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Abstract
Few-shot learning aims to recognize new concepts from very
few examples. However, most of the existing few-shot learn-
ing methods mainly concentrate on the first-order statistic of
concept representation or a fixed metric on the relation be-
tween a sample and a concept. In this work, we propose a
novel end-to-end deep architecture, named Covariance Met-
ric Networks (CovaMNet). The CovaMNet is designed to ex-
ploit both the covariance representation and covariance met-
ric based on the distribution consistency for the few-shot clas-
sification tasks. Specifically, we construct an embedded local
covariance representation to extract the second-order statistic
information of each concept and describe the underlying dis-
tribution of this concept. Upon the covariance representation,
we further define a new deep covariance metric to measure
the consistency of distributions between query samples and
new concepts. Furthermore, we employ the episodic train-
ing mechanism to train the entire network in an end-to-end
manner from scratch. Extensive experiments in two tasks,
generic few-shot image classification and fine-grained few-
shot image classification, demonstrate the superiority of the
proposed CovaMNet. The source code can be available from
https://github.com/WenbinLee/CovaMNet.git.

1 Introduction
Few-shot learning is a learning mechanism that tries to learn
and understand new concepts (or categories) from only one
or few examples. Humans can learn new concepts with very
few instances, and have a strong generalization capability for
their variants. Unfortunately, many current machine learning
algorithms do not have such a strong generalization ability
to identify a new category. Moreover, in real applications,
new samples from new categories are usually difficult to ob-
tain. It is even more difficult to make annotations in many
applications. Therefore, learning new categories with very
few samples becomes an urgent and important problem.

In recent years, a variety of methods have been proposed
to handle this problem. One basic and straightforward way is
to only utilize the information of a few examples. For exam-
ple, the k-Nearest Neighbor classifier can be used to predict
the label of the query image depending solely on the similar-
ities between the query image and the few samples, without
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introducing any learning mechanism. Nevertheless, it is al-
most impossible to learn a real concept containing diverse
and complex appearances merely by a few examples in this
way. Therefore it is necessary to exploit more prior knowl-
edge to precisely represent and learn.

Another commonly used approach is to resort to an ad-
ditional auxiliary dataset via a transfer learning mecha-
nism. More concretely, one emerging direction is to ex-
ploit meta-learning or learning-to-learn paradigm on the
few-shot learning problem, such as (Santoro et al. 2016;
Ravi and Larochelle 2017; Mishra et al. 2018). This kind of
methods attempts to learn an across-task meta-learner which
is trained on a distribution of similar tasks, aiming to gen-
eralize to unseen new tasks. Generally, a Recurrent Neural
Network (RNN) or Long Short-Term Memory (LSTM) net-
work is employed to learn the meta-learner to capture the
significant short- and long-term memory (knowledge) fur-
ther. Furthermore, in order to tackle the problem of limited-
data, another emerging research direction on metric-learning
based methods tries to learn a deep embedding space by in-
troducing metric-learning mechanism, e.g., (Koch, Zemel,
and Salakhutdinov 2015; Snell, Swersky, and Zemel 2017;
Yang et al. 2018). Such methods usually utilize the idea of
episodic training on the auxiliary dataset to learn transfer-
able representations (knowledge).

Based on the above analysis, the key issue of few-shot
learning is that the data of each category is too limited to
express a concept adequately. Only using very few exam-
ples, either for training a learner or for fine-tuning a pre-
trained model, can easily result in over-fitting. How to learn
and store the transferable knowledge by fully utilizing the
auxiliary data? How to represent a concept precisely in the
few-shot setting? And how to measure the relation between
a concept and a query sample reasonably? We will consider
these three aspects to solve the problems occurred in the pre-
vious work, which are transferable knowledge, concept rep-
resentation, and relation metric.

For the first aspect, meta-learning based methods employ
meta-learner and the metric-learning based methods rely
on the episodic training to capture the transferable knowl-
edge, respectively. As for the proposed method, we adopt
the episodic training mechanism because it is simpler than a
meta-learner but efficient. For the second aspect, Prototypi-
cal Nets (Snell, Swersky, and Zemel 2017) take the means of
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categories as prototypes to represent the concepts, and (Gar-
cia and Bruna 2018) use a graph to represent a concept. In
the proposed method, we exploit the second-order statistic
of concept representation and verify that it is more suitable
to represent a concept beyond the first-order statistic (e.g.,
mean representation). For the third aspect, most of exist-
ing methods adopt the Euclidean distance (Snell, Swersky,
and Zemel 2017) or cosine similarity (Vinyals et al. 2016)
to measure the relation between a concept and a query sam-
ple, and then perform the classification. In addition, (Yang et
al. 2018) trains a Relation Network by learning a deep non-
linear metric to compare the relation between images. In the
proposed method, we defined a novel deep Covariance Met-
ric, which naturally captures the distribution consistency be-
tween a query sample and a concept.

