p(g∗` |g∗1 , . . . , g∗`−1) without

any input from the Worker. Once the Manager training is
converged, the Worker uses the trained Manager model to
generate a topic sequence given each image sequence. The
Worker is trained using the mixed loss LWmix with the ground-
truth topic sequence.

Iterative Training (Wake-Sleep Mode) The Manager
and Worker are trained iteratively in a wake-sleep mode sim-
ilar to HRL training of (Wang et al. 2018c). The Manager
observes the current state h`−1,T after the Worker generates
sentence ` − 1, and produces a topic distribution g` for the
generation of sentence `. The Worker takes as input a state
h`,t−1 and a topic distribution g`, and predicts its next ac-
tion a`,t, i.e., the t-th word in sentence `. Note that the the
topic distribution g` at Manager decoder time ` serves as a
guidance and remains a constant input to the Worker decoder
during the whole process of generating sentence `.

In the early stage of training, we set γ = 0 to pretrain
the Worker policy with LWmle. This ensures that our Worker
RL agent training starts at a good initialization point. After
the warm-up pre-training, the Worker policy and the Man-
ager policy are trained iteratively while keeping the other
one fixed, using the losses LMmle and LWmix, respectively. In
training the Worker, a sentence-level CIDEr score (Vedan-
tam, Lawrence Zitnick, and Parikh 2015) is used as the inter-
mediate reward, which measures how well a local sentence
matches the ground-truth.

Joint Training Iterative training may yield instability and
slow convergence issues in objective function optimization.
An alternative is to use a joint training scheme to enable
the Manager and Worker to backpropogate from each other’s
losses and optimize globally. We introduce a new joint train-
ing objective combining the Manager and the Worker losses:

Ljoint = (1− γ1)LMmle + γ1(γ2LWrl + (1− γ2)LWmle) . (12)

Similar to iterative training, in the early stages of training,
we set γ2 = 0 to pretrain the Worker policy with MLE loss.
After the warm-up pre-training, the Worker policy and the
Manager policy are trained jointly using Eq. (12). Here, we

also use sentence-level CIDEr score as the intermediate re-
ward. While the Worker aims to learn a better sentence gen-
erator, the Manager aims to learn a better paragraph planner
by optimizing for high-level topic semantics. The Manager’s
parameters are updated based on the rewards the Worker re-
ceives upon generating a story.

Sentence Level Credit Assignment The Worker takes ac-
tions by generating words until a special end-of-sentence
token is reached, then it obtains a reward. We evaluate the
model on story level until all sentences are generated. In
multi-sentence generation tasks, the final reward after full
story is generated can be a weak signal. To alleviate that, we
also use intermediate rewards by assigning sentence-level
rewards, by evaluating how well the current generated sen-
tence matches the ground-truth. This intermediate reward
helps alleviate the reward sparsity problem, and in experi-
ments, we found that it also helps reduce sentence and word
repetition issues, yielding more diverse stories.

Experimental Results
Dataset For learning and evaluation we use the VIST
dataset (Huang et al. 2016), which are collected from Flickr
albums and then annotated by Amazon’s Mechanical Turk
(AMT). Each story has 5 images and 5 corresponding de-
scriptions. After filtering out broken images, we obtain
19,828 image sequences with 49,629 stories in total. On av-
erage, each image sequence is annotated with roughly 2.5
stories. The 19,828 image sequences are partitioned into
three parts, 15,851 for training, 1,976 for validation and
2,001 for testing, respectively. Correspondingly, the 49,629
stories are also split into three parts, 39,676 for training,
4,943 for validation and 5,010 for testing, respectively. The
vocabulary consists of 12,977 words.

Training We extract the image features with ResNet-
152 (He et al. 2016) pretrained on the ImageNet dataset. The
resulting image feature vector v has 2,048 dimensions. We
use the GLove embedding vectors of (Pennington, Socher,
and Manning 2014) for word embedding initialization.

Since the VIST dataset (Huang et al. 2016) is originally
not annotated with topic sequences, we use clustering to
generate golden topic sequences. Specifically, we use a sim-
ple k-means algorithm to cluster the ResNet-152 image fea-
tures into K clusters, where each cluster implicitly defines a
topic, and the sentences are then considered as belonging to
the same cluster as the corresponding images.

Results
Scores We compute BLEU-4 (Papineni et al. 2002),
METEOR (Banerjee and Lavie 2005), CIDEr (Vedantam,
Lawrence Zitnick, and Parikh 2015), ROUGE-L (Lin 2004),
and SPICE (Anderson et al. 2016) metrics for evaluation.

Baselines We provide results reported in previous meth-
ods: (Huang et al. 2016) adds a decoder-time heuristic
method to alleviate the repetition issue when generating sto-
ries, (Liu et al. 2017b) uses an additional cross-modality
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Table 1: Evaluation results for generated stories by models and baselines. bold the top performing result. The Worker+Random
topics and Worker+GTT are the lower and upper bound scores for our Hierarchically Structured RL (HSRL) model.

