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Abstract

Most of the recent progresses on visual question answer-
ing are based on recurrent neural networks (RNNs) with at-
tention. Despite the success, these models are often time-
consuming and having difficulties in modeling long range
dependencies due to the sequential nature of RNNs. We pro-
pose a new architecture, Positional Self-Attention with Co-
attention (PSAC), which does not require RNNs for video
question answering. Specifically, inspired by the success of
self-attention in machine translation task, we propose a Po-
sitional Self-Attention to calculate the response at each po-
sition by attending to all positions within the same sequence,
and then add representations of absolute positions. Therefore,
PSAC can exploit the global dependencies of question and
temporal information in the video, and make the process of
question and video encoding executed in parallel. Further-
more, in addition to attending to the video features relevant
to the given questions (i.e., video attention), we utilize the
co-attention mechanism by simultaneously modeling “what
words to listen to” (question attention). To the best of our
knowledge, this is the first work of replacing RNNs with self-
attention for the task of visual question answering. Experi-
mental results of four tasks on the benchmark dataset show
that our model significantly outperforms the state-of-the-art
on three tasks and attains comparable result on the Count task.
Our model requires less computation time and achieves better
performance compared with the RNNs-based methods. Addi-
tional ablation study demonstrates the effect of each compo-
nent of our proposed model.

1 Introduction
In recent years, breaking the semantic gap of vision and lan-
guage is a hot topic in artificial intelligence. A lot of research
achievements are made centering on computer vision (CV)
and natural language processing (NLP), especially for the
task of visual question-answering (VQA) (Gao et al. 2018b;
2018a; Yang et al. 2016; Yu et al. 2017; Anderson et al.
2017; Palangi et al. 2018; Song et al. 2018). It is still a crit-
ical challenge towards machine intelligence, but its achieve-
ment can be beneficial for various real-life applications.

In general, we can divide the VQA task into two cat-
egories: image question-answering (Kim, Jun, and Zhang
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2018a; Yang et al. 2016; Teney et al. 2017; Xiong, Merity,
and Socher 2016; Kim, Jun, and Zhang 2018b) and video
question-answering (Jang et al. 2017; Gao et al. 2018a;
Wang et al. 2018; Zeng et al. 2017). Compared with
image-based question-answering, video question-answering
is more challenging. Given a question, a video QA model is
required to locate and explore a sequence of frames to firstly
recognize a set of specific objects and activities and secondly
identify the relationship between objects and the relation-
ship between objects and actions. In artificial intelligence,
the above two steps are usually conducted independently.

Previous visual question-answering models (Kim, Jun,
and Zhang 2018a; Yang et al. 2016; Teney et al. 2017;
Xiong, Merity, and Socher 2016; Jang et al. 2017; Gao et
al. 2018a; Wang et al. 2018) are primarily based on RNNs,
especially Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997; Song et al. 2017; Gao et al. 2017)
and Gated Recurrent Unit (GRU), which have good perfor-
mance on modeling sequential data and potential to solve the
gradient vanishing problem. For instance, Jang et al. (Jang
et al. 2017) proposed a two-staged LSTM to encode both
video frames and question information for answer predic-
tion. Gao et al. (Gao et al. 2018a) extended a dynamic mem-
ory network to form a new motion-appearance co-memory
network. In these models, LSTM is an essential part for
catching data dependencies. However, experimental results
(Vaswani et al. 2017) demonstrated that LSTM has weak-
ness in modeling the long range dependencies and it cannot
ensure data encoding to be conducted in parallel. Therefore,
the training may be time-consuming, especially for encod-
ing long sequential data (e.g., a text paragraph). To solve this
problem, Vaswani et al. (Vaswani et al. 2017) proposed an
attention mechanism, named Self-Attention, to replace tra-
ditional RNNs for machine translation. The proposed atten-
tion mechanism incorporated external information to assist
a model to assign different weights to data items based on
their importance. Experimental results demonstrate its effec-
tive role in catching long range dependencies, and it reaches
a new state-of-the-art performance for machine transition.

In this work, we introduce a simple yet interpretable net-
work named Positional Self-Attention with Co-Attention
(PSAC) for video question-answering. It consists of two po-
sitional self-attention blocks to replace LSTM for modeling
data dependencies, and a video-question co-attention block
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to simultaneously attend both visual and textual information
for improving answer prediction. We summarize the contri-
butions of our model as below:

• To better exploit the global dependencies of the sequen-
tial input (i.e., a video and a question), and make video
and question encoding processes conducted in parallel,
we present a novel positional self-attention mechanism.
To our knowledge, this is the fist try in the visual QA task,
where a traditional RNN is replaced by a self-attention to
boost the performance and training efficiency.