Considering all the aforementioned three aspects, we de-
sign a Covariance Metric Network (CovaMNet) to deal with
the problems of the few-shot learning. Specifically, the pro-
posed CovaMNet introduces the episodic training mecha-
nism to learn the transferable knowledge, which is simpler
than Recurrent Networks, and also has been proved to be
efficient. Moreover, we define a Local Covariance Repre-
sentation and embed it into the network to learn each con-
cept (or category). Because the covariance matrix exactly
contains the second-order statistic information, it can nat-
urally capture the underlying distribution information of
each concept (or category) and thus becomes a good con-
cept representation. Furthermore, we construct a Covari-
ance Metric Layer based on the local covariance repre-
sentation to measure the relation between a concept and a
query sample by calculating the consistency between their
distributions.

This paper designs a novel and effective framework based
on a covariance metric, which considers three aspects (i.e.,
transferable knowledge, concept representation and relation
metric) and contains the local and global metric informa-
tion, to solve the problem of few-shot learning. Formally,
the contributions can be summarized as follows: (1) A novel
and compact end-to-end Covariance Metric Network (Cov-
aMNet) is proposed, aiming to address the above three as-
pects of few-shot learning. (2) We design a local covariance
representation, which has the ability to represent a concept
(or category) by utilizing a covariance matrix under the few-
shot setting. (3) We construct a covariance metric to be the
relation measure by calculating the distribution consistency
between a query sample and each category. (4) Extensive
experiments on several benchmark datasets demonstrate that
our proposed framework shows its superiorities both in the
generic few-shot classification and the fine-grained few-shot
classification.

2 Related work
2.1 Transfer Learning Based Methods for

Few-shot Learning
Recently, there are lots of previous work about the few-
shot learning, where the transfer learning mechanism based
methods are most relevant to our proposed method. There-
fore, we will briefly review two main streams for this kind

of methods, i.e., the Meta-learning based methods and the
Metric-learning based methods.

Meta-learning based methods: Meta-learning based
methods introduce the meta-learning paradigm (Thrun 1998;
Vilalta and Drissi 2002) or learning to learn (Thrun and
Pratt 1998) into the few-shot learning. That is to train a
meta-learner that learns how to update the parameters of
the learner’s model, referring to some representative meth-
ods (Santoro et al. 2016; Ravi and Larochelle 2017; Finn,
Abbeel, and Levine 2017; Cai et al. 2018). For example,
(Santoro et al. 2016) presented a memory-augmented model,
where a LSTM was trained as a controller to interact with an
external memory module. Also, (Ravi and Larochelle 2017)
adopted a LSTM-based meta-learner as an optimizer to train
another learner classifier as well as learning a task-common
initialization for this classifier.

The meta-learning based methods are promising and
achieve competitive results for few-shot classification. How-
ever, the complicated memory-addressing architecture (such
as, RNN) used in these methods is difficult to train due to
the temporally-linear hidden state dependency (Mishra et al.
2018). On the contrary, our proposed framework CovaMNet
is only based on a single CNN, which can be trained easily
in an end-to-end manner from scratch.

Metric-learning based methods: Metric learning based
methods mainly rely on learning an informative similarity
metric, including (Koch, Zemel, and Salakhutdinov 2015;
Vinyals et al. 2016; Triantafillou, Zemel, and Urtasun 2017;
Snell, Swersky, and Zemel 2017; Garcia and Bruna 2018;
Yang et al. 2018). Typically, (Koch, Zemel, and Salakhutdi-
nov 2015) was the first to introduce the metric-based method
into one-shot learning, which adopted a Siamese Neural Net-
work to learn powerful discriminative representations and
then generalize to unseen categories. Later, (Vinyals et al.
2016) proposed the Matching Nets which combined atten-
tion and memory to enable rapid learning under the matched
test and train conditions (i.e., episodic training), obviating
the fine-tuning to adapt to new categories.

