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Abstract

The transformed domain fearures of images show effectiveness
in distinguishing salient and non-salient regions. In this paper,
we propose a novel deep complex neural network, named Sal-
DCNN, to predict image saliency by learning features in both
pixel and transformed domains. Before proposing Sal-DCNN,
we analyze the saliency cues encoded in discrete Fourier trans-
form (DFT) domain. Consequently, we have the following
findings: 1) the phase spectrum encodes most saliency cues;
2) a certain pattern of the amplitude spectrum is important
for saliency prediction; 3) the transformed domain spectrum
is robust to noise and down-sampling for saliency prediction.
According to these findings, we develop the structure of Sal-
DCNN, including two main stages: the complex dense encoder
and three-stream multi-domain decoder. Given the new Sal-
DCNN structure, the saliency maps can be predicted under the
supervision of ground-truth fixation maps in both pixel and
transformed domains. Finally, the experimental results show
that our Sal-DCNN method outperforms other 8 state-of-the-
art methods for image saliency prediction on 3 databases.

1 Introduction
Saliency prediction is a widely studied computer vision task,
aiming to understand and predict human visual attention on
images/videos. The last decade has witnessed the success of
applying transformed domain methods in saliency prediction,
since the transformed domain features has been verified to be
effective in distinguishing salient and non-salient regions. In
the beginning, (Hou and Zhang 2007) proposed predicting im-
age saliency in discrete Fourier transform (DFT) domain, by
subtracting the locally averaged amplitude spectrum from the
original one. Afterwards, a number of transformed domain
methods (Guo and Zhang 2010; Hou, Harel, and Koch 2012;
Li et al. 2015; Leboran et al. 2017) were proposed for saliency
prediction, mainly focusing on 2 aspects. 1) Transform on
input channels, e.g., DFT (Hou and Zhang 2007), quaternion
Fourier transform (QFT) (Guo and Zhang 2010) and discrete
Cosine transform (DCT) (Hou, Harel, and Koch 2012). 2)
Algorithms in the transformed domain, e.g., spectral residual
(Hou and Zhang 2007), phase filtering (Li et al. 2015) and
amplitude spectrum normalization (Guo and Zhang 2010).
But all these methods rely on the hand-designed transformed
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domain features, which may be not well suitable for image
saliency.

Most recently, instead of hand-designed features, deep
neural network (DNN) based methods (Pan et al. 2017;
Cornia et al. 2018; Wang and Shen 2018; Huang et al. 2015;
Cornia et al. 2016; Jetley, Murray, and Vig 2016; Xu et al.
2018b) show the outstanding performance by end-to-end
training for saliency prediction. In these methods, advanced
DNN architectures, e.g., LSTM-based (Cornia et al. 2018),
GAN-based (Pan et al. 2017) and multi-scale (Wang and
Shen 2018) structures, were proposed to extract saliency cues
from images. Besides, others focused on developing effec-
tive loss functions, e.g., Kullback CLeibler (KL) divergence
based (Huang et al. 2015), location bias (Cornia et al. 2016)
and Bhattacharyya distance (Jetley, Murray, and Vig 2016)
loss. However, the existing DNNs only focus on pixel do-
main, ignoring the transformed domain features that highly
contribute to saliency prediction (Li et al. 2013).

Inspired by complex CNN (Trabelsi et al. 2017), this pa-
per proposes a novel Sal-DCNN method, to predict image
saliency by learning features at both pixel and transformed
domains. We first investigate how saliency cues are encoded
in DFT domain, along with the following findings. 1) The
phase spectrum encodes most saliency cues; 2) a certain
pattern of the amplitude spectrum is important for saliency
prediction; 3) the transformed domain spectrum is robust to
noise and down-sampling for saliency prediction. Following
these findings, we propose an encoder-decoder structure for
Sal-DCNN. Specifically, based on the developed complex
components, a complex dense encoder is proposed in this
paper to extract deep features considering both pixel and
transformed domain information. Then, a three-stream multi-
domain decoder is proposed to predict not only saliency in
pixel domain, but also the spectrums of phase and residual
amplitude for saliency in the transformed domain. Finally,
the saliency map of an image can be generated by fusing
pixel and transformed domain saliency.