• We propose a new co-attention mechanism (i.e., video-
to-question and question-to-video attention) to enable our
model attending to both relevant and important visual and
textual features, which removes the irrelevant video and
textual information to guarantee the generation of accu-
rate answers.

• We conduct experiments on the large-scale TGIF-QA
dataset and the experimental results on four tasks demon-
strate the efficiency and effectiveness of our proposed Po-
sitional Self-Attention with Co-Attention architecture.

2 Related Work
In this section, we discuss related work of our method.
Specifically, we introduce relevant works in two aspects: vi-
sual question-answering (image QA and video QA) and self-
attention mechanism.

2.1 Visual Questioning-Answering
In image-based question-answering, existing question-
answering methods are mainly focusing on using a LSTM
network to encode question sequence and fusing question
representation and image feature together to predict an an-
swer. Yang et al. (Yang et al. 2016) modified the basic model
and proposed Stacked Attention Network (SAN) which uses
a multiple-layer SAN. In SAN, it queries an image mul-
tiple times to infer the answer progressively. Nam et al.
(Nam, Ha, and Kim 2017) proposed a dual attention net-
work which attends to specific regions in images and word
in text through multiple steps and gathers essential informa-
tion from both modalities to help predict an answer. Top-
down model (Anderson et al. 2017) was proposed by com-
bining bottom-up and top-down attention mechanism that al-
lows attentions to be computed at the level of objects and
other salient image regions. Xiong et al. (Xiong, Merity,
and Socher 2016) introduced dynamic memory network to
image question-answering which has a memory component
and an attention to assist the prediction of correct answers.
For video question-answering, Jang et al. (Jang et al. 2017)
proposed a spatial-temporal model which gathers the vi-
sual information from spatial aspect and motion information
from temporal aspect. Motion-appearance dynamic mem-
ory network (Gao et al. 2018a) adopted two dynamic mem-
ory network to construct a co-memory structure which deals
with visual static feature and motion flow feature at the same
time. Fusion of multiple features can boost the performance.

2.2 Self-Attention Mechanism
Attention module assigns different weights to different data
to allow the model focusing on important data. In recent
years, attention mechanism(Xu et al. 2015) has been widely
applied in lots of research topics and experimental results
have proved the effectiveness of this module. Vaswani et al.
(Vaswani et al. 2017) modified traditional attention and pro-
posed Self-Attention which calculates the response at a posi-
tion in a sequence by attending to all positions. Yu et al. (Yu
et al. 2018) adopted self-attention and convolution to con-
struct a QAnet for reading comprehension, where convolu-
tion extracts local interactions and self-attention extracts the
global interactions between sequence. Zhang et al. (Zhang
et al. 2018) proposed the Self-Attention Generative Adver-
sarial Network (SAGAN) in which self-attention attains a
better balance between the ability to model dependencies
and computational efficiency. Zhou et al. (Zhou et al. 2018)
employed self-attention mechanism to propose a new model
which enables the use of efficient non-recurrent structure
during encoding and leads to performance improvements in
dense video captioning.

3 Proposed Method
In this section, we first present our positional self-attention
with co-attention (PSAC) architecture which is proposed to
address the problem of video question answering. The ar-
chitecture is shown in Fig. 1 and it consists of three key
components: Video-based Positional Self-Attention Block
(VPSA), Question-based Positional Self-Attention Block
(QPSA) and Video-Question Co-Attention Block (VQ-Co).
Specifically, both VPSA and QPSA utilize the same posi-
tional self-attention mechanism, excepting that VPSA is fo-
cused on attending to video frame features, while QPSA is
focused on attending to a textual feature, derived by con-
catenating question word features with character features.
Through VPSA and QPSA, frame features and question fea-
tures are both updated. Next, our VQ-Co block takes the two
updated video and question features as inputs and then si-
multaneously compute attentions for them. Multiple features
are fused together for final answer prediction.

