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Abstract

Heterogeneous Transfer Learning (HTL) aims to solve trans-
fer learning problems where a source domain and a target
domain are of heterogeneous types of features. Most exist-
ing HTL approaches either explicitly learn feature mappings
between the heterogeneous domains or implicitly reconstruct
heterogeneous cross-domain features based on matrix com-
pletion techniques. In this paper, we propose a new HTL
method based on a deep matrix completion framework, where
kernel embedding of distributions is trained in an adversar-
ial manner for learning heterogeneous features across do-
mains. We conduct extensive experiments on two different
vision tasks to demonstrate the effectiveness of our proposed
method compared with a number of baseline methods.

Introduction
Transfer learning aims to transfer knowledge from one do-
main with sufficient labeled data to another domain where
labeled data is sparse or no labeled data is available. In the
literature, many existing transfer learning approaches focus
on cross-domain learning problems of homogeneous fea-
tures, which are referred to as homogeneous transfer learn-
ing problems (Pan and Yang 2010). However, there exist
many other applications where data from the source do-
main and the target domain is characterized by different sets
of features, which are referred to as heterogeneous transfer
learning (HTL) problems. For example, in some computer
vision problems, one may extract powerful deep features
with a well-trained deep learning network in a domain where
sufficient labeled data is available for training. However, in
some other domains, training data may be protected by a
privacy policy (e.g. EU data protection rule (Carey 2018)).
In this case, one cannot employ deep learning but use hand-
crafted features to represent the data. In some other applica-
tions, one domain can be text (e.g. food recipe) and the other
can be images (e.g. photos of food) which also leads to het-
erogeneous feature presentation. Thus, it is highly desired if
knowledge extracted from the learning tasks with the public
available data can be transferred to help the learning tasks
where the corresponding training data is regularized by the
privacy policy. In this context, as each data instance, e.g.,
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an image, is represented by heterogeneous features across
different domain, HTL techniques are crucial.

Recently, matrix completion based methods have been
proposed for HTL problems (Xiao and Guo 2013; Zhou et
al. 2016). The key idea is that instead of learning an (or a pair
of) explicit feature mapping(s) between feature spaces of the
source domain and the target domain, one can directly re-
construct cross-domain heterogeneous features for each in-
stance through matrix completion techniques. For instance,
recently, Zhou et al. (2016) proposed a method named Dis-
tribution Matching based Matrix Completion (DMMC) to
encode the distance in distributions between domains into
feature reconstruction in order to reduce the distance be-
tween domains. However, existing matrix-completion-based
methods have several major problems. First, they directly
reduce the distance between domains and learn a classifier
based on the recovered feature, which may fail to capture
the intrinsic underlying low-dimensional structure, which
indeed may benefit knowledge transfer and classifier train-
ing. In addition, to make the optimization problem tractable,
DMMC adopts the Maximum Mean Discrepancy (MMD)
metric (Gretton et al. 2006; 2012) with a linear kernel to
measure the distance between distributions, rather than a
characteristic kernel (Sriperumbudur et al. 2009). As a re-
sult, the distance between distributions may not be measured
precisely. Moreover, they require plenty of corresponding
instances between the source domain and the target domain
when performing matrix completion, which limits their ap-
plications in real-world problems as the corresponding data
instances may be difficult to collect in some scenarios.

To address the aforementioned issues, in this paper, we
propose a novel algorithm named Deep Matrix Completion
with Adversarial Kernel Embedding (Deep-MCA) to jointly
perform matrix completion with distribution matching in
Reproducing Kernel Hilbert Space (RKHS) and learn a clas-
sifier for the target domain. To be specific, we propose an
auto-encoder style architecture for matrix completion and
latent feature representation learning. Subsequently, data in-
stances from both the source domain and the target domain
are mapped to a RKHS induced by an adversarially trained
kernel. As all instances are in the RKHS, using MMD under
a proper bounded function can provide more accurate dis-
tance measure between distributions, which makes knowl-
edge transfer more effective. Moreover, a classifier is trained
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in the RHKS in the semi-supervised manner. We conduct ex-
tensive experiments on two different vision tasks to verify
the effectiveness of our proposed method.

