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Abstract

Despite the great success of two-stage detectors, single-stage
detector is still a more elegant and efficient way, yet suffers
from the two well-known disharmonies during training, i.e.
the huge difference in quantity between positive and nega-
tive examples as well as between easy and hard examples. In
this work, we first point out that the essential effect of the
two disharmonies can be summarized in term of the gradient.
Further, we propose a novel gradient harmonizing mechanism
(GHM) to be a hedging for the disharmonies. The philoso-
phy behind GHM can be easily embedded into both classi-
fication loss function like cross-entropy (CE) and regression
loss function like smooth-L1 (SL1) loss. To this end, two
novel loss functions called GHM-C and GHM-R are designed
to balancing the gradient flow for anchor classification and
bounding box refinement, respectively. Ablation study on MS
COCO demonstrates that without laborious hyper-parameter
tuning, both GHM-C and GHM-R can bring substantial im-
provement for single-stage detector. Without any whistles and
bells, the proposed model achieves 41.6 mAP on COCO test-
dev set which surpass the state-of-the-art method, Focal Loss
(FL) + SL1, by 0.8. The code1 is released to facilitate future
research.

1 Introduction
One-stage approach is the most efficient and elegant frame-
work for object detection. But for a long time, the perfor-
mance of one-stage detectors has a large gap from that of
two-stage detectors. The most challenging problem for the
training of one-stage detector is the serious imbalance be-
tween easy and hard examples as well as that between pos-
itive and negative examples. The huge number of easy and
background examples tend to overwhelm the training. But
these problems are not existed for two-stage detectors, ow-
ing to the proposal-driven mechanism. To handle the former
imbalance problem, example mining based methods such
as OHEM (Shrivastava, Gupta, and Girshick 2016) are in
common use, but they directly abandon most examples and
the training is inefficient. For the latter imbalance, the re-
cent work, Focal Loss (Lin et al. 2017b), has tried to ad-
dress it by rectifying the cross-entropy loss function to a
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Figure 1: An illustration of gradient harmonizing mecha-
nism. The figure in the left displays the distribution of rela-
tive gradient norm in a converged model in log scale respec-
tively. The middle figure displays the new gradient norms
after the rectification of Focal Loss (FL) and GHM-C loss,
compared with the original cross-entropy (CE) loss. The
right figure shows the total gradient contribution of exam-
ples w.r.t gradient norm.

elaborately designed form. However, Focal Loss adopts two
hyper-parameters which should be tuned with a lot of ef-
forts. And it is a static loss which is not adaptive for the
changing of data distribution, which varies along with the
training process.

In this work, we first point out that the class imbalance
can be summarized to the imbalance in difficulty and the
imbalance in difficulty can be summarized to the imbalance
in gradient norm distribution. If a positive example is well-
classified, it is an easy example and the model benefit little
from it, i.e. a little magnitude of gradient will be produced
by this sample. And a misclassified example should attract
attention of the model no matter which class it belongs to.
So if viewed globally, the large amount of negative examples
tends to be easy to classify and the hard examples are usu-
ally positive. So the two kind of imbalance can be roughly
summed up as attribute imbalance.

Moreover, we claim that the imbalance of examples with
different attributes (hard/easy and pos/neg) can be implied
by the distribution of gradient norm. The density of exam-
ples w.r.t. gradient norm, which we call as gradient density
for convenient, varies largely as showed in the left of Fig.1.
The examples with very small gradient norm have a quite
large density which is corresponding to the large amount of
easy negative examples. Although one easy example has less
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contribution on the global gradient than a hard example, the
total contribution of the huge amount of easy examples can
overwhelm the contribution of the minority of hard exam-
ples and the training process will be inefficient. Besides, we
also discover that the density of examples with very large
gradient norm (very hard examples) is slightly larger than
the density of the medium examples. And we consider these
very hard examples mostly as outliers since they exist stably
even when the model is converged. The outliers may affect
the stability of model since their gradients may have a large
discrepancy from the other common examples.

Inspired by the analysis of gradient norm distribution, we
propose a gradient harmonizing mechanism (GHM) to train
the one-stage object detection model in an efficient, which
focuses on the harmony of gradient contribution of different
examples. The GHM first performs statistics on the number
of examples with similar attributes w.r.t their gradient den-
sity and then attach a harmonizing parameter to the gradi-
ent of each example according to the density. The effect of
GHM compared with CE and FL is illustrated in the right of
Fig.1. Training with GHM, the huge amount of cumulated
gradient produced by easy examples can be largely down-
weighted and the outliers can be relatively down-weighted
as well. In the end, the contribution of each kind of exam-
ples will be balanced and the training can be more efficient
and stable.

