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Abstract

Although image and sentence matching has been widely
studied, its intrinsic few-shot problem is commonly ignored,
which has become a bottleneck for further performance im-
provement. In this work, we focus on this challenging prob-
lem of few-shot image and sentence matching, and propose
a Gated Visual-Semantic Embedding (GVSE) model to deal
with it. The model consists of three corporative modules in
terms of uncommon VSE, common VSE, and gated metric
fusion. The uncommon VSE exploits external auxiliary re-
sources to extract generic features for representing uncom-
mon instances and words in images and sentences, and then
integrates them by modeling their semantic relation to ob-
tain global representations for association analysis. To better
model other common instances and words in rest content of
images and sentences, the common VSE learns their discrim-
inative representations directly from scratch. After obtaining
two similarity metrics from the two VSE modules with dif-
ferent advantages, the gated metric fusion module adaptively
fuses them by automatically balancing their relative impor-
tance. Based on the fused metric, we perform extensive ex-
periments in terms of few-shot and conventional image and
sentence matching, and demonstrate the effectiveness of the
proposed model by achieving the state-of-the-art results on
two public benchmark datasets.

Introduction
Image and sentence matching has drawn much attention,
which aims to measure the visual-semantic similarity be-
tween an image and a sentence. It has been widely applied
to the task of cross-modal retrieval, e.g., given a query im-
age to find similar sentences, namely image annotation, or
given a query sentence to retrieve matched images, namely
image search. Recently, much progress in this direction has
been achieved, and many effective methods (Huang, Wu,
and Wang 2018; Gu et al. 2017; Faghri et al. 2017) are pro-
posed to deal with this task.

However, different from existing methods, here we focus
on a more challenging problem in terms of few-shot im-
age and sentence matching, which is commonly existed but
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Figure 1: Logarithmic frequencies during training v.s. words
from test set. (best viewed in colors).

rarely investigated. Particularly, most state-of-the-art meth-
ods learn discriminative data representations jointly with
cross-modal association based on pairs of image and sen-
tence, which makes them easily recognize and associate
those pairs containing frequently appeared instances and
words in a statistical manner. But they cannot well handle
certain pairs having uncommon instances and words, be-
cause the number of similar pairwise data is quite limited
during training.

We build a vocabulary consisting of all words extracted
from test sentences in Flickr30k dataset (Young et al. 2014),
and then count their appearing frequencies (after logarithmic
transformation) during training in Figure 1. From the figure,
we can see that about 24% words have very low frequencies
of less than 10 (threshold is denoted by the dashed line),
and even 8% words have frequencies of 1 or 01. For these
images and sentences containing uncommon instances and
words (marked by red color), even current state-of-the-art
methods cannot well associate them, and their performance
drops heavily as demonstrated in the Tables 2 and 3. In fact,
this few-shot problem has become a bottleneck for further
performance improvement in image and sentence matching.

Although the traditional few-shot learning problem for

1Since the logarithmic transformation of 0 is negative infinity,
for simple illustration, we plot the logarithmic frequencies as 0.
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images and class labels has been widely studied, it is non-
trivial to apply existing methods (Frome et al. 2013) to
the new scenario of image and sentence matching directly.
Rather than only one major instance or word in traditional
few-shot settings, images and sentences in few-shot match-
ing could have very complex content, which simultaneously
includes multiple uncommon instances such as objects, ac-
tions and properties, and words such as nouns, verbs and ad-
jectives. In addition, it has been demonstrated that the mod-
eling of semantic relation among these instances or words
plays an even more important role (Huang, Wu, and Wang
2018) in image and sentence matching. But how to suit-
ably uncover and represent these uncommon instances and
words, as well as model their semantic relation is unclear.
Moreover, images and sentences usually contain both un-
common and common content in a hybrid manner, i.e., their
included uncommon instances or words only appear in small
content, while in most of the rest content there are more
common ones. So how to balance their relative importance
when measuring the cross-modal similarity is another issue.