Methods BLEU-4 ROUGE-L CIDEr-D METEOR-v1 METEOR-v2 SPICE
seq2seq + heuristics (Huang et al. 2016) 3.50 − 6.84 10.25 31.4 −
BARNN (Liu et al. 2017b) − − − − 33.3 −
h-attn-rank (Yu, Bansal, and Berg 2017) − 29.8 7.38 − 33.9 −
AREL (Wang et al. 2018b) 14.1 29.6 9.5 − 35.2 −
Show, Reward & Tell (Wang et al. 2018a) 5.16 − 11.35 12.32 − −
Our Baselines
Baseline LSTM (MLE) 7.32 27.34 7.52 8.04 31.43 7.03
Baseline LSTM (RL) 8.16 27.52 7.64 8.31 31.52 7.57
HRL (Wang et al. 2018c) 8.94 27.90 8.72 11.4 32.67 8.73
16 Topics
Worker+Random topics 4.70 23.04 3.90 5.43 27.11 5.54
HSRL w/ Cascaded Training 10.38 30.14 9.65 12.32 34.73 9.62
HSRL w/ Iterative Training 11.23 30.32 9.68 12.83 34.82 9.87
HSRL w/ Joint Training 11.64 30.61 9.73 13.27 34.95 10.25
Worker+GTT 13.41 31.53 10.82 14.27 35.48 12.83
64 Topics
HSRL w/ Cascaded Training 11.95 30.06 10.03 13.34 34.81 12.42
HSRL w/ Iterative Training 12.04 30.65 10.34 13.42 35.21 12.66
HSRL w/ Joint Training 12.32 30.84 10.71 13.53 35.23 12.97
Worker+GTT 14.68 32.73 12.63 16.32 36.22 14.34

embedding model to regularize the story generation model,
while (Yu, Bansal, and Berg 2017) uses a hierarchical model,
and considers performing album summarization and story-
telling simultaneously. All these models are trained using
the MLE loss. Recently, (Wang et al. 2018b) and (Wang et
al. 2018a) proposes the usage of a learned reward in an RL
setup for improving the performance. Our model also uses
RL, but with a different focus on using learned topics for
effective paragraph planning.

Note that we observe some discrepancy in the reported
results of the related work (see Table 1). Specifically com-
paring to closest works to ours, in (Wang et al. 2018a), a
high CIDEr-D and a low BLEU-4 score is reported, while
in (Wang et al. 2018b) even though a much higher BLEU-4
score is reported, their CIDEr-D score is much lower. These
discrepancies are possibly due to differences in data pre-
processing and evaluation scripts.

Therefore, for fair comparison, we mainly focus on com-
paring our results with the following re-implemented base-
lines: Baseline LSTM (MLE) is trained with cross-entropy
loss using Eq. (9), while Baseline LSTM (RL) is trained
with self-critical REINFORCE loss using Eq. (10). We re-
implemented the HRL approach in (Wang et al. 2018c) for
our task, and also implemented a variant of our model,
Worker+Random topics, which learns a Worker decoder
without the Manager decoder but randomly samples a se-
quence of topics from an interval of [1,K], where K is the
total number of topics. We use this baseline as a lower-bound
of our model. Similarly, we also implemented a variant of
our model, Worker+GTT, again with only a Worker decoder,
but this time we used the ground-truth topics (GTT) as in-
put to the Worker. We use this baseline as an upper-bound
of our model. We experimented with K=16 and K=64. All

the metrics are computed by using the code released by the
COCO evaluation server (Chen et al. 2015).

Quantitative Results Our results1 in Table 1 show that
models optimized with joint training achieve the greatest im-
provement for all the scores. All hierarchically structured
reinforced (HSRL) story generation models outperform the
baseline LSTM (MLE) and LSTM (RL) training models by
a margin. HRL only improves flat RL marginally in this task,
while our HSRL achieved much better performance than
HRL. This indicates the efficiency of using explicit topics
as subgoals, rather than a latent continuous vector as used
in (Wang et al. 2018c). Additionally, HSRL models consis-
tently achieve high improvements across different number
of topics against the lower-bound Worker+Random model,
which was trained using random topic sequences. The joint
training results are close to the upper bound Worker+GTT
model, indicating the stronger performance of joint training.

Careful analysis of these three end-to-end training meth-
ods yields that the model optimized with cascaded training
method performs worse than the rest of the training meth-
ods. Iterative training with HSRL improves the results over
the cascaded training method across all scores, indicating
the impact of sentence planning with higher-level decoder
for representing higher level semantics of the story gener-
ation. The model trained jointly with HSRL achieves even
higher scores, across different numbers of topics, showing
the benefits of training a two-level decoder network jointly
rather than iteratively in an alternating training mode. The

1METEOR-v1 represents the version used in the COCO eval-
uation server, and METEOR-v2 represents version 1.5 with HTER
weights.
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MLE: the church was beautiful . it was a great day at the reception . the 
bride and groom were married . the bride and groom were having a great 
time . at the end of the night , we all had a great time .
RL: the church was beautiful . the bride and groom were very happy to see 
each other . the bride and groom were very happy to be married . the 
reception was a great time . after the ceremony , we all got together to 
celebrate the night .