3.1 Positional Self-Attention Block
To catch better long range dependencies and position infor-
mation, we propose a positional self-attention block to re-
place RNNs. Given a query and a set of key-values, attention
mechanism calculates a weighted sum of values based on
the similarity of query and keys. In positional self-attention
model, we regard sequential representation as query, key and
value at the same time. Supposed that a sequential feature is
represented as F ∈ Rn×dk and a scaled dot product attention
(SDPA) is defined as below mathematically:

SDPA(FQ,FK ,FV ) = softmax(
FK(FQ)

T

√
dk

)FV (1)

where n is the length of the sequence, and dk denotes feature
dimension of each item in F. In order to enable the model
to jointly attend to information from different representa-
tion subspaces at different positions, positional self-attention
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Figure 1: The overview of our proposed framework, Positional Self-Attention with Co-attention for Video Question-Answering.
There are three key components: Video-based Positional Self-Attention Block, Question-based Positional Self-Attention Block
and Video-Question Co-Attention Block.

adopts l-scale dot product attention concurrently. Positional
self-attention concatenates the outputs of all scale l dot prod-
uct attention models and then utilizes a linear layer to project
the concatenated feature to a fixed dimensional feature. We
can formulate the self-attention calculation process as:

J = concat(h1, ..., hl)Wo (2)

hi = SDPA(FWQ
i , FW

K
i , FW

V
i ) (3)

where Wo and Wi are parameters to be learned. However,
transmission loss may occur in self-attention operations.
Thus we add a residual connection to J and then apply a
layer normalization. Therefore, the original mapping J is re-
cast into O.

O = LayerNorm(J+ F) (4)

Compared with traditional RNN networks, such as
LSTM, self-attention has ability to ensure computational ef-
ficiency and to derive long-rang dependencies, but it ignores
the positional information of the sequential input (Gehring
et al. 2017). To remedy this weakness, we define a positional
matrix P ∈ Rn×dk to encode the sequence geometric posi-
tion information about F. P is computed by using sine and
cosine functions at different positions:

ppos,2j = sin(pos/100002j/dk) (5)

ppos,2j+1 = cos(pos/100002j/dk) (6)

where pos is the position and j is the dimension. With
P ∈ Rn×dk , we add it to the attended feature followed by

two convolutional layers with a ReLU activation function.
Therefore, the final self-attended feature is defined as:

Of = ReLU((O+P)W1 + b1)W2 + b2 (7)

where W1 and W2 all denote the convolutional operations
and b∗ is the bias. For simplicity, we define our positional
self-attention mechanism as:

Fo = PositionalSelfAttention(F) (8)

where F is the sequential input features, and Fo is the posi-
tional self-attended feature.

3.2 Video-based Positional Self-Attention Block
Given a video, we firstly conduct the video pre-processing
step by extracting N equal-spaced frames and then apply-
ing a pre-trained CNN network to obtain N frame fea-
tures. Each frame feature’s dimension is dv . After the video
pre-processing, we define the extracted video features as
V ∈ RN×dv . Next, we apply the previous defined positional
self-attention mechanism to encode the input V.

Vo = PositionalSelfAttention(V) (9)

where Vo indicates the positional self-attended visual fea-
ture, which contains both video long-term structures as well
as frame spatial position information.

3.3 Question-based Positional Self-Attention
Block

The goal of Question-based Positional Self-Attention Block
(QPSA) is to extract the semantic long range dependencies
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of the given question Q. The information of the question
can be described in two levels: word and character. Given
a question Q, we suppose the embedded word and char-
acter representations of question are W ∈ RM×dw and
C ∈ RM×r×dc , respectively. WhereM denotes the sentence
length, r denotes the word length, and dw and dc represent
the word embedding and character embedding dimensions.

To form a representative question feature, we firstly use a
convolutional layer to encode the character C ∈ RM×r×dc

and then concatenate the output of the convolutional feature
with word-level feature W ∈ RM×dw . The question embed-
ding process is defined below.

Qe = Concat(W, Conv2D(C)) (10)
where Qe is the combined question feature. In addition, two-
layer highway network (Srivastava, Greff, and Schmidhuber
2015) is used after the concatenation of character feature
and word feature in language translation task. This is due
to that the highway network can solve training difficulties
with the model parameters growing. However, the represen-
tative ability of concatenation is constrained, thus we need a
convolutional layer to further fuse the word level and char-
acter level features. Compared with traditional convolutional
layer, the depthwise separable convolution (Chollet 2017)
has been proved better in parameter efficiency and has bet-
ter generalization ability. As a result, we adopt a depthwise
separable convolutional layer to further encode our question
feature Qe:

Qd = ReLU((QeWd + bd)Wb + bp) (11)
where Wd denotes depthwise convolution parameters, Wb

denotes pointwise convolution parameters in the depthwise
separable convolution module, and b∗ is the bias.