In practice, the modification of gradient can be equiva-
lently implemented by reformulating the loss function, we
embed the GHM into the classification loss, which is de-
noted as GHM-C loss. This loss function is elegantly for-
mulated without many hyper-parameters to tune. Since the
gradient density is a statistical variable depending on the ex-
amples distribution in a mini-batch, GHM-C is a dynamic
loss that can adapt to the change of data distribution in each
batch as well as to the updating of model. To showcase the
generality of GHM, we also adopt it in the box regression
branch as the form of GHM-R loss.

Experiments on the bounding box detection track of the
challenging COCO benchmark show that the GHM-C loss
has a large gain compared to the traditional cross-entropy
loss and slightly surpasses the state-of-the-art Focal Loss.
And the GHM-R loss also has better performance than the
commonly used smooth L1 loss. The combination of GHM-
C and GHM-R attains a new state-of-the-art performance on
COCO tes-dev set.

Our main contributions are as follows:

1. We reveal the essential principle behind the significant
example imbalance in one-stage detector in term of gra-
dient norm distribution, and propose a novel gradient
harmonizing mechanism (GHM) to handle it.

2. We embed the GHM into the loss for classification and
regression as GHM-C and GHM-R respectively, which
rectify the gradient contribution of examples with differ-
ent attributes and is robust to hyper-parameters.

3. Collaborating with GHM, we can easily train a single
stage detector without any data sampling strategy and
achieve the state-of-the-art result on COCO benchmark.

2 Related Work
Object Detection: Object detection is one of the most ba-
sic and important task in the field of computer vision. Deep
convolutional neural network (CNN) based methods, e.g.
(Ren et al. 2015; Liu et al. 2016; Redmon and Farhadi 2017;
He et al. 2017), have become more and more developed and
achieved great success in recent years, owing to the signif-
icant progress of network architecture such as (Simonyan
and Zisserman 2014; Szegedy et al. 2016; He et al. 2016;
Huang et al. 2017). Advanced object detection frameworks
can be divided into two categories: one-stage detector and
two-stage detector.

Most state of the art methods use two-stage detectors, e.g.
(Girshick 2015; Ren et al. 2015; Li et al. 2017; He et al.
2017; Lin et al. 2017a; Zeng et al. 2018). They are mainly
based on the Region CNN (R-CNN) architecture. These ap-
proaches first obtain a manageable number of region pro-
posals called region of interest (RoI) from the nearly infinite
candidate regions and then use the network to evaluate each
RoI.

One-stage detectors have the advantage of simple struc-
tures and high speed. SSD (Liu et al. 2016; Fu et al. 2017),
YOLO (Redmon et al. 2016; Redmon and Farhadi 2017;
2018) for generic object detection and RSA (Song et al. ;
Liu et al. 2017) for face detection have achieved good
speed/accuracy trade-off. However, they can hardly surpass
the accuracy of two-stage detectors. RetinaNet (Lin et al.
2017b) is the state of the art one-stage object detector that
achieve comparable performance to two-stage detectors. It
adopts an architecture modified from RPN (Ren et al. 2015)
and focuses on addressing the class imbalance during train-
ing.

Object Functions for Object Detector: Most detection
models use cross entropy based loss function for classifi-
cation (Girshick 2015; Ren et al. 2015; Liu et al. 2016;
Dai et al. 2016; Lin et al. 2017a; He et al. 2017). While one-
stage detectors face a problem of extreme class imbalance
that two-stage detectors do not have. Earlier methods try to
use hard example mining methods, e.g. (Shrivastava, Gupta,
and Girshick 2016; Felzenszwalb, Girshick, and McAllester
2010), but they discard most examples and cannot handle the
problem well. Recently the work (Lin et al. 2017b) reformu-
late the cross-entropy loss so that easy negatives are down-
weighted and the hard examples are unaffected or even up-
weighted.

For stable training of box regression, Fast R-CNN (Gir-
shick 2015) introduces the smooth L1 loss. This loss reduces
the impact of outliers so that the training of model can be
more stable. Almost all the following works take the smooth
L1 loss as a default for box regression (Ren et al. 2015;
Liu et al. 2016; Dai et al. 2016; Lin et al. 2017a; He et al.
2017).