The contributions of our work are three folds.
• We propose a novel deep neural network architecture for

HTL problems, where the learned latent features can bet-
ter benefit distribution matching and classifier training.

• Different from previous on employing linear kernel for
measuring MMD (Zhou et al. 2016), our proposed method
learns a suitable function under a RKHS in order to obtain
more accurate distribution measure. The function can be
jointly learned with other components.

• Experimental results on different vision tasks demonstrate
that our proposed method achieves superior performance
in terms of classification accuracy over some state-of-the-
art HTL methods.

Related Work
Traditional transfer learning methods focus on learning
problems where the source domain and target domain are
represented by the same type of features (Pan et al. 2011;
Gong et al. 2012), which cannot be directly applied to
HTL problems. Generally, existing HTL approaches can
be categorized into two groups. A first group requires a
few labeled data and some unlabeled in the target do-
main for training, which is referred to as semi-supervised
HTL. Early works (Wang and Mahadevan 2011; Harel and
Mannor 2011; Shi et al. 2010) focused on aligning het-
erogenous features in a common latent space for knowl-
edge transfer. Kulis, Saenko, and Darrell (2011) proposed
to learn a metric for instances from heterogeneous do-
mains. Zhou et al. (2014) and Xiao and Guo (2015) pro-
posed semi-supervised HTL methods for multi-class clas-
sification problems by exploiting the Error-Correcting Out-
put Coding (ECOC) scheme, respectively. Chen et al. (2016)
proposed a neural network based transfer learning ap-
proach for cross-domain feature adaptation. Tsai, Yeh, and
Frank Wang (2016) proposed a landmark selection strategy
to align MMD and conditional MMD based on label infor-
mation. More recently, Yan et al. (2018) proposed to use
Gromov-Wasserstein discrepancy instead of MMD for dis-
tribution matching with semantic consistency regularization.

Feature augmentation, which was originally introduced
in (DauméIII 2007) for homogeneous transfer learning, can
also be applied to HTL problems based on this setting.
The idea was to augment the original feature space Rd to
R3d, where the source domain feature xS is augmented as
[xS ,xS ,0] and the target domain feature xT is augmented
as [xT ,0,xT ]. Here, 0 denotes the vector of all zeros with
dimension d. As such, the connection between the source
domain and the target domain can be established. In (Duan,
Xu, and Tsang 2012), the idea was extended to HTL prob-
lems by introducing a common subspace for the source do-
main and the target domain. In particular, two projection ma-
trices P and Q are introduced for the source domain and the
target domain, respectively. The common space is then for-
mulated in a feature augmentation manner as [PxS ,xS ,0T ]
and [QxT ,0S ,xT ], where 0S and 0T denote the vectors of

all zeros with the same dimension as xS and xT , respec-
tively. The HTL problem is solved by jointly optimizing
P, Q as well as the parameters of classifier (e.g. SVM). A
follow-up semi-supervised method was proposed by Li et
al. (2014), where unlabeled target domain data are utilized
during the training process. Our proposed method also lever-
ages the advantage of heterogeneous feature augmentation
with few labeled target domain data, which has proven to be
effective for HTL.

Another group of approaches does not require labeled
data in the target domain but a set of unlabeled corre-
spondences between the source domain and the target do-
main for training. Existing matrix completion based ap-
proaches (Xiao and Guo 2013; Zhou et al. 2016), which
also leveraged feature augmentation, fall into this group and
will be briefly reviewed as preliminary in the next section.
Different from matrix completion based approaches, Dai et
al. (2008) and Prettenhofer and Stein (2010) proposed to
learn a feature mapping between the heterogeneous features
using feature-level correspondences, e.g., word-level trans-
lations. It is also worth noting that in our problem setting,
though we propose a matrix completion based method for
HTL, we do not require any correspondences between do-
mains. However, a few labeled data in the target domain
need to be provided in advance for training, which is dif-
ferent from existing matrix completion based approaches.