To deal with these issues, we propose a novel model
named Gated Visual-Semantic Embedding (GVSE), which
consists of two corporative VSE modules, i.e., a uncommon
VSE and a common VSE, and a gated metric fusion module.
The uncommon VSE focuses on recognizing and associating
uncommon instances and words that are rarely appeared in
the training set. It first uses pretrained Faster-RCNN (An-
derson et al. 2017) and Skip-Gram (Mikolov et al. 2013)
based on external auxiliary resources to extract generic fea-
tures for instances and words. Then it exploits attentional
LSTM and Skip-Thought LSTM (Kiros et al. 2015) to model
the semantic relation in images and sentences, respectively,
and generates global representations for association analy-
sis. Different but complementary to uncommon VSE, the
common VSE focuses on learning discriminative features
for images and sentences from scratch using advanced CNN
and LSTM. In this way, the included common instances and
words with higher appearing frequencies in the training set
tend to be better associated.

After model learning, the two VSE modules can gener-
ate two different similarity metrics given same images and
sentences. To take advantage of their complementary proper-
ties, the gated metric fusion module fuse them in a weighted
sum manner, in which two weights can be automatically
predicted to balance their relative importance. To demon-
strate the effectiveness of the proposed model, we use the
fused metric for several experiments in terms of few-shot
and conventional image and sentence matching on two pub-
licly available datasets, and achieve the state-of-the-art re-
sults.

Related Work
Visual-Semantic Embedding
Frome et al. (Frome et al. 2013) propose the Visual-
Semantic Embedding (VSE) framework, which aligns im-
age features with word features with ranking loss. Kiros et
al. (Kiros, Salakhutdinov, and Zemel 2015) replace the word
features with LSTM (Hochreiter and Schmidhuber 1997) for

sentence representation learning, and extend this framework
to image and sentence matching. Under similar framework,
Vendrov et al. (Vendrov et al. 2016) achieve better perfor-
mance by preserving the order structure of visual-semantic
hierarchy. Wang et al. (Wang, Li, and Lazebnik 2016) add
within-view constraints to ranking loss with the goal to learn
structure-preserving representations.

Recently, more methods are proposed to improve the fea-
ture representability of VSE. Huang et al. (Huang, Wang,
and Wang 2017) use different variants of attention model-
ing to compare local image regions with words. Gu et al.
(Gu et al. 2017) attempt to incorporate generative processes
into the VSE, which can learn more robust embeddings. Ren
et al. (Ren et al. 2016) improve the VSE by modelling text
concepts as Gaussian distributions in semantic space. Huang
et al. (Huang, Wu, and Wang 2018) learn semantic concepts
from images and organize them in a semantic order, which
achieves the state-of-the-art results. Different from them, we
aim to study the rarely studied problem of few-shot image
and sentence matching by the proposed GVSE model.

Few-Shot Multimodal Learning
There is also some related work studying few-shot learning
for multimodal data. Hendricks et al. (Anne Hendricks et al.
2016) propose the deep compositional captioner based on
external images and text corpora for zero-shot image cap-
tioning. In contrast to the captioning methods, we focus on
cross-modal matching rather than generation. Socher et al.
(Socher et al. 2013) and Frome et al. (Frome et al. 2013)
introduce VSE models that can recognize unseen objects in
images by aligning image to semantic word space. Long et
al. (Long et al. 2018) study the zero-shot problem in the
image-attribute retrieval task. Wang et al. (Wang, Ye, and
Gupta 2018) use graph convolutional networks for zero-shot
classification. Rather than single word or multiple attributes
(words), here we aim to deal with the few-shot matching for
sentences, which have more complex semantic relation.

Few-Shot Image and Sentence Matching
We illustrate the proposed Gated Visual-Semantic Embed-
ding (GVSE) model for few-shot image and sentence match-
ing in Figure 2. Given pairwise training data, the model first
learns two parallel VSE modules, namely uncommon VSE
and common VSE, which focus on matching uncommon
instances and words and common ones, respectively. Then
two similarity metrics having these complementary proper-
ties can be predicted by two VSE modules, and then fused
by the gated metric fusion module to finally produce the de-
sired metric. In the next, we will explain these three modules
in details.