2 Related work
Recently, the transformed domain methods (Hou and Zhang
2007; Guo and Zhang 2010; Leboran et al. 2017) have been
widely studied for saliency prediction. The main idea of these
methods is that the salient objects and non-salient background
can be easily distinguished in the transformed domain. Be-
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sides, the transformed domain methods can be seen as the
approximation of saliency response in the primary visual
cortex (V1 cells), considering biological processes such as
orientation selectivity and lateral surround inhibition (Bian
and Zhang 2008; Li et al. 2013).

The fundamental process of a transformed domain method
is selecting an effective transformed domain, in which the
visual saliency can be easily predicted. As a pioneering work
in 2007, (Hou and Zhang 2007) applied DFT on images, and
then extracted the spectral residual (SR) from DFT domain
for saliency prediction. After that, a number of methods (Fang
et al. 2012; Leboran et al. 2017; Li et al. 2015; Wang, Zhang,
and Li 2016) were proposed to predict image/video saliency
in DFT domain. For instance, DFT was extended to 3D in
(Wang, Zhang, and Li 2016) for further considering temporal
information in video saliency prediction. Inspired by DFT
based methods, Guo (Guo and Zhang 2010) significantly
advanced saliency prediction by applying QFT with the input
of 4 feature channels. Afterwards, QFT was applied in many
saliency prediction works (Li et al. 2013). Besides, (Xu et
al. 2017) has investigated that the saliency can be effectively
predicted in HEVC domain (Li et al. 2017; Xu et al. 2018a).

The effective calculation in the transformed domain is
also important, with the goal of popping out the salient
regions while suppressing the non-salient regions. In the
early time, (Hou and Zhang 2007) calculated the spectral
residual of log amplitude spectrum, and then used inverse
DFT (IDFT) to generate saliency maps. However, (Guo and
Zhang 2010) found that it can achieve comparable perfor-
mance when removing the amplitude spectrum. Most re-
cently, advanced algorithms have been proposed in the trans-
formed domain, focusing on both amplitude and phase spec-
trums (Fang et al. 2012; Li et al. 2013; Leboran et al. 2017;
Li et al. 2015). Specifically, (Li et al. 2013) found that the re-
peated patterns in the background can lead to the spikes in the
amplitude spectrum. As such, a specific filter was designed
in the transformed domain to suppress the sharp spikes. Sim-
ilarly, the phase filters were learned in (Li et al. 2015) by
minimizing Cosine distance between the phase spectrums of
output and ground-truth saliency maps.

However, most of the above transformed domain methods
are hand-designed, without automatically learning the trans-
formed domain features from large-scale training data. On
the other hand, DNNs (Huang et al. 2015; Cornia et al. 2016;
Pan et al. 2017; Sun et al. 2017; Dodge and Karam 2018;
Cornia et al. 2018; Wang and Shen 2018; Jiang et al. 2018)
have been widely used in pixel domain to learn visual saliency
on images. Specifically, to learn hierarchical saliency features,
(Wang and Shen 2018) conducted a multi-level supervision in
the convolutional (conv) layers with different receptive fields.
Besides, (Huang et al. 2015) and (Cornia et al. 2016) focused
on developing the suitable loss function of DNN for saliency
prediction. In (Huang et al. 2015), the KL divergence based
loss was verified to be efficient in training DNN for saliency
prediction, while the location bias loss was first considered
in (Cornia et al. 2016). Moveover, LSTM-based and GAN-
based DNNs were proposed in (Cornia et al. 2018) and (Pan
et al. 2017) for image saliency.

Nevertheless, the existing DNNs all work in pixel domain,

which have no access to leverage the transformed domain
features for saliency prediction. In contrast, the complex
structures have been verified to have a richer representation
capacity (Mandic and Goh 2009). In this paper, we propose a
novel Sal-DCNN, to take advantage of both transformed and
pixel domain features for image saliency prediction.