More prior information/assumption can be leveraged to
make the heterogeneous transfer learning problem more
trackable. Zhuang et al. (2012) proposed to use multiple do-
mains information based on Probabilistic Latent Semantic
Analysis to align text distributions caused by different index
words. Yang et al. (2016) proposed to learn the transferred
weights with the aid of co-occurrence data which contain the
same set of instances but in different feature spaces. Luo,
Wen, and Tao (2017) proposed to leverage the data from
multiple domains to learn high-order statistics in a multitask
metric learning manner.

Model Formulation
Problem Statement and Preliminary
In this paper, we focus on semi-supervised transfer learn-
ing problems, where besides plenty of source-domain la-
beled data, there are a few labeled instances and some un-
labeled instances in the target domain for training. We de-
note by XS = [x>S1

, ...,x>SNS
]> and YS ∈ RNS×1 the

source-domain input matrix with each row being an instance
xSi ∈ R1×dS , and the corresponding output vector, re-
spectively. We also denote by XT = [x>T1

, ...,x>TNT
]> the

target-domain input matrix with xTi ∈ R1×dT . In HTL,
xSi and xTi are of heterogeneous features, and thus in gen-
eral dS 6= dT . Suppose the first NTl instances in XT are
labeled, whose corresponding label vector is denoted by
YTl ∈ RNTl×1, and the rest NTu = NT − NTl are unla-
beled. We assume the two domains share the same set of
class labels.

Before introducing our proposed algorithm, we first re-
visit existing matrix-completion-based methods for HTL
(Xiao and Guo 2013; Zhou et al. 2016). As discussed in
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the previous section, heterogeneous features augmentation
introduces zero-padding for missing features. Thus, one in-
tuitive idea is to recover such missing features using matrix
completion for more effective knowledge transfer. Given the
source-domain input matrix XS and the target-domain input
matrix XT , one can first augment the data by simply padding
zeros, which are considered as missing values, to make the
dimensions of the data from the two domains identical1,

X =

(
XS 0
0 XT

)
∈ R(NS+NT )×(dS+dT ). (1)

The goal of matrix completion based methods is to recon-
struct the missing entries in X via solving

min
Xr

‖P ◦ (X−Xr)‖2F + λΩ(Xr), (2)

where Xr ∈ R(NS+NT )×(dS+dT ) is the recovered aug-
mented matrix, where each row is an instance with the orig-
inal features and the learned augmented features, P is an
indicator matrix with Pij = 1 if Xij is observed, otherwise
0, the operator ◦ is the Hadamard product, Ω(Xr) is a regu-
larization term on Xr, and λ > 0 is a tradeoff parameter.

Deep Matrix Completion
We reformulate the matrix completion method in (2) with
an auto-encoder style framework by jointly reconstructing
the missing entries in X and learning a latent feature repre-
sentation based on X. To be specific, we introduce an en-
coder W (·) and decoder V (·), which are multi-layer fully-
connected neural networks. Given a sparse augmented fea-
ture input x ∈ R1×(dS+dT ) drawn from X, where x =
[xS ,0] if it is from the source and x = [0,xT ] otherwise, we
first map x through the encoder W to obtain a dense latent
feature representation h, where h = W (x). We then aim to
reconstruct the missing entries in x to obtain the dense re-
constructed xr through the decoder V . That means xr can
be represented as xr = V (W (x)).

For implementation, we consider the augmented matrix
X in (1) as the input. We further denote the latent feature
representation and reconstructed output as H and Xr, re-
spectively. Thus, equation (2) can be reformulated in a deep
learning based framework, which can be represented by

min
W,V
‖P ◦ (X− V (W (X)))‖2F + λ‖V (W (X))‖∗. (3)

Here we impose low-rank regularization on V (W (X)) in-
duced by the nuclear norm ‖·‖∗. The motivations behind this
are two folds. First, the dimensions of augmented feature are
supposed to be linearly dependent as there may be some re-
dundant information among heterogeneous features across
domains. Second, in many applications, high-dimensional
data is usually controlled by a few latent factors.