Uncommon Visual-Semantic Embedding
1. Generic Features for Instances and Words For a pair
of image and sentence, the image could contain various in-
stances in terms of objects, their properties and actions, and
the sentence might have diverse words in terms of nouns,
adjectives, numbers and verbs. Therefore, few-shot image
and sentence matching actually indicates a many-to-many
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Figure 2: The proposed Gated Visual-Semantic Embedding (GVSE) model.

scenario in which multiple instances and words could be
uncommon simultaneously. It is more challenging than the
one-to-one setting in traditional few-shot learning (Frome et
al. 2013; Socher et al. 2013), in which only one major in-
stance and one class word are uncommon. To deal with this
issue, we use pretrained models on large-scale external aux-
iliary images and sentences, to obtain generic features that
can well detect and describe multiple uncommon instances
and words.

In particular for an image, considering that not all regions
contain the desired instances, we employ a Faster RCNN
(Ren et al. 2015) jointly as an instance detector and a feature
extractor. We follow (Anderson et al. 2017) to use the Faster
RCNN that is pretrained on the large-scale Visual Genome
dataset (Krishna et al. 2017), and modify its output to addi-
tionally predict attribute score vectors for detected instances,
with the goal to enhance the generalization ability. When
given an input image, the model can output I detected in-
stances, each of which has a F -dimensional generic feature
vector indicating the probabilities of belonging to a prede-
fined set of objects and attributes. Although the target in-
stance might not be included in the predefined set, the set
is large enough so that it can be regarded as an attribute ba-
sis to comprehensively describe the target instance. While
for a sentence, we follow (Frome et al. 2013) to use a Skip-
Gram (Mikolov et al. 2013) pretrained on a large-scale cor-
pus extracted from wikipedia.org. The model actually
constructs a very large word vocabulary to encode arbitrary
words into their generic features.

2. Semantic Relation Modeling for Association After
obtaining the generic features for instances and words, we
need to integrate them to represent the global image and
sentence for cross-modal association analysis. A straightfor-
ward approach is to average all the features of instances or
words as the unified representation. However, such an ap-
proach ignores the intrinsic semantic relation (Huang, Wu,

and Wang 2018) among these instances and words, i.e., the
sequential order of words and spatial layout of instances.
The relation actually plays an essential role during associ-
ation analysis, since different organizations of instances or
words could lead to diverse semantic meanings.

To model the sequential order of sentence, we use the
word-level Skip-Gram features as pretrained vocabulary and
extend it to a sentence-level Skip-Thought LSTM (Kiros et
al. 2015) with multiple gating components for sequential in-
formation modeling. Instead of using a word to predict its
surrounding words, the model encodes a sentence to predict
its nearby sentences, as illustrated in Figure 2 (a). We regard
the hidden state at the last timestep after a linear transfor-
mation layer as the desired sentence representation s ∈ RH .
Note that this representation is highly generic, because the
Skip-Thought LSTM is trained on a large corpus of docu-
ments, which can encoder arbitrary sentences into their rep-
resentations. While for an image, it is very difficult to di-
rectly model its spatial layout due to the lack of related anno-
tations. But since we have already built a semantic relation-
preserving space for sentences, we can similarly learn a se-
quential projection to integrate unorganized instances, and
then align them to the sentence space to learn the semantic
relation.

To sequentially integrate the instances, we resort to an
attentional LSTM that can selectively attend to salient in-
stances at each timestep and then fuse their features in
a sequential order. Different from (Xu et al. 2016; An-
derson et al. 2017), here we do not jointly perform im-
age captioning. We denote the feature set of instances as{

ai|ai ∈ RF
}
i=1,··· ,I , where ai is the feature vector of the

i-th detected instance. Based on this denotation, we can for-
mulate the attention procedure as follows:

pt,i = ep̂t,i/
∑

i
ep̂t,i , p̂t,i = f(ai,ht−1), a′t =

∑
i
pt,iai

(1)
where pt,i is the saliency value indicating the probability
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that the i-th instance will be attended to at the t-th timestep,
ht−1 is the hidden state of attentional LSTM at the previ-
ous timestep, and f(·) is a two-way Multi-Layer Perceptron
(MLP) to fuse ai and ht−1. Note that we use the predicted
saliency values of all instances as their weights to obtain
the representation a′t for attended instances in a soft man-
ner, where the instances with higher saliency values con-
tribute more to the fused representation. From the 1-st to
T -th timestep, we can obtain a sequence of representations
{a′t}t=1,··· ,T , where T is the total number of timesteps. Sim-
ilar to Skip-Thought LSTM, we sequentially feed these rep-
resentations into the attentional LSTM, and regard the hid-
den state at the last timestep as the desired image represen-
tation v ∈ RH .