3 Transformed domain analysis
As introduced above, image saliency can be effectively pre-
dicted in the transformed domain. Here, we conduct both
qualitative and quantitative experiments over a widely used
database MIT1003 (Judd et al. 2009) to investigate saliency
cues encoded in the transformed domain, by analyzing and
recovering the ground-truth fixation maps in DFT domain.
For each fixation map G (in the form of gray-scale heat
map), DFT (F ) is applied to obtain phase spectrum PG and
amplitude spectrum AG, denoted by

F (G(x, y)) = AG(u, v) · eı·PG(u,v)

= RG(u, v) + ı · IG(u, v), (1)

where RG and IG are the real and imaginary parts of DFT
domain coefficients. Then, 3 findings are investigated as fol-
lows.

Finding 1. The phase spectrum encodes most saliency
cues of a fixation map.

Since some transformed domain methods (Li et al. 2013;
2015) are based on amplitude and phase spectrums, it is worth
finding out which spectrum contributes more for predicting
saliency. To this end, given the fixation maps of 2 images
(G andG′), we exchange the amplitude spectrums (AG and
AG′ ), and then apply IDFT (F−1) to generate saliency maps.
Similar operations are also conducted for the real parts of
DFT domain coefficients (RG and RG′). Consequently, 4
sets of saliency maps are obtained as follows,

• AG with PG′ : F−1
(
AG(u, v) · eı·P′

G(u,v)
)

,

• AG′ with PG: F−1
(
A′

G(u, v) · eı·PG(u,v)
)
,

• RG with IG′ : F−1
(
RG(u, v) + ı · I′

G(u, v)
)
,

• RG′ with IG: F−1
(
R′

G(u, v) + ı · IG(u, v)
)
.

As we can see from Figure 1, the combination of AG′ and
PG can well recover fixation map G. Similarly, the com-
bination of AG and PG′ is able to effectively recover G′.
This indicates that the saliency cues are encoded in phase
spectrum, rather than amplitude spectrum. We can also see
from this figure that the real or imaginary part contributes
to recovering visual saliency to some extent, but not as ac-
curate as the phase based saliency maps. In Table 1, similar
findings can be investigated from the quantitative results over
MIT1003, by measuring correlation coefficient (CC) and KL
divergence between recovered saliency maps and ground-
truth fixation maps. Note that a smaller KL divergence means
better performance. Therefore, the phase spectrum is able to
encode most saliency cues of a fixation map.

Finding 2. A certain pattern of the amplitude spec-
trum is needed to recover a fixation map.

As found above, the phase spectrum is able to recover the
fixation map, even when combined with amplitude spectrum
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Similar to (d)

Similar to (b)

Not similar to 
both (b) and (d)

Figure 1: Original images (a, c), fixation maps (b, d) and their recovered saliency maps based on the combinations of AG with
PG′ (e), AG′ with PG (f), RG with IG′ (g) and RG′ with IG (h). Note that red/blue color in the notations refers to the same
source.

Table 1: Performance of saliency maps recovered for Finding 1&2, obtained over MIT1003.

Recovered with different combinations (Finding 1) Recovered with replaced amplitude (Finding 2)
AG with PG′ AG′ with PG RG with IG′ RG′ with IG Averaged amplitude Image amplitude Fixed value WGN

CC 0.21 0.90 0.60 0.62 0.94 0.71 0.41 0.01
KL 2.03 0.58 0.88 0.83 0.54 1.32 1.39 2.06

(a) Image (b) Fixation 

map

(c) Averaged 

amplitude

(d) Image 

amplitude

(e) Fixed value (f) WGN

Figure 2: Original images (a), fixation maps (b) and saliency
maps recovered from the replaced amplitude spectrums: the
averaged amplitude of all fixation maps (c), the amplitude
of original image (d), the amplitude with fixed value (e) and
WGN (f).

Table 2: Consistency evaluation for 4 DFT domain spec-
trums/parts over MIT1003.