There are two pieces of work closely related to ours. The
first one, Prototypical Networks (Snell, Swersky, and Zemel
2017), learned a metric space and took the mean of each
category as its corresponding prototype representation. Its
classification was performed by calculating the distances be-
tween different prototype representations and then was gen-
eralized to new categories with very few examples. The sec-
ond one, Relation Network (Yang et al. 2018), learned an
embedding and a deep non-linear distance metric for com-
paring query and sample items. This network was trained
end-to-end by utilizing the episodic training mechanism,
which could tune the embedding and distance metric for ef-
fective few-shot learning.

Different from the above two methods, the proposed Co-
vaMNet employs a more informative second-order statistic
to express a concept, that is learning a covariance represen-
tation embedded in the network. This is because the covari-
ance representation, as a second-order statistic, is more suit-
able to describe the underlying distribution of a concept. In
addition, we design a novel deep covariance metric which
does well in capturing the distribution consistency between
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query samples and categories. On the contrary, Prototypical
Network merely adopted a fixed metric (i.e., Euclidean dis-
tance) to measure the relation and perform the final classifi-
cation. Relation Network learned a deep metric (i.e., simply
concatenating the feature maps between query and support
samples) to obtain the classification results.

2.2 Covariance Pooling
Instead of the first-order pooling (e.g., max-pooling) com-
monly used in the Convolutional Neural Networks (CNNs),
the Global Covariance Pooling tries to explore a second-
order pooling (covariance pooling) in CNNs. With the help
of matrix square-root normalization, covariance pooling
achieved impressive performance (Lin and Maji 2017). For
example, (Li et al. 2017) proposed a Matrix Power Normal-
ized Covariance (MPN-COV) method by producing covari-
ance matrices over the last convolutional features to act as
global image representations. However, MPN-COV needs
eigenvalue decomposition (EIG) for the matrix square-root
normalization, which suffered from high time complex-
ity. Later, to accelerate the computation further, (Li et al.
2018) proposed an iterative matrix square-root normaliza-
tion method for fast end-to-end training. In addition, (Wang,
Li, and Zhang 2017) employed a Gaussian embedding strat-
egy to explore new ways of inserting parametric probabil-
ity distributions into the CNNs. Essentially, several bilin-
ear pooling based methods (Lin, RoyChowdhury, and Maji
2015; Gao et al. 2016; Lin, RoyChowdhury, and Maji 2018)
all belong to the covariance pooling based methods.

The covariance matrix is also utilized in our CovaMNet.
The major differences between ours and the ones used in co-
variance pooling based methods are summarized as follows.
Firstly, we utilize the covariance matrix in a different way.
Our method takes the covariance matrix as a representation
to capture the underlying distribution for a category (con-
taining all images belonging to this category), whereas other
covariance pooling based methods only use the covariance
matrix to serve as a pooling method to obtain the global
representation for every single image. Second, our method
designs the covariance metric based on the raw covariance
matrix to achieve the relation metric, which is more efficient.
On the contrary, other covariance pooling methods perform
the matrix square-root normalization depending on EIG or
SVD, which is too computationally heavy to train.

3 The Proposed Method
3.1 Problem Formulation
Given three sets: a support set S, a query set Q and an
auxiliary set A, the set S contains C different categories,
each of which has K labeled samples. The setQ consists of
unlabeled samples, which shares the same label space with
the set S. Different from the set S, the set A contains lots
of categories and labeled samples (much larger than C and
K, respectively), which can be used for learning a mapping
function and extracting transferable knowledge. It is worth
noting that the label space of set A is disjoint with the label
space of set S.

Based on above definitions, the task of few-shot classifi-
cation can be formally established as follows. The goal of
few-shot classification is to perform the few-shot learning
based on the set S and obtain the satisfactory classification
results on the set Q. Unfortunately, the set S with very few
samples has no ability to learn an optimal mapping function
to classify the setQ, therefore we will resort to the auxiliary
set and utilize an episodic training mechanism on this set,
which has been verified to be effective in the work (Vinyals
et al. 2016). Specifically, at each iteration, one episode is
constructed by a subset which randomly samples C cate-
gories from the set A. In this subset, the labeled samples
of each category are randomly split into two sets: the sup-
port setAS and the query setAQ, whereK labeled samples
inAS and the rest inAQ. After t iterations, t episodes have
been used to train the mapping function, namely the episodic
training. Once trained, we predict the labels of the setQ via
the mapping function conditioned on the set S.