After obtaining the global representations for image and
sentence, we use a structured objective to associate them,
which encourages the cosine similarity score of matched im-
age and sentence to be larger than a mismatched one with
maximum violation:

L(i, j|Φattlstm,Φlinear) =

maxk[0,m− sii + sik]+ + maxk[0,m− sii + ski]+
(2)

where m is a margin parameter, [x]+=max(x, 0), sii is the
score of matched i-th image and i-th sentence, sik is the
score of mismatched i-th image and k-th sentence, and vice-
versa with ski. We empirically set the total number of mis-
matched pairs for each matched pair as 128 in our experi-
ments. Φattlstm and Φlinear are learning parameters of the
attentional LSTM and linear transformation, respectively.
Note that we fix the parameters of both Faster RCNN and
Skip-Thought LSTM, with the goal to preserve their gen-
eralization ability from being disturbed by the majority of
images and sentences with common content during learning.

Common Visual-Semantic Embedding
For a pair of image and sentence, only partial instances and
words are uncommon, while most of the rest are common
and have high appearing frequencies. The uncommon VSE
mentioned above is especially designed to handle the un-
common content, and might be inferior to handle those com-
mon instances and words, since the fixed generic represen-
tations are not very discriminative for distinguishing them.
Therefore, to better model the common content, the com-
mon VSE replaces the fixed generic representations, and
learns discriminative representations for images and sen-
tences directly from scratch. The representations are jointly
learnt with cross-modal association based on pairwise train-
ing data, which tend to focus more on frequently appeared
instances and words.

For simple implementation, we degenerate the previously
used Faster RCNN and attention LSTM to a simple resid-
ual CNN, and replace the word vocabulary in Skip-Thought
LSTM with a smaller one only consisting of the words from
training sentences. To learn this model, we also use a struc-
tured objective similar to Equation 2, but optimize different
learning parameters:

L(i, j|Φcnn,Φlstm,Φlinear) =

maxk[0,m− sii + sik]+ + maxk[0,m− sii + ski]+
(3)

where Φcnn, Φlstm and Φlinear are learning parameters of
the CNN, LSTM and linear transformation, respectively.
During learning, we follow (Faghri et al. 2017; Zheng et
al. 2017) to exploit a two-step learning strategy to prevent
the over-fitting problem. In the first step, we fix the param-
eters of pretrained residual CNN, and only optimize the pa-
rameters of LSTM and linear transformation. In the second
step, we jointly optimize all the parameters and carefully
fine-tune the CNN for more discriminative representations.

Gated Metric Fusion

After learning the two VSE modules, we can obtain two dif-
ferent metrics that are good at measuring similarities for un-
common and common content, respectively. To further ex-
ploit their complementary advantages, a simple method is
to directly sum them as a new metric, in which importance
weights of two metrics are equivalent. But in practice, their
optimal importance weights are not always equivalent. For
those images and sentences with uncommon content, the
predicted metric by uncommon VSE should be more impor-
tant than the metric predicted by common VSE. Based on
this consideration, we want to adaptively learn the impor-
tance weights for two metrics rather than simply sum.

Although similar ideas of gated feature fusion have been
previously explored (Arevalo et al. 2017), directly applying
them to the fusion of metrics is infeasible. In the context of
cross-modal retrieval, given a query and a gallery set with
a size of N , the predicted two metrics can be denoted as
m0,m1 ∈ RN . When varying the size of gallery set, the size
of metrics changes accordingly. So it is inconsistent with the
existing gated methods, which require the fused feature vec-
tors must have a fixed size. In addition, they usually per-
form element-wise fusion by predicting importance weight
for each feature dimension, while in our case we only need
scalar importance weights for two metrics.