Different from (Zhou et al. 2016), which recovers the
matrix based on adapted matrix completion techniques, our
method is based on deep learning to perform non-linear ma-
trix factorization to reconstruct missing values of the matrix,

1It should be noted that we omit the corresponding data (Xiao
and Guo 2013; Zhou et al. 2016) here as the corresopnding data are
not available in our setting.

where the “dictionary” V and learned representation W (X)
can be jointly learned. By doing so, the low-dimensional
representative information can be explored, which can ben-
efit distribution matching and classifier training.

The gradient of (3) w.r.tW and V can be computed by the
chain rule with ∂Lmc(W,V )

∂Xr
, where Lmc(W,V ) denotes the

objective in (3). As the nuclear norm is non-differentiable,
we follow (Bernstein 2005) to compute the subgradient of
(3), which is given by

∂Lmc(W,V )

∂Xr
= P ◦ (X−Xr) + λAB> (4)

where A and B> are the components induced by performing
SVD on Xr as Xr = AΣB>, the gradient respect toW and
V can be computed through network back-propagation with
∂Lmc(W,V )

∂Xr
.

Distribution Matching
The network described so far can estimate the missing val-
ues, i.e., the missing heterogenous features. However, we
also expect to extract domain-invariant information between
the source domain and the target domain. We aim to achieve
this by minimizing MMD (Gretton et al. 2006) between the
two domains with the latent representation.

Specifically, with the hidden features H obtained by the
W , we split it as H = [HS ; HT ] where HS = W ([XS ,0])
and HT = W ([0,XT ]) following two probability distribu-
tions PS and PT , respectively. The technique of kernel em-
bedding (Gretton et al. 2006) for representing an arbitrary
distribution is to introduce a mean map operation µ(·) to
map instances to a reproducing kernel Hilbert space (RKHS)
H, and to compute their mean in the RKHS as follows,

µP := µ(P) = Ex∼P[φ(x)] = Ex∼P[k(x, ·)], (5)

where φ : Rd → H is a feature map, and k(·, ·) is the kernel
function induced by φ(·). If the condition Ex∼P(k(x,x)) <
∞ is satisfied, then µP is also an element in H. It has been
proven that if the kernel k(·, ·) is characteristic, then the
mapping µ : P → H is injective (Sriperumbudur et al.
2009). The injectivity indicates an arbitrary probability dis-
tribution P is uniquely represented by an element in a RKHS
through the mean map. Based on the MMD theory (Gretton
et al. 2006), the distance between the source domain and the
target domain (or PS and PT ) can be measured by

MMD(HS ,HT ) = supf∈H{〈f, µPS − µPT 〉}
= ‖µPS − µPT ‖H, (6)

where f is a measure function defined in RKHS.

Adversarial Kernel Embedding Training
One intuitive solution to align the distribution between
source and target domain is imposing MMD with a prede-
fined kernel (Pan et al. 2011) on HS and HT , which leads to
an identity function of f , or a combination of kernels (Long
et al. 2015), where f is learned through multiple kernel
learning. However, it is not easy to identify an optimal ker-
nel or a set of them to measure the MMD term with the hid-
den features learned by deep neural networks. To bridging
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the gap between deep learning and the MMD measurement,
Li, Swersky, and Zemel (2015) proposed a multi-layer data
space network to parameterize f by mapping the data from
one space to another which is suitable for MMD measure-
ment. Though their work was originally proposed for gen-
eration tasks, it tackles a similar problem as transfer learn-
ing problems we focus on in a high level, as it aims to map
the data drawn from one domain (noise) to another domain
(data space) where the distributions of the training data and
the generated data are aligned in terms of the MMD distance
in (6).

Therefore, we introduce an encoding network fφe to pa-
rameterize f , and reformulate (6) as

MMD(HS ,HT )

= max
fφe

∥∥∥∥ 1

NS
fφe(HS)>1S −

1

NT
fφe(HT )>1T

∥∥∥∥2
F

,(7)

where 1S and 1T are all-one vectors with the size NS and
NT , respectively. 1

NS
fφe(HS)>1S and 1

NT
fφe(HT )>1T

are the empirical measure (Gretton et al. 2006) of µPS and
µPT , respectively.