3.2 Model
The main contribution of our proposed method is to design
a novel and compact end-to-end CovaMNet, whose two key
components are the Local Covariance Representation and
the Covariance Metric. They are embedded in two modules:
a convolutional embedding module and a covariance met-
ric module. The first module adopts an alternative CNN to
learn rich image representations which are the bases of the
local covariance representation. Under the few-shot setting,
the local covariance representation is able to denote a con-
cept (or category) utilizing a covariance matrix, owing to the
second-order statistic property of the covariance matrix. The
second module is constructed by a covariance metric layer,
with the help of the first module, to measure the relation be-
tween a query sample and each category by calculating their
distribution consistency. Most importantly, these two mod-
ules are integrated into a unified network and trained in an
end-to-end manner from scratch. In this way, the represen-
tations and metrics can be learned simultaneously, making
them complement and work best with each other.

Local Covariance Representation The covariance ma-
trix has been widely used as a region descriptor (Tuzel,
Porikli, and Meer 2006; 2007; Tabia et al. 2014) or a general
representation (Wang et al. 2012; Harandi, Salzmann, and
Porikli 2014; Wang et al. 2015b; 2015a; Huang et al. 2015;
Wang et al. 2017), due to its favorable properties, e.g.,
second-order statistic, symmetric positive-definiteness and
so on.

Let X = [x1, . . . ,xK ] ∈ Rd×K be a data matrix and
xi ∈ Rd. The sample-based covariance matrix Σ ∈ Rd×d

can be defined as,

Σ =
1

K − 1

K∑
i=1

(xi − µ)(xi − µ)> , (1)

where µ ∈ Rd is the mean of K samples.
The covariance matrix is a raw second-order statistic of

a sample set, which can describe the underlying distribution
of this set directly. Therefore, employing the covariance ma-
trix to represent the distribution of the few-shot categories
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Figure 1: Architecture of the proposed CovaMNet for 5-way 1-shot task. Given a support set consisting of 5 categories with
1 image per category, a CNN (i.e., embedding module) is learned from the auxiliary set to extract covariance representations
for each category, followed by a covariance metric layer to measure the distribution consistency between a query image and
each category. Finally, a softmax layer with the cross-entropy loss is exploited to get the classification result. The training of
CovaMNet exactly matches the inference.

is a reasonable and promising way. However, unlike the co-
variance representation of a general image set (Wang et al.
2012), there are very few images (e.g., K = 1 ∼ 5) in each
category under the few-shot setting, which makes it difficult
to guarantee the nonsingular property of the covariance ma-
trix. Besides, the number of samples in each category (i.e.,
K) is too small to exactly learn a covariance matrix to de-
scribe the data distribution.

Hence, we combine all local deep descriptors of each cat-
egory to calculate a local covariance representation for this
category. Given an image set of the c-th category Dc =
{X1, . . . ,XK},Xi ∈ Rd×M , where Dc contains K im-
ages and each image Xi is represented by M local deep
descriptors with d dimensions per descriptor. Therefore, the
local covariance representation of the c-th category Σlocal

c ∈
Rd×d can be defined in a matrix form as below,

Σlocal
c =

1

MK − 1

K∑
i=1

(Xi − τ )(Xi − τ )> , (2)

where τ ∈ Rd×M is a matrix of mean vectors, with each of
its column the same mean vector of all the MK descriptors.

Since the number of all local deep descriptors (i.e., 441 ≤
MK ≤ 2205) is much larger than the feature dimensional-
ity (i.e., d = 64), it can guarantee the non-singularity of the
covariance matrix when calculating the covariance matrix.
Another advantage is to capture the local detailed informa-
tion of each category as well as facilitating the subsequent
image recognition task, especially in the fine-grained image
recognition. Furthermore, since this local covariance matrix
is embedded into the deep network, it can be learned itera-
tively as the network updates, rather than fixed like pixel-

or image-based covariance matrix. It is worth noting that
the proposed model has no restriction on the number of
shots, which means that the different number of shots can
be adopted via a covariance representation during training
and testing.