The work (Imani and White 2018) tries to improve regres-
sion performance by changing the target to a distribution and
using a histogram loss to calculate the K-L divergence of
prediction and target. The work (Chen et al. 2017) balances
multi-task losses by dynamically tuning gradient magnitude
of different task branches.
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Our GHM based loss harmonizes the contribution of ex-
amples on the basis of the distribution of their gradient, so
that it can handle both the class imbalance and the outliers
problem well. It can also adapt the weights to the changing
of data distribution in each mini-batch.

3 Gradient Harmonizing Mechanism
Problem Description
Similar to (Lin et al. 2017b), our efforts here are focused on
classification in one-stage object detection where the classes
(foreground/background) of examples are quite imbalanced.
For a candidate box, let p ∈ [0, 1] be the probability pre-
dicted by the model and p∗ ∈ {0, 1} be its ground-truth
label for a certain class. Consider the binary cross entropy
loss:

LCE(p, p
∗) =

{ − log(p) if p∗ = 1

− log(1− p) if p∗ = 0
(1)

Let x be the direct output of the model such that p =
sigmoid(x), we have the gradient with regard to x:

∂LCE
∂x

=

{
p− 1 if p∗ = 1

p if p∗ = 0

= p− p∗
(2)

We define g as follows:

g = |p− p∗| =
{
1− p if p∗ = 1

p if p∗ = 0
(3)

g equals to the norm of gradient w.r.t x. The value of g repre-
sents attribute (e.g. easy or hard) of an example and implies
the example’s impact on the global gradient. Although the
strict definition of gradient is on the whole parameter space,
which means g is a relative norm of an example’s gradient,
we call g as gradient norm in this paper for convenience.

Fig.2 shows the distribution of g from a converged one-
stage detection model. Since the easy negatives have a dom-
inant number, we use log axis to display the fraction of ex-
amples to demonstrate the details of the variance of exam-
ples with different attributes. It can be seen that the number
of very easy examples is extremely large, which have a great
impact on the global gradient. Moreover, we can see that a
converged model still can’t handle some very hard examples
whose number is even larger than the examples with medium
difficulty. These very hard examples can be regarded as out-
liers since their gradient directions tends to vary largely from
the gradient directions of the large amount of other exam-
ples. That is, if the converged model is forced to learn to
classify these outliers better, the classification of the large
number of other examples tends to be less accurate.

Gradient Density
To handle the problem of the disharmony of gradient norm
distribution, we introduce a harmonizing approach with re-
gard to gradient density. Gradient density function of train-
ing examples is formulated as Equation.4:

GD(g) =
1

lε(g)

N∑
k=1

δε(gk, g) (4)

0 0.2 0.4 0.6 0.8 1
gradient norm

10-6

10-4

10-2

100

fr
ac

tio
n 

of
 e

xa
m

pl
es

Figure 2: The distribution of the gradient norm g from a con-
verged one-stage detection model. Note that the y-axis uses
log scale since the number of examples with different gradi-
ent norm can differ by orders of magnitude.

where gk is the gradient norm of the k-th example. And

δε(x, y) =

{
1 if y − ε

2
<= x < y +

ε

2
0 otherwise

(5)

lε(g) = min(g +
ε

2
, 1)−max(g − ε

2
, 0) (6)

The gradient density of g denotes the number of examples
lying in the region centered at g with a length of ε and nor-
malized by the valid length of the region.

Now we define the gradient density harmonizing parame-
ter as:

βi =
N

GD(gi)
(7)

where N is the total number of examples. To better com-
prehend the gradient density harmonizing parameter, we can
rewrite it as βi = 1

GD(gi)/N
. The denominatorGD(gi)/N is

a normalizer indicating the fraction of examples with neigh-
borhood gradients to the i-th example. If the examples are
uniformly distributed with regard to gradient, GD(gi) = N
for any gi and each example will have the same βi = 1,
which means nothing is changed. Otherwise, the examples
with large density will be relatively down-weighted by the
normalizer.