Amplitude Phase Real Imaginary
CC 0.93 0.03 0.64 0.08

of another fixation map. It is worth investigating whether the
amplitude spectrum is completely unnecessary for recover-
ing a fixation map. To this end, assume that the mean and
standard deviation (Std) of the amplitude spectrum are ma

and σa for each fixation map G. Then, we replace the am-
plitude spectrum by 4 strategies: I) The averaged amplitude
of all N fixation maps in MIT1003, II) the amplitude of its
original image I , III) the amplitude with fixed value of ma

and IV) the white Gassuian noise (WGN) with ma and σa.
The corresponding saliency maps are then obtained as,

• Strategy I F−1
(
( 1
NΣNn=1An(u, v)) · eı·PG(u,v)

)
,

• Strategy II F−1
(
AI(u, v) · eı·PG(u,v)

)
,

• Strategy III F−1
(
ma · eı·PG(u,v)

)
,

• Strategy IV F−1
(
AWGN(ma, σa) · eı·PG(u,v)

)
.

Note that AWGN(·, ·) is the 2D WGN map. The performance
of those recovered saliency maps can be found in Figure 2
and Table 1, in which Strategies II)-IV) apparently fail to
recover the fixation maps. This implies that the amplitude
spectrum with a certain pattern is necessary for recovering a
fixation map. Moreover, we further measure the CC values of
4 single spectrums/parts and their averaged spectrums/parts
over MIT1003. As shown in Table 2, in comparison with
phase, real and imaginary, the amplitude spectrums of differ-
ent fixation maps are highly consistent. This indicates that
the amplitude spectrums of fixation maps have a general pat-
tern, encoding little saliency cues. In summary, we find that
although the amplitude spectrum encodes little saliency cues,
a certain pattern is still needed for amplitude spectrum to
recover a fixation map.

Finding 3. The phase spectrum is robust to noise and
down-sampling for saliency prediction.

In our experiment, we find that the phase spectrums tend
to be random. Therefore, it is interesting to evaluate the anti-
noise capability of phase spectrum. Here, we add zero-mean
WGN with different Std ({1, 0.7, 0.5, 0.3, 0.1, 0.01}σp) to
each phase spectrum of fixation map G. Then, we test
whether it can still recover the fixation map. Note that σp is
the Std of the original phase spectrum. The qualitative and
quantitative results are shown in Figures 3 and 4, respectively.
The horizontal axis of Figure 4 also lists the correspond-
ing peak signal to noise ratio (PSNR), for each noise-added
phase spectrum. According to Figures 3 and 4, the phase spec-
trum is capable of recovering the fixation map (CC = 0.94,
KL = 0.80), even added by WGN with 0.3σp Std (PSNR
= 23.35dB). This verifies the phase spectrums has a good
anti-noise capability for predicting image saliency.

Furthermore, we also evaluate the sensitivity of phase spec-
trum at different resolutions for recovering the fixation map.
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(a) Image (b) Fixation map (c) 1𝜎g
𝑝

WGN (d) 0.7𝜎g
𝑝

WGN (e) 0.5𝜎g
𝑝

WGN (f) 0.3𝜎g
𝑝

WGN (g) 0.1𝜎g
𝑝

WGN (h) 0.01𝜎g
𝑝

WGN

Figure 3: Original images (a), fixation maps (b) and saliency maps recovered from noise-added phase spectrums (c)-(h).
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Figure 4: Performance of saliency maps recovered from our experiments in Findings 3 over MIT1003, in the terms of CC (a)
and KL (b). For each sub-figure, the horizontal axis indicates the phase spectrums added by different WGN. Note that the
corresponding PSNR of each WGN is listed in brackets. Besides, the curves with different colors refer to the phase spectrums
with different resolutions.

To this end, the phase spectrum of each fixation map is down
sampled to 240 × 320, 120 × 160, 60 × 80, 30 × 40 and
15 × 20. Then, we evaluate the performance of the recov-
ered saliency maps. Surprisingly, we can see from Figure
4 that the resolution of phase spectrum has little effect on
recovering the fixation map. This finding is important for
designing the phase-based loss function. In other words, we
can reduce the dimension of ground-truth phase spectrum to
improve the generalization ability of our learning algorithm.
It is worth mentioning that above results can be found in
amplitude spectrum.