Covariance Metric To measure the relation between a
sample and one category, a new measure function named as
Covariance Metric is defined as follows:

f(x,Σ) = x>Σx , (3)

where x ∈ Rd is a sample with zero-mean over the query
image and Σ ∈ Rd×d indicates the covariance matrix of one
specific category. The value of Eq. (3) will achieve a maxi-
mum based on the first k eigenvalues if x is in the direction
of the first k eigenvectors of Σ according to Theorem 1. This
means that the direction of x is in the major spread direction
of this category and the distributions of x and this category
are consistent.

Theorem 1. Suppose that Σ ∈ Rd×d is the covariance ma-
trix of one specific category from the support set S, satis-
fying Σ = V ΛV >, where the diagonal matrix Λ ∈ Rd×d

consists of d eigenvalues in descending order and the cor-
responding eigenvectors are denoted as the orthogonal ma-
trix V = [v1, · · · ,vd] ∈ Rd×d. For any nonzero sample
x ∈ Rd, x>Σx will achieve a maximum based on the first k
eigenvalues if x is in the direction of the first k eigenvectors
of Σ.

Proof. Given the covariance matrix Σ = V ΛV >, where
Λii = λi (λ1 > · · · > λd ≥ 0), V = [v1, · · · ,vd] and
V > = V −1. To simplify the expression, we suppose that
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every eigenvector satisfies ‖vi‖ = 1. For any non-zero vec-
tor x, it can be projected into the space spanned by a set of
unit orthogonal bases vi ∈ Rd (i=1, · · · , d) and its projec-
tion x̂ can be represented as x̂=

∑d
i=1 αivi =V α, where

α ∈ Rd, and x = x̂ + ∆x. Note that, as ∆x is perpendic-
ular to the space spanned by the bases vi|di=1, ∆x>Σ will
always be zero. To make the proof simple and clean, we do
not distinguish between x and x̂.

Based on the above conditions, there are:

x>Σx = α>V >ΣV α=α>Λα =

d∑
i=1

λiα
2
i

x>V = α>V >V = α> = [α1, . . . , αd]

xTvi = ‖x‖‖vi‖ cos θi = αi,∀vi ,

(4)

where θi is the angle between x and vi.
First, if x and vi are collinear in the same direction (i.e.,

θ = 0◦), the maximum of αi is ‖x‖‖vi‖. At this time, x is
orthogonal to all the other eigenvectors, i.e., x>vj =αj =0
(j 6= i), thus x>Σx = λiα

2
i = λi‖x‖2‖vi‖2 = λi‖x‖2.

Considering the largest eigenvalue λ1, x>Σx can achieve
the maximum λ1‖x‖2 in the direction of the first eigenvector
v1.

Second, if x is in the direction of both vi and vj eigen-
vectors, then x=αivi+αjvj and xTΣx=λiα

2
i +λjα

2
j =

(λi cos2 θi + λj cos2 θj)‖x‖2, where θr denotes the angle
between x and vr (r = i, j), respectively. Considering the
first two largest eigenvalues λ1 and λ2, xTΣx can achieve
the maximum (λ1 cos2 θ1 + λ2 cos2 θ2)‖x‖2 when x is in
the direction of first two eigenvectors.

Finally, generalizing to a general case, if x is in the direc-
tion of k eigenvectors, considering the first k largest eigen-
values λ1>. . .>λk, then x>Σx can achieve the maximum
(λ1 cos2 θ1+ · · ·+λk cos2 θk)‖x‖2, when x is in the direc-
tion of first k eigenvectors. The proof is completed.

Here, we also use several local deep descriptors (M d-
dimension local deep descriptors) to represent a query image
X ∈ Rd×M from the query setQ. Following the Eq. (3), the
corresponding local covariance metric similarities between
X and Σlocal

c can be formalized as below,

z = diag f(X,Σlocal
c ) = diag(X>Σlocal

c X) , (5)

where z ∈ RM contains M local similarities between a
query image and one category, Σlocal

c denotes the local co-
variance representation calculated by Eq. (2), and diag(·)
returns a column vector of the main diagonal elements of
the matrix. Once z is calculated, a global similarity Z can
be achieved by linearly weighting M local similarities, i.e.,
Z = w>z, where w is the weight vector.

3.3 Model Architecture
The architecture of the proposed CovaMNet shown in Fig-
ure 1 mainly contains two modules: a convolutional em-
bedding module and a covariance metric module. Follow-
ing the previous work (Vinyals et al. 2016; Snell, Swersky,
and Zemel 2017; Yang et al. 2018), the embedding mod-
ule is composed of four convolutional blocks, where each

convolutional block consists of a convolutional layer (with
64 filters of size 3 × 3), a batch normalization layer and a
Leaky ReLU layer (instead of ReLU layer). In addition, an
additional 2 × 2 max-pooling layer is appended to the first
two convolutional blocks, respectively.