GHM-C Loss
We embed the GHM into classification loss by regarding βi
as the loss weight of the i-th example and the gradient den-
sity harmonized form of loss function is:

LGHM−C =
1

N

N∑
i=1

βiLCE(pi, p
∗
i )

=

N∑
i=1

LCE(pi, p
∗
i )

GD(gi)

(8)

Fig.3 illustrates the reformulated gradient norm of dif-
ferent losses. Here we take the original gradient norm of
CE, i.e. g = |p − p∗|, as the x-axis for convenient view
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since the density is calculated according to g. We can see
that the curves of Focal Loss and GHM-C loss have similar
trend, which implies that Focal Loss with the best hyper-
parameters is similar with uniform gradient harmonizing.
Furthermore, GHM-C has one more merit that Focal loss ig-
nores: down-weighting the gradient contribution of outliers.

0 0.2 0.4 0.6 0.8 1
original gradient norm

10-8

10-6

10-4

10-2

100

re
fo

rm
ul

at
ed

 g
ra

di
en

t n
or

m

CE
FL
GHM-C

Figure 3: Reformulated gradient norm of different loss func-
tions w.r.t the original gradient norm g. The y-axis uses log
scale to better display the details of FL and GHM-C.

With our GHM-C loss, the huge number of very easy
examples are largely down-weighted and the outliers are
slightly down-weighted as well, which simultaneously ad-
dresses the attribute imbalance problem and the outliers
problem. From the right figure in Fig.1 we can better see
that GHM-C harmonizes the total gradient contribution of
different group of examples. Since the gradient density is
calculated every iteration, the weights of examples are not
fixed w.r.t. g (or x) like focal loss but adaptive to current
state of model and mini-batch of data. The dynamic prop-
erty of GHM-C loss makes the training more efficient and
robust.

Unit Region Approximation
Complexity Analysis: The naive algorithm to calculate
the gradient density values of all examples has a time com-
plexity of O(N2), which can be easily attained from Equa-
tions 4 and 8. Even parallel computed, each computing unit
still bears a computation of N . And as far as we know, the
best algorithm first sort the examples by gradient norm with
a complexity of O(N logN) and then use a queue to scan
the examples and get their density with O(N). This sorting
based method can not gain much from parallel computing.
Since N of an image in one-stage detector can be 105 or
even 106, to directly calculate the gradient density is quite
time consuming. So we introduce an alternative approach to
approximately attain the gradient density of examples.

Unit Region: We divide the range space of g into individ-
ual unit regions with a length of ε, and there are M = 1

ε
unit regions. Let rj be the unit region with index j so that
rj = [(j − 1)ε, jε). Let Rj denote the number of examples
lying in rj . We define ind(g) = t s.t. (t − 1)ε <= g < tε,
which is the index function to the unit region that g lies in.

Then we define the approximate gradient density function
as:

ĜD(g) =
Rind(g)

ε
= Rind(g)M (9)

Then we have the approximate gradient density harmonizing
parameter:

β̂i =
N

ĜD(gi)
(10)

Consider the special case where ε = 1: there are just one unit
region and all examples lie in it, so obviously every βi = 1
and each example keep their original gradient contribution.
Finally we have the reformulated loss function:

L̂GHM−C =
1

N

N∑
i=1

β̂iLCE(pi, p
∗
i )

=

N∑
i=1

LCE(pi, p
∗
i )

ĜD(gi)

(11)

From Equation. 9 we can see that the examples lying in
the same unit region share the same gradient density. So we
can use the algorithm of histogram statistics and the compu-
tation of all the gradient density values has a time complex-
ity of O(MN). And parallel computing can be applied so
that each computing unit has a computation of M . In prac-
tice, we can attain good performance with quite small num-
ber of unit regions. That is M is fairly small and the calcu-
lation of loss is efficient.

EMA: Mini-batch statistics based methods usually face a
problem: when many extreme data are just sampled in one
mini-batch, the statistical result will be a serious noise and
the training will be unstable. Exponential moving average
(EMA) is a common used method to address this problem,
e.g., SGD with momentum (Sutskever et al. 2013) and Batch
Normalization (Ioffe and Szegedy 2015). Since in the ap-
proximation algorithm the gradient densities come from the
numbers of examples in the unit regions, we can apply EMA
on each unit region to obtain more stable gradient densities
for examples. Let R(t)

j be the number of examples in the j-

th unit region in the t-th iteration and S(t)
j be the moving

averaged number. We have:

S
(t)
j = αS

(t−1)
j + (1− α)R(t)

j (12)
where α is the momentum parameter. We use the averaged
number Sj to calculate the gradient density instead of Rj :

ĜD(g) =
Sind(g)

ε
= Sind(g)M (13)

With EMA, the gradient density will be more smooth and
insensitive to extreme data.