4 Proposed method
The architecture of Sal-DCNN is shown in Figure 5. Inspired
by the above findings, we develop Sal-DCNN considering
both pixel and transformed information for saliency predic-
tion. Basically, some complex components are designed in
Sal-DCNN, in order to utilize the effective saliency cues of
the transformed domain. Based on these complex compo-
nents, a complex dense encoder is proposed to extract the
deep complex features, from the RGB channels of the input
image and their corresponding DFT coefficients. Then, given
the deep complex features, a three-stream multi-domain de-
coder is developed to generate pixel domain saliency map, as
well as the predicted spectrums of phase and amplitude. Con-
sequently, the final saliency map can be obtained by fusing
pixel and transformed domain saliency.

4.1 Complex components

In the following, we briefly introduce the complex compo-
nents in our Sal-DCNN. Following the idea of (Hirose and
Yoshida 2012), we use real-valued representations to model
the basic components of complex CNN. As such, the pro-
posed complex CNN can be easily implemented in the mod-
ern deep learning platforms. Taking the conv layer as an
example, we can re-formulate the complex convolution oper-
ation by the real-valued convolution (∗) as follows,[

sr
si

]
=

[
Wr −Wi

Wi Wr

]
∗
[
zr
zi

]
+

[
βr
βi

]
, (2)

where r and i represent the real and imaginary parts of the
corresponding kernel weights (W ), biases (β), input (z) and
output (s) tensors. Similarly, in our method, the complex
batch normalization (BN) and pooling layers are also repre-
sented by real-valued operations as in (Trabelsi et al. 2017).
Additionally, we propose some new basic components, i.e.,
the squared-leakage rectified linear unit (ReLU) and channel-
wise polynomial projection, to make improvement on the
existing complex activation layer and projection layer, re-
spectively.

Squared-leakage ReLU. Different from the CReLU and
zReLU in (Trabelsi et al. 2017), we develop a squared-
leakage ReLU to overcome the problems of losing phase
information (CReLU) and sparse activation (zReLU). The
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(a) Framework of Sal-DCNN

Decoder block

1x1 real conv
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3x3 complex conv

complex BN
SL-ReLU

Complex dense block Complex transition 
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1x1 complex conv
average pooling

(b) Details of each block

Figure 5: Architecture of Sal-DCNN for image saliency prediction, including structures of complex dense encoder and three-
stream multi-domain decoder. Note that the channel numbers in the encoder rely on the hyper-parameters of growth rate and
compression factor in the complex dense block and transition block. In the decoder stage, the channel number is summarized to
be a half after each conv/deconv layer.

function for the squared-leakage ReLU is

SL− ReLU(c) =


c if θc ∈ [0, π2 )

αc if θc ∈ [π2 , π)

αc if θc ∈ [π, 3π2 )

α2c if θc ∈ [ 3π2 , 2π)

, (3)

where c is the complex number needed to be activated; θc is
the phase of c; and α is the leakage coefficient.

Channel-wise polynomial projection. The aim of projec-
tion layer is mapping the complex number into real number.
Typically, the projection is simply conducted by computing
the magnitude of complex number (Guberman 2016). In our
method, we develop a channel-wise polynomial projection
Ppoly to learn the optimal projection as follows,

Ppoly(z
c) = ωc

1 ·(zc
r)

2+ωc
2 ·(zc

i )
2+ωc

3z
c
rz

c
i +ω

c
4z

c
r+ω

c
5z

c
i +ω

c
6,

(4)
where zc is the c-th channel of complex input, and {ωi}6i=1

are the second-order polynomial coefficients.