Inputting a query image into the embedding module, the
output is a h × w × d tensor that has M cells (M = hw),
and each cell denotes a d-dimensional local deep descriptor.
Feeding the support set S = {Dc}|Cc=1 into this module, the
local covariance representation of the c-th category Σlocal

c
is calculated based on Dc according to Eq. (2), where each
subsetDc contains K images for the c-th category.

Subsequently, in the covariance metric module, it calcu-
lates the local covariance metric similarities z in Eq. (5)
which measures the relation between a query image X and
one category Σlocal

c , respectively from the query set Q and
the support set S. Furthermore, a fully connected (FC) layer
is employed to map z into a global similarity Z. Similarly,
to measure the relations between this query image and other
C − 1 categories from the support set S, other C − 1 global
similarities are obtained in the same way. In this work, all the
local similarities between the query image and C categories
are concatenated in sequence, then we adopt a 1D convolu-
tion layer with a stride of M to realize this process. Finally,
a softmax layer with the cross-entropy loss is utilized to get
the final classification result.

4 Experiments
In this section, we perform extensive experiments on one
common few-shot classification dataset, i.e., miniImageNet,
and three fine-grained benchmark datasets, i.e., Stanford
Dogs, Stanford Cars and CUB Birds, to evaluate the pro-
posed CovaMNet.

4.1 miniImageNet Few-shot Classification
Dataset The miniImageNet dataset was originally proposed
by (Vinyals et al. 2016), a mini-version of ImageNet derived
from the ILSVRC-12 dataset (Russakovsky et al. 2015).
There are 100 categories with 600 images per category in
this dataset and the image resolution is 84 × 84. In this
work, we follow the splits of this dataset used in (Ravi and
Larochelle 2017), where 64, 16 and 20 categories are for
training (auxiliary), validation and testing, respectively.

Experimental Setting Typically, the 5-way 1-shot and
the 5-way 5-shot classification tasks are conducted on this
dataset. During the process of training, we employ the
episodic training mechanism to learn the proposed Cov-
aMNet model. There are totally 300, 000 episodes, each of
which is constructed by a support set and a query set. For
the 5-way 1-shot classification, there are 5 categories with
15 query images and 1 support image per category, i.e.,
5×15+5×1 = 80 images in each episode. Similarly, for the
5-way 5-shot classification, there are 5× 15 + 5× 5 = 100
images in each episode. Besides, we adopt Adam algo-
rithm (Kingma and Ba 2015) with an initial learning rate
of 5 × 10−3 to optimize our CovaMNet model, where the
learning rate is reduced by half for every 100, 000 episodes.
During the testing process, 600 episodes are randomly con-
structed from the testing set to calculate the top-1 mean
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Table 1: The 5-way 1-shot and 5-shot classification accuracies on the miniImageNet dataset, with 95% confidence intervals.
The second column refers to which embedded module (Embed. for short) is employed, 32F or 64F. The third column denotes
the type of this method, where Metric means this method belongs to the metric-learning based method and Meta belongs to
the meta-learning based method. The fourth column indicates whether this method needs to be fine-tuned. ∗ means the result
reported by the original work. ‡ denotes that the result is obtained by 20-way training setting.

Model Embed. Type Fine Tune 5-Way Accuracy (%)
1-shot 5-shot

Baseline k-NN 64F Metric N 27.23±1.41 49.29±1.56

Meta-Learner∗ (Ravi and Larochelle 2017) 32F Meta N 43.44±0.77 60.60±0.71
MAML∗ (Finn, Abbeel, and Levine 2017) 32F Meta Y 48.70±1.84 63.11±0.92
SNAIL∗ (Mishra et al. 2018) 32F Meta N 45.10±0.00 55.20±0.00

Matching Nets FCE∗ (Vinyals et al. 2016) 64F Metric & Meta N 43.56±0.84 55.31±0.73
GNN (Garcia and Bruna 2018) 64F Metric N 49.02±0.98 63.50±0.84
Prototypical Nets∗ (Snell, Swersky, and Zemel 2017) 64F Metric N ‡49.42±0.78 ‡68.20±0.66
Relation Net∗ (Yang et al. 2018) 64F Metric N 50.44±0.82 65.32±0.70

Our CovaMNet 64F Metric N 51.19±0.76 67.65±0.63

accuracy as well as the corresponding confidence interval.
Note that our proposed CovaMNet model is trained in an
end-to-end manner from scratch without requiring the fine-
tuning during the testing.