GHM-R Loss
Consider the parameterized offsets, t = (tx, ty, tw, th),
predicted by box regression branch and the target offsets,
t∗ = (t∗x, t

∗
y, t
∗
w, t
∗
h), computed from ground-truth. The re-

gression loss usually adopts the smooth L1 loss function:

Lreg =
∑

i∈{x,y,w,h}

SL1(ti − t∗i ) (14)
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where

SL1(d) =


d2

2δ
if |d| <= δ

|d| − δ

2
otherwise

(15)

where δ is the division point between the quadric part and
the linear part, and usually set to 1/9 in practice.

Since d = ti − t∗i , the gradient of smooth L1 loss w.r.t ti
can be expressed as:

∂SL1

∂ti
=
∂SL1

∂d
=


d

δ
if |d| <= δ

sgn(d) otherwise
(16)

where sgn is the sign function.
Note that all the examples with |d| larger than the division

point have the same gradient norm |∂SL1

∂ti
| = 1, which makes

the distinguishing of examples with different attributes im-
possible if depending on the gradient norm. An alternative
choice is directly using |d| as the measurement of different
attributes, but the new problem is |d| can reach to infinite in
theory and the unit region approximation can not be imple-
mented.

To conveniently apply GHM on regression loss, we first
modify the traditional SL1 loss into a more elegant form:

ASL1(d) =
√
d2 + µ2 − µ (17)

This loss shares similar property with SL1 loss: when d
is small it approximates a quadric function (L2 loss) and
when d is large is approximate a linear function (L1 loss).
We denote the modified loss function as Authentic Smooth
L1 (ASL1) loss for its good property of authentic smooth-
ness, which means all the degrees of derivatives are existed
and continuous. In contrast, the second derivative of smooth
L1 loss does not exist at the point d = δ. Furthermore, the
ASL1 loss has an elegant form of gradient w.r.t d:

∂ASL1

∂d
=

d√
d2 + µ2

(18)

The range of the gradient is just [0, 1), so the calculation
of density in unit regions for ASL1 loss in regression is as
convenient as CE loss in classification. In practice, we set
µ = 0.02 for ASL1 loss to keep the same performance with
SL1 loss.

We define gr = | d√
d2+µ2

| as the gradient norm of ASL1

loss and the gradient distribution of a converged model is il-
lustrated in Fig.4 We can see that there are large number of
outliers. Note that the regression is only performed on the
positive examples so it is reasonable for the different dis-
tribution trend between classification and regression. Above
all, we can apply GHM on regression loss:

LGHM−R =
1

N

N∑
i=1

βiASL1(di)

=

N∑
i=1

ASL1(di)

GD(gri)

(19)
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Figure 4: The distribution of the gradient norm gr for ASL1

loss.
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Figure 5: Comparison of the reformulated gradient contribu-
tions of different regression losses w.r.t the value of |d|, i.e.
the error to ground-truth.

The reformulated gradient contribution of SL1 loss,
ASL1 loss and GHM-R loss in Fig.5. The x-axis adopts |d|
for convenient comparison.

We emphasize that in box regression not all the “easy ex-
amples” are unimportant. An easy example in classification
is usually a background region with a very low predicted
probability and will be definitely excluded from the final
candidates. Thus the improvement of this kind of examples
makes nearly no contribution to the precision. But in box re-
gression, an easy example still has deviation from the ground
truth location. Better prediction of any example will directly
improve the quality of the final candidates. Moreover, ad-
vanced datasets care more about the localization accuracy.
For example, COCO (Lin et al. 2014) takes the average AP
from the IoU threshold 0.5 to 0.95 as the metric to evaluate
an algorithm. In this metric, the some of the so called easy
examples (those having small errors) are also important be-
cause reducing the errors of them can directly improve the
AP at high threshold (e.g. AP@IoU=0.75).

Our GHM-R loss can harmonize the contribution of easy
and hard examples for box regression by up-weighting the
important part of easy examples and down-weighting the
outliers. Experiments show that it can attain better perfor-
mance than SL1 and ASL1.
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4 Experiments
We evaluate our approach on the challenging COCO bench-
mark (Lin et al. 2014). For training, we follow the common
used practice (He et al. 2017; Lin et al. 2017b) to divide
the 40k validation set into a 35k subset and a 5k subset. The
union of the 35k validation subset and the whole 80k training
set are used for training together and denoted as trainval35k
set. The 5k validation subset is denoted as minival set and
our ablation study is performed on it. While our main results
are reported on the test-dev set.