Aligning the distribution between source and target do-
main can be achieved by minimizing W as

min
W

max
fφe

∥∥∥∥ 1

NS
fφe(HS)>1S −

1

NT
fφe(HT )>1T

∥∥∥∥2
F

. (8)

Note that (8) is related to Generative Adversarial Network
(GAN) (Goodfellow et al. 2014). In GAN, there are two
types of networks: a generative modelG that aims to capture
the distribution of the training data for data generation, and
a discriminative model D that aims to distinguish between
the instances drawn from G and the instances sampled from
the dataset. In our model, the network fφe works in a simi-
lar manner as D to maximize MMD in order to distinguish
distributions, and W is trained to map the input to the latent
feature space where MMD is minimized. These two compo-
nents are jointly trained in a competitive fashion: 1) to train
fφe to distinguish the two feature distributions generated by
W , and 2) to train W to fool fφe with its latent features.

To make the kernel embedding more effective, there are
two issues need to be considered. First, the continuous func-
tion is supposed to be bounded in the RKHS (Theorem 3.5
in (Muandet et al. 2017)). To achieve this condition, we im-
pose locally Lipschitz constraint by adding weight clipping
on fφe . Second, f needs to be injective (Sriperumbudur et al.
2009; Muandet et al. 2017). We therefore introduce another
neural network fφd to parameterized f−1 in order to approx-
imate the injective property by f−1(f(h)) = h,∀h ∈ H.
Similar to (Li et al. 2017), we obtain the final distribution
divergence loss term Ld(W, fφe , fφd) as

Ld(W, fφe , fφd ) = ζ

∥∥∥∥ 1

NS
fφe (HS)

>1S−
1

NT
fφe (HT )

>1T

∥∥∥∥2

F

−η
∥∥H− fφd (fφe (H))

∥∥2

F
. (9)

Label Propagation for Semi-supervised Learning
To make matrix completion more effective, existing ap-
proaches (Xiao and Guo 2013; Zhou et al. 2016) assume

some cross-domain instance correspondences are given in
advance to build a bridge between domains. However, as
discussed this assumption is difficult to satisfy in practice.
Therefore, instead, we assume only a few target-domain la-
beled instances are given. Our goal is to introduce a clas-
sification network denoted by C based on the latent repre-
sentation H to bridge the gap between domains via labels.
In particular, the classification network is a full-connected
network with the Softmax function,

p(yi = k|C) =
exp(Ck(Hi))∑
k′ exp(Ck′(Hi))

, (10)

where yi ∈ YS if the sample is from source domain and
yi ∈ YTl for labeled target domain, Hi denotes the i-th
instance from H, and Ck(·) denotes the output on the k-th
class generated by Softmax.

As we only have a few target-domain labeled instances,
we employ graph-based semi-supervised learning to propa-
gate label information. In particular, a Laplacian matrix (He

et al. 2005) given as Lg =

(
LgS 0
0 LgT

)
, is introduced

by adding tr(H>LgH) as the manifold regularization term,
where LgS and LgT are the Laplacian matrices on XS and
XT , respectively. The loss on the semi-supervised classifier
is then defined as

Lcg(W,C) = − 1

NS

NS∑
i=1

1(yi = k) log p(yi = k|W,C)

− 1

NTl

NS+NTl∑
j=NS+1

1(yj = k) log p(yj = k|W,C)

+γtr(H>LgH), (11)
where 1 is an indicator function which returns 1 when argu-
ment is true, otherwise 0. In this work, we use 5-NN with
0/1 weights to construct the Laplacian matrices.

Model Optimization
The final objective of our proposed Deep-MCA method is
formulated as
L = Lmc(W,V ) + Lcg(W,C) + Ld(W, fφe , fφd) (12)

where the first term defined in (3) serves as a matrix comple-
tion component, the second term defined in (11) is the semi-
supervised classifier on the learned feature representation,
and the third term defined in (9) is a distribution divergence
component which captures the difference in distribution be-
tween domains.