To evaluate the proposed CovaMNet on the miniImageNet
dataset, we make comparisons with a baseline model
and seven state-of-the-art few-shot learning models, in-
cluding Baseline k-NN, Matching Nets FCE (Vinyals
et al. 2016), Meta-Learner LSTM (Meta-Learner for
short) (Ravi and Larochelle 2017), Model-agnostic Meta-
learning (MAML) (Finn, Abbeel, and Levine 2017), Pro-
totypical Nets (Snell, Swersky, and Zemel 2017), Relation
Net (Yang et al. 2018), Graph Neural Networks (GNN) (Gar-
cia and Bruna 2018) and Simple Neural AttentIve Learner
(SNAIL) (Mishra et al. 2018). To compare with the base-
line method, we utilize the basic convolutional embedding
network followed by three fully connected layers (with a di-
mensionality of 256) to train a 64-class classification net-
work. Once trained, using this network to extract feature
representations and employs a k-NN classifier to get the fi-
nal classification results during the testing. For other com-
pared models, their experimental settings and results are fol-
lowed by their original work. However, these models use
several different network architectures for the embedding
modules. For instance, Meta-learner LSTM and MAML em-
ploy a four-convolutional network with 32 filters per con-
volutional layer (32F for short) to reduce overfitting (Finn,
Abbeel, and Levine 2017). The metric-learning based meth-
ods (e.g., Prototypical Nets) usually employ the same four-
convolutional network but with 64 filters per convolutional
layer (64F for short). For the sake of fairness, our CovaM-
Net adopts the 64F version for the embedding module, since
CovaMNet belongs to the metric-learning based model. The
GNN is re-run by replacing the embedding module with 64F.
The results of SNAIL with shallow embedding module (i.e.,
32F) are picked from its ablations.

Experimental Results We report the experimental results
in Table 1. The second column refers to which embedded

module (Embed. for short) is employed, 32F or 64F. The
third column denotes the type of this method, where Met-
ric means this method belongs to the metric-learning based
method and Meta means this method belongs to a meta-
learning based method. The fourth column indicates whether
this method needs to be fine-tuned. The last two columns
are the 5-way 1-shot and the 5-way 5-shot classification ac-
curacies on the miniImageNet dataset, with 95% confidence
intervals. According to Table 1, it can be seen that the clas-
sification results of the Baseline k-NN is not as good as
other compared models. This is because it does not adopt
the episodic training mechanism but just uses the auxiliary
set to learn a pre-trained network for the subsequent few-
shot classification task, which verifies the significance and
effectiveness of the episodic training mechanism.

Here we divide seven state-of-the-art models into two
groups and compare them with our proposed CovaMNet,
respectively. The first group contains three Meta-learning
based methods, i.e., Meta-Learner LSTM, MAML and
SNAIL. Compared with these three Meta-learning based
methods, our CovaMNet can achieve more competitive re-
sults because of using a more informative covariance rep-
resentation and a more discriminative covariance metric, in
a fairly simpler architecture. For example, in the 5-way 1-
shot setting, CovaMNet obtains 7.75%, 2.49% and 6.09%
improvements over Meta-Learner, MAML and SNAIL, re-
spectively.

Next, we compared CovaMNet with the second group
methods, including four Metric-learning based methods:
Matching Nets FCE, GNN, Prototypical Nets and Relation
Net. It can be seen that CovaMNet gains 7.63%, 2.17%,
1.77% and 0.75% improvements over above four methods,
respectively, in the 5-way 1-shot setting. This is owing to
the second-order concept representation in our CovaMNet,
which is more informative and effective than the first-order
concept representation in other methods, e.g., mean repre-
sentation used in both Prototypical Nets and Relation Net,
and graph representation in GNN. In addition, the specif-
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Table 2: 5-way 1-shot and 5-shot classification accuracies on three fine-grained datasets, i.e., Stanford Dogs, Stanford Cars and
CUB Birds, with 95% confidence intervals.