4.2 Encoder and decoder structures
Complex dense encoder. Based on the complex compo-
nents, a complex dense encoder is proposed to encode the
saliency cues in both pixel and transformed domain. Follow-
ing (Huang et al. 2017), we develop complex dense block
and complex transition block in our encoder structures. The
details about these 2 blocks are shown in Figure 5-(b). For
each input image I , we first concatenate the RGB channels
and their corresponding DFT coefficients 1, as the input to
the complex dense encoder. Note that each RGB channel is
also represented as a complex number by setting its imagi-
nary part to zero. Before concatenating, the DFT coefficients
are normalized to have a similar scale as the RGB channels.
Then, the input channels are fed into the complex dense en-
coder, which includes 1 complex conv layer, 3 complex dense

1Since DFT is a global operation over the whole image, the DFT
coefficients can be seen as the features with receptive field of input
resolution. As such, this concatenation can also act as a multi-scale
integration.

blocks and 3 complex transition blocks, as shown in Figure 5.
It is worth noting that each complex conv layer in the encoder
is followed by a complex BN, a linear and a squared-leakage
ReLU layers. Consequently, the deep complex features FI

can be extracted as

FI = He(I;We), (5)

where He(·) indicates our complex dense encoder with learn-
able weightsWe in all complex blocks and layers.

In summary, there are 3 advantages for our complex dense
encoder. 1) The input of the encoder contains both pixel and
transformed domain information; 2) The complex compo-
nents of the encoder make it possible to extract deep com-
plex features considering the transformed domain. 3) The
advanced dense and transition blocks can strengthen informa-
tion flow only with a small number of parameters.

Three-stream multi-domain decoder. As introduced in
Finding 1, the transformed domain information, especially
the phase spectrum, contributes to predicting image saliency.
Thus, a three-stream multi-domain decoder is proposed to
generate not only the predicted saliency map in pixel domain,
but also the predicted spectrums of phase and amplitude in
the transformed domain (see Figure 5). Specifically, accord-
ing to Finding 2, we propose a residual learning scheme in
the amplitude stream of decoder. That is, instead of of pre-
dicting the ground-truth of amplitude spectrum, we predict
the residual between the general pattern and ground-truth. As
introduced in Finding 2, this general pattern At is obtained
by averaging all ground-truth amplitude spectrums (An) in
training set T with the total number of N , as follows

At =
1

N

∑
n∈T

An. (6)

Given the deep complex features FI extracted from the com-
plex dense encoder, we can obtain the pixel domain saliency
map So, predicted phase spectrum Po and predicted residual
amplitude spectrum Ao by

So = Hs
d(Ppoly(FI);W s

d ),

Po = Hp
d (Angle(FI);W p

d ),

Ao = Ha
d (Abs(FI);W a

d ). (7)
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Figure 6: Structure for final saliency map generation and the
loss functions in Sal-DCNN.

In (7), Ppoly(·) is the proposed channel-wise polynomial pro-
jection in (4), while Angle(·) and Abs(·) are the operations
to calculate the phase and magnitude of FI . Besides, W s

d ,
W p

d and W a
d indicate the learnable weights in 3 decoder

streams, i.e., projection stream Hs
d(·), phase stream Hp

d (·)
and residual amplitude stream Ha

d (·). For the detailed struc-
tures of the decoder, see Figure 5.

The decoder part has 3 advantages. 1) Transformed do-
main saliency can be learned through the phase and residual
amplitude steams of the decoder. 2) The residual learning
scheme improves the efficiency on predicting the ground-
truth amplitude spectrum. 3) Both pixel and transformed
domain saliency are decoded for saliency prediction.

4.3 Loss function

Given pixel domain saliency map So, predicted phase spec-
trum Po and predicted residual amplitude spectrum Ao, we
can obtain final saliency map Sf by fusing pixel and trans-
formed domain saliency, as follows

Sf =
ω2
f

ω2
f + 1

So+
1

ω2
f + 1

F−1
(
(Ao + At) · eı·Po

)
, (8)

where ωf is the learnable weight for integrating pixel and
transformed domain saliency. The fusing process is also
shown in Figure 6.