Implementation Details
Network Setting: We use RetinaNet (Lin et al. 2017b) as
network architecture and all the experiments adopt ResNet
(He et al. 2016) as backbone with Feature Pyramid Network
(FPN) (Lin et al. 2017a) structure. Anchors use 3 scales and
3 aspect ratios for convenient comparison with focal loss.
The input image scale is set as 800 pixel for all experiments.
For all ablation studies, ResNet-50 is used. While the fi-
nal model evaluated on test-dev adopts ResNeXt-101 (Hu,
Shen, and Sun 2017). In contrast to focal loss, our approach
doesn’t need a specialized bias initialization.

Optimization: All the models are optimized by the com-
mon used SGD algorithm. We train the models on 8 GPUs
with 2 images on each GPU so that the effective mini-batch
size is 16. All models are trained for 14 epochs with an ini-
tial learning rate of 0.01, which is decreased by a factor 0.1
at the 9th epoch and again at the 12th epoch. We also use a
weight decay parameter of 0.0001 and a momentum param-
eter of 0.9. The only data augmentation operation is hori-
zontal image flipping. For the EMA used in gradient density
calculation, we use α = 0.75 for all experiments since the
results are insensitive to the exact value of α.

GHM-C Loss
To focus on the effect of GHM-C loss function, experiments
in this section all adopt smooth L1 loss function with δ =
1/9 for the box regression branch.

Baseline: We have trained a model with the standard cross
entropy loss as the baseline. The standard initialization will
lead to quick divergence, so we follow focal loss (Lin et
al. 2017b) to initialize the bias term of the last layer to
b = − log((1 − π)/π) with π = 0.01 to avoid divergence.
However with the specialized initialization the loss of classi-
fication is very small, so we up-weight the classification loss
by 20 to make the begging loss value reasonable (the beg-
ging classification loss value is around 1 now). But when the
model converge, the classification loss is still very small and
we finally obtain a model with an Average Precision (AP) of
28.6.

Number of Unit Region Table.1 shows the results of
varying M which is the number of unit regions. EMA is
not applied here. When M is too small, the density can not
have a good variation over different gradient norm and the
performance is not so good. So we can gain more when M

increases when M is not large. However M is not necessar-
ily very large, whenM = 30, the GHM-C loss yields a large
enough improvement over baseline.

M AP AP.5 AP.75 APS APM APL
5 33.4 51.7 35.6 18.6 36.8 45.7

10 34.6 53.9 36.5 19.5 37.1 46.1
20 35.2 54.4 36.9 19.4 38.4 46.3
30 35.8 55.5 38.1 19.6 39.6 46.7
40 35.4 54.8 36.3 19.5 38.5 46.3

Table 1: Results of varying number of unit regions for GHM-
C loss.

Speed: Since our approach is a loss function, it doesn’t
change the time for inference. For training, a small M of 30
is enough to attain good performance, so time consumed by
gradient density calculation is not long. Table.2 shows the
average time for each iteration during training as well as av-
erage precision. Here “GHM-C Standard” is implemented
using the original definition of gradient density and “GHM-
C RU” represents the implementation of region unit approxi-
mation algorithm. The experiments are performed on 1080Ti
GPUs. We can see that our region unit approximation algo-
rithm speed up the training by magnitudes with negligible
harm to performance. While compared with CE, the slow
down of GHM-C loss is also acceptable. Since our loss is
not fully GPU implemented now, there is still room for im-
provement.

method AP average time per iteration (s)
standard CE 28.6 0.566

GHM-C Standard 35.9 13.675
GHM-C RU 35.8 0.824

Table 2: The comparison of training speed as well as AP.

Comparison with Other Methods: Table.4 shows the re-
sults using our loss compared with other loss functions or
sampling strategy. Since the reported results on minival of
models using focal loss is trained with the input image scale
of 600 pixels, for fair comparison we have re-trained a focal
loss using a scale of 800 pixels and keep the best parameters
of focal loss. We can see our loss has slightly better perfor-
mance than focal loss.