To handle this problem, we design a gated metric fusion
module as illustrated in Figure 2 (b), which includes a gate to
automatically control how much importance the two metrics
contribute to their fused metric. To deal with the varying size
problem, we use the representation of query instead of orig-
inal metrics to predict the importance weights, which has a
fixed size. Particularly, we concatenate two representations
of the query in two VSE modules as x ∈ R2H , and then
feed it to a two-class classifier f(·) based on MLP to predict
its probability t of containing uncommon content. Then the
probability can be regarded as the importance weight for the
metric predicted by uncommon VSE as follows:

t = σ(f(x)), m̂ = t�m0 + (1− t)�m1 (4)

where sigmoid function σ is to rescale the probability value
to [0, 1], and m̂ is the fused metric that can be used for image
and sentence matching. Note that although all the three mod-
ules can constitute a very complex network, jointly train-
ing them in an end-to-end manner is infeasible, because the
model could be easily over-fitted by the limited size of train-
ing data.
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Table 1: Few-shot image and sentence matching by ablation models on the Flickr30k and MSCOCO (5000 test) datasets.

Method
Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval mR Image Annotation Image Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
uncommon VSE: 54.8 82.1 89.3 34.8 57.8 70.6 64.9 31.2 61.9 73.1 22.3 50.2 62.6 50.2

+ relation 55.4 81.0 89.9 43.1 68.1 75.5 68.8 40.3 71.7 83.9 23.3 52.9 65.3 56.2
common VSE: 39.9 70.2 79.8 25.5 52.0 64.2 55.3 35.8 61.9 74.1 16.7 41.3 51.6 46.9

+ finetuned 48.2 79.2 85.7 31.9 60.3 71.1 62.7 39.2 71.8 82.1 22.9 49.0 62.6 54.6
Gated VSE: 60.1 87.5 93.5 44.6 72.5 80.9 73.2 46.3 76.4 87.8 31.1 61.0 70.1 62.1

+ gated 62.5 86.9 92.3 46.1 73.5 82.4 73.9 47.2 76.6 88.4 31.2 61.2 70.5 62.5

Experimental Results
To demonstrate the effectiveness of the proposed model, we
perform experiments of few-shot and conventional image
and sentence matching on two publicly available datasets.

Datasets and Protocols
The two evaluation datasets and their experimental proto-
cols are described as follows. 1) Flickr30k (Young et al.
2014) consists of 31783 images collected from the Flickr
website. Each image is accompanied with 5 human anno-
tated sentences. 2) MSCOCO (Lin et al. 2014) consists of
82783 training and 40504 validation images, each of which
is associated with 5 sentences.

For conventional image and sentence matching, we use
the public training, validation and test splits on the two
datasets. On the MSCOCO dataset, we perform 5-fold cross-
validation and report the averaged results when using 1000
images for test. For few-shot image and sentence match-
ing, we perform the K-shot matching (K∈{0, 1, 2, 3}) on
the two datasets. For each dataset, we select partial images
and sentences from the standard test set to constitute a new
few-shot test set, in which each sentence or image contains
at least one word or instance whose appearing frequency in
training set is less than or equals to K.

Implementation Details
The commonly used evaluation criterions for image annota-
tion and retrieval are “R@1”, “R@5” and “R@10”, i.e., re-
call rates at the top 1, 5 and 10 results. We also compute an
additional criterion “mR” by averaging all the 6 recall rates,
to evaluate the overall performance for both image annota-
tion and retrieval.

For images, the number of detected instances is I=36, the
dimension of predicted generic feature vectors is F=2002,
and the number of timesteps in the attentional LSTM is T=3.
For sentences, the dimension of embedded word is 300. We
set the max length for all the sentences as 50, and use zero-
padding when a sentence is not long enough. Other parame-
ters are empirically set as follows: H=1024 and m=0.2.

When training the three modules, we use stochastic gra-
dient descent with a learning rate of 0.01, momentum of 0.9,
weight decay of 0.0005, batch size of 128, and gradient clip-
ping at 0.1. The VSE modules are trained for 30 epochs to
guarantee its convergence. While for the gated metric fusion
module, we use 100 epochs.