Model Embed.
5-Way Accuracy (%)

Stanford Dogs Stanford Cars CUB Birds
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline k-NN 64F 26.14±0.91 43.14±1.02 23.50±0.88 34.45±0.98 25.81±0.90 45.34±1.03

Matching Nets FCE 64F 35.80±0.99 47.50±1.03 34.80±0.98 44.70±1.03 45.30±1.03 59.50±1.01
Prototypical Nets 64F 37.59±1.00 48.19±1.03 40.90±1.01 52.93±1.03 37.36±1.00 45.28±1.03
GNN 64F 46.98±0.98 62.27±0.95 55.85±0.97 71.25±0.89 51.83±0.98 63.69±0.94

Our CovaMNet 64F 49.10±0.76 63.04±0.65 56.65±0.86 71.33±0.62 52.42±0.76 63.76±0.64

ically designed covariance metric is more suitable than a
fixed metric in Prototypical Nets or a simple concatenation
in Relation Net. In the 5-way 5-shot setting, our model gains
12.34%, 4.15% and 2.33% improvements over the other
three methods respectively, except Prototypical Nets. This is
because Prototypical Nets was trained on 20-way 15 queries
per training episode which is of higher computational com-
plexity and needs more queries, in the 5-way 5-shot setting.
When trained with 5-way 15 query per training episode, Pro-
totypical Nets will get a lower accuracy of 66.53 ± 0.51%,
which is worse than ours.

4.2 Fine-grained Few-shot Classification
Dataset Three fine-grained benchmark datasets, i.e., Stan-
ford Dogs, Stanford Cars and CUB Birds, are picked to con-
duct the fine-grained few-shot classification (FGFS) task.
There are 120 categories with a total of 20, 580 images in
the Stanford Dogs dataset, where 70, 20 and 30 categories
are used for training (auxiliary), validation and testing, re-
spectively. The Stanford Cars dataset contains 16, 185 car
images of 196 categories, in which 130, 17 and 49 categories
are split for training (auxiliary), validation and testing. As
for the CUB Birds dataset, it consists of 6033 bird images of
200 species and is split into 130, 20 and 50 accordingly.

Experimental Settings All settings are the same as those
of miniImageNet few-shot classification. That is to say, both
the 5-way 1-shot and the 5-way 5-shot experiments are con-
ducted on these three datasets and each image is resized to
84× 84 for all models.

Different from the generic (GE) image classification task,
the fine-grained (FG) image classification task is more chal-
lenging due to the less inter-class variation and larger intra-
class variation of the fine-grained datasets. Further, consid-
ering a more common and natural problem that only very
few examples are available for the new categories, e.g., rare
flower species or a bird picture under a glimpse, thus the
fine-grained few-shot (FGFS) image classification is more
difficult than GE and FG tasks. Due to the lack of previ-
ous work about FGFS, existing few-shot learning models
are barely performed on the aforementioned fine-grained
datasets.

To evaluate the performance of CovaMNet on three fine-
grained benchmark datasets, a baseline model and three
typical few-shot learning models, including Baseline k-
NN, Matching Nets FCE (Vinyals et al. 2016), Prototypi-

cal Nets (Snell, Swersky, and Zemel 2017) and GNN (Gar-
cia and Bruna 2018), are implemented on these datasets to
make comparisons. The experimental setting of Baseline k-
NN is the same as that of miniImageNet few-shot classifi-
cation. Other three compared models are implemented by
following their released codes.

Experimental Results In Table 2, it is obvious that the
proposed CovaMNet achieves the best performance on three
datasets compared with other models. For example, in the 5-
way 5-shot setting, CovaMNet gets 19.9%, 15.54%, 14.85%
and 0.77% improvements over the above four methods on
the Stanford Dogs dataset, since CovaMNet can not only
capture the subtle image cues FG relied on, but also utilizes
distribution discrepancy to distinguish different categories,
which is more suitable than the existing distance metric for
FG task.

5 Conclusions
In this paper, we propose a compact and effective model Co-
vaMNet for few-shot learning. The proposed CovaMNet ex-
ploits a local covariance representation to represent the un-
derlying distribution for each category and embeds a novel
covariance metric into the network to measure the relations
between the query images and categories. Furthermore, the
theoretical analysis of the distribution consistency is pro-
vided to support our motivation. We evaluate CovaMNet on
both generic few-shot classification benchmark dataset and
more challenging fine-grained few-shot benchmarks, and
achieve competitive results compared with several state-of-
the-art models.
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