HSRL: the church was beautiful . the venue was decorated with lights . the 
bride and groom were very happy . at the end of the day , the bride and 
groom cut the cake . at the end of the night , they all danced together .

MLE: the game was intense . it was a great game . it was a great time . it 
was a great game . it was a great game . 

RL: this was a great game . the team was very intense . the team was very 
intense . the players were very competitive . the coach was very excited to 
be able to get a good time . 

HSRL: the soccer game was very exciting . the players were very happy to be 
in the field . the team was very competitive . the game was very intense and 
we had to win . the team was very happy to be together . 

Figure 4: Example stories generated by three storytelling models. Compared to baseline models, the hierarchically structured
model generates more coherent, detailed and expressive paragraphs.

success of joint training can also be attributed to the fact
that at training time, both Manager and Worker have access
to the ground truth topic and word sequences through reward
functions and teacher forcing (Lamb et al. 2016) in MLE
training, while in iterative training the Manager and Worker
has access to either topics or word sequences.

Human Evaluation We perform two human evaluation
tasks using Amazon Mechanical Turk: pairwise compari-
son and the closeness to the ground-truth story. For both
tasks, we use all the 2001 test image sequences. Each im-
age sequence is presented to the worker and the worker is
requested to judge which generated story is better in terms
of relevance, expressiveness and concreteness. A neutral op-
tion is provided if the worker cannot tell which one is better.
The compared approaches include MLE, RL and our HSRL
model. Results are summarized in Table 2. It is clearly
shown that our HSRL approach is better than MLE and RL.

The second task requires the AMT-worker to judge the
closeness of each story to the ground-truth story comparing
against the other two generated stories. HSRL wins 55.87%
tasks, RL (the second best ) wins 34.53%, while MLE only
wins 9.60%. More details about human evaluation are pro-
vided in the supplementary material.

Qualitative Analysis In Fig. 2 we illustrate the paragraph
generation process by explicitly showing the generated topic
sequences. A high-level plan is first constructed by generat-
ing a sequence of topics, based on which a sequence of sen-
tences are then generated. Specifically in this example, our
model constructs a plan as follow: (i) describe the story back-
ground; (ii) describe the little girl, family and baby sequen-
tially; (iii) end the story with “everyone had a great time”.

In Fig. 4, we show two additional examples that are sam-
pled from the test set. We compare our HSRL model with
two of our baseline models and obtain the following obser-
vations. First, our HSRL model is globally coherent. It can
describe images in connection to previous images more co-
herently. For instance, in Fig. 4(right), the model identifies
that the setting of the story is soccer game and follows to
explain that there were players, field and team in the scene,
in accordance of their appearance in image sequences.

Table 2: Results of pairwise human comparison.
MLE vs HSRL RL vs HSRL

Choice (%) MLE HSRL Tie RL HSRL Tie
Relevance 27.53 63.93 8.53 34.87 56.40 8.73

Expressiveness 24.87 62.53 12.60 31.60 55.67 12.73
Concreteness 25.87 62.47 11.66 33.93 54.73 11.33

The generated stories also indicate that the sentences gen-
erated by HSRL is more diverse compared to the base-
lines. For instance each sentence generated by HSRL in
Fig. 4(right) is different from others, which can be attributed
to the fact that sentence generation is nicely controlled by
the topics generated for the story. In contrast, the stories
generated by two baseline models are less diverse and con-
tains repetitions. As a by-product, it was exciting to observe
that the stories generated by the HSRL are more vibrant and
engaging. Just like a human-created story that touches on
human emotions, we found that the story generated by the
HSRL is more emotional. For example, the words “happy,
exciting/excited, fun/funny, intense, tired” have been used
1137, 678, 316, 51, and 58 times in HSRL generated sto-
ries, and 410, 138, 291, 38 and 3 times in the RL baseline.

Finally, we also observe that the HSRL model was able to
learn to exploit the reward function to include more details
in the generated text. For instance, in Fig. 4(left), though
stories generated by all the 3 models are reasonable, we ob-
serve less details in the stories generated by the baselines,
while the salient facts like “decorated with lights, cut the
cake, danced together” are captured by our model. More ex-
amples are provided in the supplementary material.

Conclusion

We investigated the problem of generating topically coher-
ent visual stories given an image stream and demonstrated
that the use of hierarchically structured reinforcement learn-
ing can improve the generation. Analysis demonstrates that
this improvement is due to the joint training of two hier-
archically structured decoders, where the higher decoder is
optimized for better learning high-level topical semantics,
and the lower decoder optimizes to obtain more rewards for
generating topically coherent sentences.
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