Algorithm 1 illustrates our training algorithm based on the
adaptive moment estimation (ADAM) algorithm (Kingma
and Ba 2014). We first initialize the network parameters by
Gaussian distribution with N ∼ (0, 0.02). The source and
target features are augmented by zero padding as discribed
in (1). Similar to GAN, the network can be trained in a mini-
max manner. During maximization step, we adopt weight
clipping to satisfy the Lipschitz constraint condition. Fi-
nally, we follow the generative adversarial networks (GAN)
(Goodfellow et al. 2014) by training fφd for few iterations
followed by training fφe , which is the parameter B in Algo-
rithm 1 where B = 4.
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Figure 1: Proposed framework for heterogeneous transfer
learning. We first augment the data through zero padding.
Then we aim to learn feature representation which capture
shareable information across heterogeneous domain through
our proposed method. In this figure, we use the augmented
feature from source domain for visualization.

Algorithm 1 Deep-MCA

Input: XS , XT , YS and YTl initialized parameters W ,
V , C, fφe and fφd .
Output: Learned parameters W ∗, V ∗, C∗, f∗φe and f∗φd .
1: Augment the source and target domain as X.
while Stopping criterion is not met do

for t=1:B do
2: Compute the gradient of (9) w.r.t. fφe and fφd
based on augmented data X.
3: Take a gradient step to update fφe and fφd to max-
imize the objective (9).
4: Conduct weight clipping based on fφe and fφd .

end for
5: Compute the SVD of Xr to obtain A and B.
6: Compute the gradient of (12) w.r.t. W , V , C on X
with A and B, respectively.
7: Take a gradient step to update W , V , C to minimize
the objective (12), alternatingly.

end while

Experiment
In the section, we conduct experiments on two different
vision tasks, cross-domain object recognition and text-to-
image classification with heterogeneous features to verify
the effectiveness of our proposed method compared with
some state-of-the-art HTL baselines. For the experimental
setup, we assume that we only have one source domain
and one target domain. We use a limited number of target-
domain labeled instance and some target-domain unlabeled
instances for training in our HTL problems. We report the
averaged results over 10 random splits on the target-domain
unlabeled instances for both cross-domain object recogni-
tion and text-to-image classification tasks.

Experimental Setup
Object Recognition We follow the setting (Tsai, Yeh, and
Frank Wang 2016; Yan et al. 2018) by using images col-
lected from Amazon dataset (A), DSLR dataset (D), we-
bcam dataset (W) and Caltech-256 dataset (C), where ten
common categories in all these datasets are used for con-
duct experiments. For the HTL setting, considering that it

Figure 2: Example images of Amazon, DSLR, Webcam and
Caltech-256 datasets.

is difficult to train a robust deep neural network with only
few data, we then consider deep feature representation for
source domain and hand-crafted feature for target domain.
In particular, we use instances of the DeCAF6 features (Jia
et al. 2014) with dimension 4,096 to construct a source do-
main and instances of the bag-of-words based SURF fea-
tures (Gong et al. 2012) with dimension 800 to construct a
target domain. We randomly select 20 labeled instances per
category from the source domain and 3 labeled instances per
category from the target domain for training, and the remain-
ing instances in target domain are used for testing. For the
source domains constructed on DSLR, we randomly choose
5 source instances per category as suggested in (Yan et al.
2018) since the number of instances in D is much smaller.

Text-to-Image Classification We apply NUS-WIDE
(Chua et al. 2009) and ImageNet (Deng et al. 2009) as the
datasets for text-to-image classification task. NUS-WIDE
contains 269,648 images with tag information collected
from Flickr and ImageNet wis with 5247 synsets and 3.2
million images in total. We follow (Chen et al. 2016) by
extracting the 64-dimensional feature representation from
a five-layer neural network as the feature for tag data. We
consider DeCAF6 feature for image data. Eight overlapping
categories from these two datasets are considered, which
include airplane, birds, buildings, cars, dog, fish, flowers,
horses. All tag data are used as source domain. Three images
per category from ImageNet dataset are randomly selected
as labeled data, and another 100 images for prediction.