Evaluation of Ablation Models
To systematically demonstrate the effectiveness of the pro-
posed modules, we study various ablation models as follows.
1) The basic “uncommon VSE” uses averaged features of
instances or words as the global representations of images
and sentences, while “+ relation” uses the attentional LSTM
and Skip-Thought LSTM to model the semantic relation in
images and sentences, respectively. 2) The basic “common
VSE” uses the fixed pretrained CNN to extract image rep-
resentations, while “+ fine-tuning” performs the two-step
learning algorithm to additionally fine-tune the pretrained
CNN. 3) The basic “Gated VSE” combines the two VSEs
by directly summing their predicted similarity metrics, while
“+ gated” replaces the averaged sum with the proposed gated
metric fusion module.

We use these ablation models to perform the experi-
ment of the few-shot image and sentence matching by set-
ting K=0, and compare their results on the Flickr30k and
MSCOCO datasets in Table 1. From the table, we can ob-
tain the following observations. 1) Uncommon VSE using
generic representations can better deal with the few-shot
matching than common VSE based on self-learnt represen-
tations by a very large margin. 2) By modeling the semantic
relation in images and sentences, uncommon VSE can fur-
ther improve the mR performance by 3.9% and 5.0% on the
two datasets, respectively. 3) Additionally performing fine-
tuning in common VSE can improve the learned representa-
tions, but it still cannot outperform the powerful uncommon
VSE + relation. 4) Due to the complementary properties of
uncommon VSE and common VSE, even simply summing
their predict metrics can greatly improve the performance.
5) By replacing the averaged sum with the proposed gated
metric fusion, we can achieve better overall results. In the
following experiments, we regard the best “Gated VSE +
gated” as our default model.

Few-Shot Image and Sentence Matching
In this section, we will perform the experiment of few-shot
image and sentence matching by varying the value of K
from 0 to 3, and then make comparisons with two recent
state-of-the-art methods in terms of VSE++ (Faghri et al.
2017) and SCO (Huang, Wu, and Wang 2018). For the two
compared methods, we use their reported best model for
conventional image and sentence matching, and then per-
form test on the K-shot test sets.

The comparison results are shown in Table 2, in which
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Table 2: Few-shot image and sentence matching on the Flickr30k and MSCOCO (5000 test) datasets.

K N Method
Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval mR Image Annotation Image Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0 204/
516

VSE++ 48.2 79.2 85.7 31.9 60.3 71.1 62.7 39.2 71.8 82.1 22.9 49.0 62.6 54.6
SCO 48.8 77.4 85.7 31.4 58.8 71.6 62.3 40.2 71.6 81.3 24.0 49.8 63.8 55.1
Ours 62.5 86.9 92.3 46.1 73.5 82.4 73.9 47.2 76.6 88.4 31.2 61.2 70.5 62.5

1 321/
754

VSE++ 50.4 78.6 86.9 33.0 59.5 71.7 63.3 40.7 73.1 82.5 24.8 52.1 64.1 56.2
SCO 50.4 78.6 88.1 33.3 59.8 70.4 63.4 41.8 72.8 82.4 24.3 51.5 64.9 56.2
Ours 62.3 88.9 92.9 46.4 73.5 83.2 74.5 49.7 77.1 88.4 32.2 63.5 72.4 63.9

2 437/
973

VSE++ 52.1 80.1 88.0 32.0 60.2 72.3 64.1 41.2 72.7 82.2 23.3 50.6 63.0 55.5
SCO 52.4 80.1 88.6 32.3 59.5 70.5 63.9 40.7 72.8 82.6 24.5 51.6 64.6 56.2
Ours 63.9 90.1 93.7 46.5 74.4 84.2 75.4 49.8 77.6 88.0 31.8 62.7 72.5 63.7

3 513/
1144

VSE++ 51.7 79.3 88.5 31.2 61.4 73.1 64.2 42.4 72.2 82.0 23.3 50.3 63.0 55.5
SCO 52.5 80.1 88.5 31.8 58.9 71.0 63.8 41.7 72.5 82.1 25.3 52.0 65.0 56.4
Ours 63.8 90.3 94.0 45.4 75.2 85.0 75.6 50.2 78.0 88.1 31.6 63.7 73.4 64.2

Table 3: Conventional image and sentence matching on the Flickr30k and MSCOCO (1000 test) datasets.