GHM-R Loss
Comparison with Other Losses: The experiments here
adopt the best configuration of GHM-C loss for the classi-
fication branch. So the first baseline is the model (trained
using SL1 loss) with an AP of 35.8 showed in GHM-C loss
experiments. We adopts µ = 0.02 forASL1 loss to get com-
parable results with SL1 loss and obtain a fair baseline for
GHM-R loss. Table.5 shows the results of the baseline SL1

andASL1 loss as well as GHM-R loss. We can see a gain of
0.7 mAP based on the ASL1 loss. Table.6 shows the details

8582



method network AP AP50 AP75 APS APM APL
Faster RCNN (Ren et al. 2015) FPN-ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Mask RCNN (He et al. 2017) FPN-ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2
Mask RCNN (He et al. 2017) FPN-ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2

YOLOv3 (Redmon and Farhadi 2018) DarkNet-53 33.0 57.9 34.4 18.3 35.4 41.9
DSSD513 (Fu et al. 2017) DSSD-ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1

Focal Loss (Lin et al. 2017b) RetinaNet-FPN-ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
Focal Loss (Lin et al. 2017b) RetinaNet-FPN-ResNeXt-101 40.8 61.1 44.1 24.1 44.2 51.2

GHM-C + GHM-R (ours) RetinaNet-FPN-ResNet-101 39.9 60.8 42.5 20.3 43.6 54.1
GHM-C + GHM-R (ours) RetinaNet-FPN-ResNeXt-101 41.6 62.8 44.2 22.3 45.1 55.3

Table 3: Comparison with state-of-the-art methods (single model) on COCO test-dev set.

method AP AP.5 AP.75 APS APM APL
CE 28.6 43.3 30.7 11.4 30.7 40.7

OHEM 31.1 47.2 33.2 - - -
FL 35.6 55.6 38.2 19.1 39.2 46.3

GHM-C 35.8 55.5 38.1 19.6 39.6 46.7

Table 4: Comparison of other loss functions. Note that the
’OHEM’ is trained with ResNet-101 while others are trained
with ResNet-50.

of AP at different IoU thresholds. GHM-R loss slightly low-
ers the AP@IoU=0.5 but gains when the threshold is higher,
which demonstrates our proposition that the so called easy
examples in regression is important for accurate localization.

method AP AP.5 AP.75 APS APM APL
SL1 35.8 55.5 38.1 19.6 39.6 46.7
ASL1 35.7 55.0 38.1 19.7 39.7 45.9

GHM-R 36.4 54.6 38.7 20.5 40.6 47.8

Table 5: Comparison of different loss functions for regres-
sion.

method AP AP.5 AP.6 AP.7 AP.8 AP.9
SL1 35.8 55.5 51.2 43.4 31.4 11.9
ASL1 35.7 55.0 51.1 43.5 31.5 12.1

GHM-R 36.4 54.6 51.4 44.0 32.2 13.1

Table 6: Comparison of AP at different IoU thresholds.

Two-Stage Detector: GHM-R loss for regression is not
limited to one-stage detectors. So we have done experi-
ments to verify the effect on two-stage detectors. Our base-
line method is faster-RCNN with Res50-FPN model using
SL1 loss for box regression. Table.7 shows that GHM-R loss
works for two-stage detector as well as one-stage detector.

Main Results
We use the 32x8d FPN-ResNext101 backbone and Reti-
naNet model with GHM-C loss for classification and GHM-
R loss for box regression. The experiments are performed on

method AP AP.5 AP.75 APS APM APL
SL1 36.4 58.7 38.8 21.1 39.6 47.0

GHM-R 37.4 58.9 39.9 21.8 40.8 48.8

Table 7: Comparison of regression loss functions on two-
stage detector.

test-dev set. Table.3 shows our main result compared with
state-of-the-art methods. Our approach achieves excellent
performance and outperforms focal loss in most metrics.

5 Conclusion and Discussion
In this work, we focus on the two imbalance problems in
single-stage detectors and summarize these two problems to
the disharmony in gradient density with regard to the diffi-
culty of samples. Two loss functions, GHM-C and GHM-
R are proposed to conquer the disharmony in classifica-
tion and bounding box regression respectively. Experiments
show that the collaborate with GHM, the performance of
single-stage detector can easily surpass modern state-of-the-
art two-stage detectors like FPN and Mask-RCNN with the
same network backbone.

Despite of the improvement of select uniform distribution
to be the target, we still hold the opinion that the optimal
distribution of gradient is hard to define and requires further
research.
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