Network Architecture and Parameter Setting In our
proposed method, we consider to adopt a two-layer ar-
chitechture for encoder (W), decoder (V), feature mapping
network (fφe ), injection network (fφd ) as well as the clas-
sification network (C) for all the task. The details of the
architechture are summarized in Table 1. The learning rate
of our algorithm is set as 0.0001 for all experiments. Re-
garding the parameter setting for objective, one can use a
tuning strategy by training on source domain and testing on
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labeled target domain. In our experiment, we fix the param-
eters for all experiments for simplicity. In particular, we set
λ = 0.001, ζ = 10 and all others as 1. We set the dimen-
sion of hidden layer as 100 for fair comparison with other
baseline methods.

Table 1: Details of our proposed network architechture. D
indicates the dimension of input augmented feature.

W
FC-(D,D), ReLU

FC-(D,100)

V
FC-(100,100), ReLU

FC-(100,D)

fφe , fφd
FC-(100,100), ReLU

FC-(100,100)

C
FC-(100,100), ReLU

FC-(100,#class)

Baseline Methods We compare our proposed method
with the following baselines: (SVM t) that simply employs
labeled data from target domain to train a model, and some
state-of-the-art HTL methods, including SHFA (Li et al.
2014), DMMC (Zhou et al. 2016), CDLS (Tsai, Yeh, and
Frank Wang 2016), SGW (Yan et al. 2018) and the deep
learning based TNT (Chen et al. 2016). We follow the previ-
ous works to search the parameters in spaces recommended
by the original papers and report their best results.

Experimental Results
For object recognition, we report experimental results by
constructing HTL tasks on the same dataset and cross
datasets. The results are shown in Table 2. From the re-
sults, we can see that the SVM t baseline method performs
poorly for all different object recognition tasks. This is rea-
sonable because there are only a few labeled in the target
domain for training. By exploiting the labeled training data
of heterogeneous features from the source domain, we no-
tice that the learning performance in terms of prediction
accuracy improvements. Among all the HTL methods, our
proposed method can achieve the best performance among
eight out of nine cases, which indicates the effectiveness of
kernel adaptation compared with linear adaptation. Another
possible explanation is that, while other HTL methods fo-
cus on either MMD alignment (Tsai, Yeh, and Frank Wang
2016) or classifier exploiting (Li et al. 2014), we focus on
both as regularization. Although TNT method (Chen et al.
2016) is based on neural network, it is lack of distribution
alignment term thus the shareable cross-domain informa-
tion may not be properly extrated. SGW was the most re-
cent proposed method for HTL problem. However, only lin-
ear mapping was learned based on the data, which may not
model the distribution distance accurately since linear kernel
is not characteristic. We also investigate linear matrix com-
pletion, DMMC, without correspondences. We observe that
DMMC performs poorly when there are no cross-domain
correspondences, which is consistent with the results re-
ported in (Zhou et al. 2016). This suggests that to use ma-
trix completion based method, when there are no correspon-

dences, utilizing target-domain label information is crucial
for effective knowledge transfer.

Table 2: Classification accuracy (in %) for heterogeneous
object recognition (DeCAF6 for source domain, SURF for
target domain), where A, C and W denote Amazon, Caltech
and Webcam respectively.

S/T SVM t SHFA DMMC CDLS SGW TNT Deep-MCA
A/A 42.1 44.9 34.9 43.7 46.4 43.1 47.4
C/C 30.1 31.1 25.7 32.3 34.1 30.7 34.7

W/W 57.3 62.7 50.3 63.1 63.5 60.0 66.4

S/T SVM t SHFA DMMC CDLS SGW TNT Deep-MCA
A/D

57.9
58.1 49.1 59.4 59.7 56.5 60.1

W/D 62.7 48.6 60.2 59.4 57.2 63.0
D/A

42.1
42.7 32.7 43.5 44.1 40.5 44.7

W/A 44.2 35.1 45.1 50.8 41.8 48.6
A/W

57.3
62.5 44.2 63.5 63.9 59.9 66.8

D/W 60.8 46.4 63.7 64.4 60.1 66.4

For text-to-image task, we can also observe that our pro-
posed method can outperforms the other baseline methods.
DMMC without correspondence achieves a relatively poor
performance which is consistent with the results on object
recognition. Another interesting result we find is that the
TNT method can achieve a relatively better performance
compared with the results obtained for object recognitiont
task. One possible explanation is that tree based neural net-
work can better deal with inbalanced heterogeneous feature
representation scenario better compared with other baseline
methods (64 dim for TAG feature extracted by a five-layer
neural network compared with the 4096 dim for DeCAF6).