Method
Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval mR Image Annotation Image Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
DVSA 22.2 48.2 61.4 15.2 37.7 50.5 39.2 38.4 69.9 80.5 27.4 60.2 74.8 58.5
MNLM 23.0 50.7 62.9 16.8 42.0 56.5 42.0 43.4 75.7 85.8 31.0 66.7 79.9 63.8
m-CNN 33.6 64.1 74.9 26.2 56.3 69.6 54.1 42.8 73.1 84.1 32.6 68.6 82.8 64.0
RNN+FV 34.7 62.7 72.6 26.2 55.1 69.2 53.4 40.8 71.9 83.2 29.6 64.8 80.5 61.8
OEM - - - - - - - 46.7 78.6 88.9 37.9 73.7 85.9 68.6
VQA 33.9 62.5 74.5 24.9 52.6 64.8 52.2 50.5 80.1 89.7 37.0 70.9 82.9 68.5
RTP 37.4 63.1 74.3 26.0 56.0 69.3 54.3 - - - - - - -
DSPE 40.3 68.9 79.9 29.7 60.1 72.1 58.5 50.1 79.7 89.2 39.6 75.2 86.9 70.1
sm-LSTM 42.5 71.9 81.5 30.2 60.4 72.3 59.8 53.2 83.1 91.5 40.7 75.8 87.4 72.0
2WayNet 49.8 67.5 - 36.0 55.6 - - 55.8 75.2 - 39.7 63.3 - -
RRF (Res) 47.6 77.4 87.1 35.4 68.3 79.9 66.0 56.4 85.3 91.5 43.9 78.1 88.6 73.9
DAN (Res) 55.0 81.8 89.0 39.4 69.2 79.1 68.9 - - - - - - -
CHAIN-VSE (Res) - - - - - - - 59.4 88.0 94.2 43.5 79.8 90.2 75.9
DPCNN (Res) 55.6 81.9 89.5 39.1 69.2 80.9 69.4 65.6 89.8 95.5 47.1 79.9 90.0 78.0
VSE++ (Res) 52.9 79.1 87.2 39.6 69.6 79.5 68.0 64.6 89.1 95.7 52.0 83.1 92.0 79.4
LIM (Res) - - - - - - - 68.5 - 97.9 56.6 - 94.5 -
SCO (Res) 55.5 82.0 89.3 41.1 70.5 80.1 69.7 69.9 92.9 97.5 56.7 87.5 94.8 83.2
Ours 68.5 90.9 95.5 50.6 79.8 87.6 78.8 72.2 94.1 98.1 60.5 89.4 95.8 85.0

N indicates the numbers of uncommon words in K-shot
test sets on the two datasets. We can see that in the most
challenging 0-shot matching, our model can outperform the
best method that we compare by 11.2% and 6.2% (in mR)
on the two datasets, respectively. It indicates that our model
can well understand and associate those unseen instances or
words even they do not present in the training set. In addi-
tion, as K increases the N becomes much larger, but our
model can consistently achieve much better performance,
which demonstrates its good generalization ability on han-
dling few-shot matching under different conditions.

Conventional Image and Sentence Matching
Although our model is especially proposed for dealing
with the few-shot problem in image and sentence match-
ing, it can also be applicable to conventional image and
sentence matching by directly using standard test sets. We
compare our model with recent published models on the
Flickr30k and MSCOCO datasets in Table 3, including
DVSA (Karpathy and Li 2015), MNLM (Kiros, Salakhutdi-
nov, and Zemel 2015), m-CNN (Ma et al. 2015), RNN+FV

(Lev et al. 2016), OEM (Vendrov et al. 2016), VQA (Lin and
Parikh 2016), RTP (Plummer et al. 2015), DSPE (Wang, Li,
and Lazebnik 2016), sm-LSTM (Huang, Wang, and Wang
2017), 2WayNet (Eisenschtat and Wolf 2017), RRF (Liu et
al. 2017), DAN (Nam, Ha, and Kim 2017), CHAIN-VSE
(Wehrmann and Barros 2018), DPCNN (Zheng et al. 2017),
VSE++ (Faghri et al. 2017), LIM (Gu et al. 2017) and SCO
(Huang, Wu, and Wang 2018). The methods marked by
“(Res)” use the 152-layer ResNet (He et al. 2016), while
the rest ones use the 19-layer VGGNet (Simonyan and Zis-
serman 2014).