To train Sal-DCNN, predicted phase spectrum Po and
residual amplitude spectrum Ao are supervised, via com-
puting mean-square error (MSE) between the predicted and
ground-truth spectrums (PG and AG). Meanwhile, regarded
as the probability distributions of attention, pixel domain
saliency map So and final saliency map Sf are supervised
by ground-truth fixation mapG through KL divergence min-
imization. Finally, the overall loss of Sal-DCNN can be de-
fined by

LOSS = KL(Sf ,G)︸ ︷︷ ︸
final loss

+λoKL(So,G)︸ ︷︷ ︸
projection loss

(9)

+ λp
MSE(Po,PG)

Rp︸ ︷︷ ︸
phase loss

+λa
MSE(Ao +At,AG)

Ra︸ ︷︷ ︸
amplitude loss

,

where λo, λp and λa are hyper-parameters for controlling
the weights for projection loss, phase loss and amplitude loss.
Besides, Rp and Ra are the factors to re-scale MSE based
loss to the similar range of KL based loss. The details about
the loss function is also shown in Figure 6.

Table 3: Implementation details and hyper-parameters.

Leakage coefficient in (3) 0.1
Conv layer numbers of 3 dense blocks 6, 12, 32
Growth rate of complex dense block 48
Compression factor of complex transition block 0.5
Loss weights λo, λp and λa in (9) 0.5, 0.5, 0.1
Re-scaling factors Rp and Ra in (9) 10, 20
Initial learning rate 1× 10−5

Training iterations ∼ 1.4× 105

Weight decay 5× 10−6

5 Experiment
5.1 Settings.
In this section, the experimental results are presented to verify
the effectiveness of our Sal-DCNN method. In our experi-
ments, the Sal-DCNN model is trained over the training set
(10,000 images) of (Jiang et al. 2015). The model training is
based on the stochastic gradient descent algorithm with the
Adam optimizer. The whole training process takes around
15 hours in a computer with 3.4 GHz CPU, a GTX 1080
GPU, and 32G RAM. Here, the hyper-parameters of our
method are tuned over 5,000 images in the validation set of
(Jiang et al. 2015). The implementation details and tuned
hyper-parameters are listed in Table 3. Then, our Sal-DCNN
method is tested on 3 widely used large-scale image saliency
databases, i.e., MIT1003 (Judd et al. 2009), CAT2000 (Borji
and Itti 2015) and DUT (Yang et al. 2013). We randomly split
these 3 databases into training and test sets at a ratio of 4:1,
so the numbers of test images for MIT1003, CAT2000 and
DUT are 201, 400 and 1034. Note that we do not evaluate
the performance of Sal-DCNN on the test set of (Jiang et al.
2015), as it is not available online.

5.2 Comparison Results.
In our experiments, we compare the performance of image
saliency prediction between our Sal-DCNN and other state-
of-the-art methods, including SR (Hou and Zhang 2007),
PQFT (Guo and Zhang 2010), BMS (Zhang and Sclaroff
2016), SALICON (Huang et al. 2015), ML-Net (Cornia et
al. 2016), SalGAN (Pan et al. 2017), DVA (Wang and Shen
2018) and SAM (Cornia et al. 2018). Here, we use the codes
of these methods available online for image saliency pre-
diction in our performance comparison. Then, 4 metrics are

8526



Table 4: Averaged results for saliency prediction by our and 8 other methods over 3 databases.

MIT1003 (201 test images) CAT2000 (400 test images) DUT (1,034 test images)
AUC NSS CC KL AUC NSS CC KL AUC NSS CC KL

SALICON 0.82 1.28 0.42 1.61 0.77 0.99 0.39 1.17 0.85 2.27 0.48 1.24
DVA 0.86 2.19 0.66 0.87 0.81 1.50 0.56 0.84 0.91 3.11 0.67 0.88

SalGAN 0.87 2.05 0.65 0.96 0.81 1.47 0.56 0.97 0.91 2.80 0.68 0.90
ML-Net 0.84 2.01 0.61 1.01 0.79 1.37 0.51 0.99 0.88 2.87 0.61 1.15

SAM 0.87 2.19 0.61 1.30 0.84 1.74 0.63 1.12 0.91 2.96 0.67 1.07
BMS 0.77 1.15 0.37 1.43 0.78 1.20 0.46 1.07 0.83 1.76 0.42 1.40