Table 3: Classification accuracy (in %) for adapting text
(NUS-WIDE) to image data (ImageNet).

S/T SVM t SHFA DMMC CDLS SGW TNT Ours
Tag/Image 67.5 67.3 60.7 69.0 68.3 70.4 71.7

Impact on Different Components
In this section, we further conduct experiments on object
recognition to understand the impact of different compo-
nents of our proposed algorithm with object classification
task by considering the same dataset setting from Amazon,
DSLR and Webcam dataset with DeCAF6 for source do-
main and SURF as target domain. Experimental results are
shown in Table 4. “No Low-rank” means that we remove the
low-rank constraint ‖Xr‖∗ for the final objective. “No In-
jective” means that we remove the subnetwork fφd and the
term ‖H− fφd(fφe(H))‖2F . “No MMD” means that we re-
move the MMD regularization term as well as the “injective”
regularization term from the objective (as injective regular-
ization is meaningless without MMD) and “No Manifold”
means that we remove the manifold constraint on the latent
feature representation.

From the table, we observe that removing the “low-
rank constraint”, “injective constraint”, MMD regularization
or the graph regularization component leads to poor per-
formance. This verifies the effectiveness of our proposed
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Figure 3: Parameter sensitivity analysis. Accuracy under varying (a) λ, (b) ζ, (c) γ

framework: 1) Considering “low-rank” constraint benefits
latent feature representation learning regarding augmented
input 2) Using MMD-based regularization is helpful to re-
duce difference between the seen source domains, and thus
able to learn invariant features across source domains. 3)
Imposing “injective” regularization helps to learn a better
representation for distribution matching. 4) Incorporating
manifold regularization helps to learn a more robust clas-
sifier based on target domain. Moreover, compared with the
SVM t baseline, it is observed that we still can achieve bet-
ter performance under all scenarios.

Table 4: Impact of different components on performance,
where A, C and W denote Amazon, Caltech and Webcam
respectively.

S/T No Low-rank No Injective No MMD No Manifold Ours
A/A 43.7 47.0 43.0 44.6 47.4
C/C 30.2 34.5 32.0 30.4 34.7

W/W 62.3 63.1 58.4 62.7 66.4

We further observe that, “low-rank”, “MMD” and “Man-
ifold” constraints play more important roles in the final
results. Therefore, we also aim to analyze the sensitivity
of the parameters λ, ζ and γ which control “low-rank”,
“MMD” and “Manifold” regularization. Experimental re-
sults are shown in Figure 3. From the figure, we notice that
the parameters we choose are reasonable based on all sce-
narios. For λ, we can achieve good performances when the
parameter is relatively small. For ζ, we observe that the per-
formances are stable when ζ ≥ 1. However, for γ, we only
achieve the best performance when γ = 1.

Convergence Analysis

Finally, we are interested in the convergence property of our
proposed method. We therefore conduct experiment based
on object classification task by considering the same dataset
setting from Amazon, DSLR and Webcam dataset with
DeCAF6 for source domain and SURF as target domain.
We report the classification accuracy respect to the iteration
number. The results are shown in Figure 4. Based on the
results, we observe that our method can converge after 20 it-
erations for all cases despite the fact that the neural network
is nonlinear and our objective is non-convex.
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Figure 4: Convergence analysis of our proposed algorithm
on Amazon, Caltech and Webcam dataset.

Conclusion
In this paper, we presented a new framework Deep-MCA
for HTL. The main idea is to develop an end-to-end solution
based on a deep architecture with adversarial kernel train-
ing to perform nonlinear matrix factorization for learning
heterogeneous features for HTL problems. We conduct ex-
periments on two vision tasks to demonstrate that Deep-MC
generally outperforms other state-of-the-art baselines. We
have also conduct experiments to test the impact of different
components of Deep-MC as well as empirical convergence
analysis on Deep-MCA.
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