We can see that our model outperforms the current state-
of-the-art models on all 7 evaluation criterions on both
the Flickr30k and MSCOCO datasets. It is mainly because
our model can better associate those uncommon instances
and words in the standard test sets, and thus greatly im-
prove the overall performance. Note that our model obtains
much larger improvements on the Flickr30k dataset than
MSCOCO. It results from that the fewer training data of
Flickr30k cannot guarantee the learnt models can well rec-
ognize instances and words in a learning-based way. But our
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the winners 1st
2nd and 3rd of a 
event posing for a 
picture each 
holding flowers

Query
Uncommon VSE Common VSE Gated VSE

Retrieved top-3 relevant images (sorted by similarity)

a child carries his 
younger sibling in 
a cloth sling on 
his back

Figure 3: Results of few-shot image retrieval by 3 model variants. Groundtruth matched images and uncommon words are
marked as red (best viewed in colors).

Table 4: Conventional image and sentence matching on the
MSCOCO (5000 test) dataset.

Method Image Annotation Image Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10
DVSA 11.8 32.5 45.4 8.9 24.9 36.3 26.6
FV 17.3 39.0 50.2 10.8 28.3 40.1 31.0
VQA 23.5 50.7 63.6 16.7 40.5 53.8 41.5
OEM 23.3 50.5 65.0 18.0 43.6 57.6 43.0
DPCNN (Res) 41.2 70.5 81.1 25.3 53.4 66.4 56.3
VSE++ (Res) 41.3 69.2 81.2 30.3 59.1 72.4 58.9
LIM (Res) 42.0 - 84.7 31.7 - 74.6 -
SCO (Res) 42.8 72.3 83.0 33.1 62.9 75.5 61.6
Ours 49.9 77.4 87.6 38.4 68.5 79.7 66.9

model can better describe them based on external auxiliary
resources.

The above experiments on the MSCOCO dataset fol-
low the first protocol (Karpathy and Li 2015), which uses
1000 images and their associated sentences for test. We also
test the second protocol that uses all the 5000 images and
their sentences for test, and present the comparison results
in Table 4. We can observe that our model still achieves
the best performance with a large performance gap, which
again demonstrates its effectiveness. Note that our model
has much larger improvements than those in the first pro-
tocol, which indicates the few-shot problem is more serious
in larger gallery sets, and our model can well handle it to
greatly improve the performance.

Analysis of Few-Shot Image Retrieval Results
To qualitatively validate the effectiveness of our proposed
model, we analyze its results of few-shot image retrieval
given sentence queries as follows. We select several repre-
sentative sentences containing uncommon words (with ap-
pearing frequencies that are less than 10), and retrieve top-3
relevant images by 3 ablation models: “uncommon VSE”,
“common VSE” and “Gated VSE” in Figure 3.

We can see that by learning representations only from
provided pairwise data, common VSE cannot find matched
images in top-ranked results. Because it cannot understand
the meanings of uncommon words including “winners” and
“sibling”, or recognize the corresponding instances in im-
ages. When using generic representations based on exter-
nal auxiliary resources, uncommon VSE can well correlate

those uncommon instances and words, and rank the matched
images in top-3 results. But its performance is still not opti-
mal, because the performance of few-shot cross-modal re-
trieval depends on not only the understanding of uncom-
mon content, but also the discriminative representation of
rest content containing common content. Therefore, Gated
VSE incorporates the complementary advantages of com-
mon VSE and uncommon VSE, and is able to rank the
matched images in top-1 results.

Conclusions and Future Work
In this work, we have proposed the Gated Visual-Semantic
Embedding (GVSE) for the rarely investigated problem
namely few-shot image and sentence matching. Our main
contributions are: 1) greatly improving the representation
and association of uncommon instances and words in im-
ages and sentences by the uncommon VSE module, and 2)
adaptively fusing two similarity metrics by the gated metric
fusion module. We have systematically studied the impact
of different modules on the performance of few-shot image
and sentence matching, and demonstrated the effectiveness
of our model by achieving significant performance improve-
ment.

In the future, we will consider to jointly train our model in
an end-to-end manner and deal with the potential over-fitting
problem. We will improve the modeling of semantic relation
in the uncommon VSE module, and replace the attentional
LSTM with more advanced implementations.
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