PQFT∗ 0.70 0.78 0.25 1.67 0.75 0.98 0.37 1.18 0.77 1.26 0.33 1.53
SR∗ 0.70 0.80 0.25 1.69 0.72 0.87 0.32 6.05 0.67 0.70 0.15 3.54

Sal-DCNN 0.87 2.10 0.62 0.89 0.86 2.03 0.79 0.63 0.92 3.07 0.76 0.55
Sal-DCNN-PP 0.86 1.98 0.61 0.93 0.86 2.00 0.77 0.65 0.92 3.06 0.75 0.57
Sal-DCNN-P 0.86 1.97 0.60 0.98 0.86 1.99 0.76 0.74 0.92 3.05 0.75 0.60
Sal-DenseNet 0.85 1.95 0.59 1.04 0.86 1.95 0.74 0.97 0.91 3.03 0.74 0.63
∗ Transformed domain methods.

Input Human Ours SALICON DVA SalGAN ML-Net SAM BMS PQFT SR

Figure 7: Saliency maps of 5 randomly selected images from MIT1003, CAT2000 and DUT. The maps were yielded by our and
8 other methods as well the ground-truth human fixations.

applied to measure the performance of saliency prediction:
the area under the receiver operating characteristic curve
(AUC), normalized scanpath saliency (NSS), CC, and KL
divergence. Note that the larger value of AUC, NSS or CC in-
dicates more accurate prediction of saliency, while a smaller
KL divergence means better saliency prediction. As shown
in Table 4, our method outperforms other state-of-the-art
methods over MIT1003, CAT2000 and DUT in terms of most
metrics. In particular, the gains of our Sal-DCNN method
over SAM are 0.02 in AUC, 0.29 in NSS, 0.16 in CC, 0.49
in KL divergence, when tested on CAT2000. Note that SAM
performs the best among all compared methods. In addition
to the above quantitative results, Figure 7 shows that our Sal-
DCNN method is capable of well locating the salient regions,
which are closer to ground-truth fixations maps than other
methods.

5.3 Ablation Results.
We further conduct the ablation experiments to analyze the
contribution of each component proposed in our method.
Specifically, we train the following models independently.

1) Sal-DenseNet: the real-valued dense encoder followed by
the projection decoder stream; 2) Sal-DCNN-P: the complex
dense encoder followed by the projection decoder stream; 3)
Sal-DCNN-PP: the complex dense encoder followed by the
projection and phase decoder streams (the amplitude spec-
trum is fixed by general pattern At). As such, Sal-DenseNet
is a complete real-valued CNN with the similar structure
to Sal-DCNN, while Sal-DCNN-P only decodes the pixel
domain saliency. We can see from Table 4 that compared
with Sal-DenseNet, the transformed domain information in
Sal-DCNN-P can reduce KL divergence by 0.23 over the im-
ages of CAT2000. Besides, the transformed domain saliency
learned from the phase stream and residual amplitude stream
has 0.09 and 0.02 KL reduction over CAT2000, respectively.
It is also worth mentioning that the squared-leakage ReLU
and channel-wise polynomial projection, as the developed
complex components in our Sal-DNN method, can also bring
0.01 and 0.03 reduction in KL divergence. The above results
validate the effectiveness of the proposed components in our
Sal-DCNN method.
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6 Conclusion
This paper has proposed the Sal-DCNN method for image
saliency prediction, in which both pixel and transformed
domain features are learned from the large-scale training im-
ages. Specifically, we found that a fixation map is mainly
determined by the phase spectrum of its DFT coefficients.
We also found that a certain pattern of the amplitude spec-
trum is necessary to recover the fixation map. The additional
findings show that the phase spectrum of the DFT domain
fixation maps is robust to noise and down-sampling. Inspired
by our findings, we developed a new deep complex CNN
structure for Sal-DCNN. The experimental results showed
the proposed Sal-DCNN method can advance state-of-the-art
image saliency prediction.
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