To our knowledge, encoding the long range dependen-
cies of a question is important for extracting useful informa-
tion cues. In our framework, we use positional self-attention
mechanism to exploit the long range dependencies for the
given question. After the positional self-attention mecha-
nism, our question Qd is mapped to Qo, which indicates
the positional self-attended question features.

Qo = PositionalSelfAttention(Qd) (12)

3.4 Video-Question Co-Attention Layer
After the two positional self-attention blocks, we obtain two
attended features: Vo and Qo, but the last dimension of them
are different. In order to conduct the further operations, we
firstly project them into a ρ-dimension common space. With
the projected Vo and Qo, we apply our proposed video-
question co-attention layer on them to boost the question
answering performance.

Here we generalize a co-attention model for two multi-
channel inputs, where Vo ∈ RN×ρ and Qo ∈ RM×ρ, and it
generates two attention maps. One is used to attend to Vo,
and the other is applied to attend to Qo. To derive the at-
tention maps, we follow previous work (Seo et al. 2016) to
construct a similarity matrix, denoted as S, by employing a
multi-element function. It integrates Qo, Vo and Qo �Vo

to compute S.
S =Ws[Qo,Vo,Qo �Vo] (13)

where Ws denotes the parameter that to be trained and �
means the element-wise multiplication and S ∈ RN×M .
With the similarity matrix S, we now use it to obtain two
attention maps and the attended vectors in both directions.

Video-to-Question Attention. Video-to-question (V2Q)
attention aims to locate which question vectors are most rel-
evant to each self-attended video features. The attention map
Sq is computed by normalizing each row of the S with a soft-
max function. Thus we apply the computed attention map Sq
to the question feature Qo to obtain the attended question
feature A = Sq ·Qo.

Question-to-Video Attention. Question-to-video (Q2V)
attention aims to find which visual vectors have the high-
est similarity to one of the question vectors, and are hence
critical for predicting answers for questions. To compute the
video attention map, we normalize each column of the S
with a softmax function to get Sv . Next, our video attention
weight B is obtained by B = Sq · ST

v ·VT
o .

Co-attention. To yield the final feature Of for answer
prediction, we combine the three attended features together,
including Vo, A, and B through the following operation.

Of = Concat(Vo,A,Vo �A,Vo �B)Wf (14)

where Wf is the parameter to be learned.

3.5 Answer Module and Loss Function
For multiple choice task (i.e. Transition and Action), a linear
regression function is adopted. It takes final combined fea-
ture Of as the input to compute a real-valued score for each
option, as below.

p =WT
r Of (15)

whereWr is the parameter to be trained. For this task, we use
multi-hinge loss of each questionmax(0, 1−sp+sn) where
sp and sn are scores calculated from correct candidates and
incorrect candidates.

As for open-ended question (i.e. FrameQA), we use a lin-
ear classifier and a softmax function to project Of to the
answer space.

p = softmax(WT
x Of + bp) (16)

where Wx is the parameters to be learned. Like other open-
ended question-answering tasks, we use cross entropy loss
between predicted answer and groundtruth answer as our
loss function.

We also regard Count task as an open-ended task, but it
requires a model to predict a number ranging from 0 to 10.
Therefore, we define a linear regression function to predict
the real-valued number directly.

p =WT
c Of (17)

where Wc is parameters to be trained. To reduce the gap
between the predicted answer and true answer, we use Mean
Square Error (MSE) loss to train our count model.

4 Experiments
4.1 Dataset
Following (Gao et al. 2018a), we evaluate our method on
TGIF-QA dataset (Jang et al. 2017). It consists of 103,919
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Table 1: QA-pairs and GIFs construction of TGIF-QA dataset.
QA pairs Action Trans Count FrameQA

QA-pairs GIFs QA-pairs GIFs QA-pairs GIFs QA-pairs GIFs
Train 20475 3543 52704 34526 26843 12382 39392 27327
Test 2274 614 6232 4881 3554 2580 13691 10028
Total 22749 3851 58936 38021 30397 13316 53083 36633

question-answer pairs collected from 56,720 animated GIFs.
In addition, all QA-pairs are split into four tasks: Action,
Transition (Trans.), Count and FrameQA.

• Action It is a multi-choice task and each question is at-
tached with 5 options. All questions are asking about a
certain action, which has occurred fixed number of times.
For example “What does the woman do 3 times?”.

• Transition (Trans.) It is a multi-choice task and each
question has 5 options. Questions are all about transi-
tions of certain states, including facial expression, actions,
places and object properties. For instance, “What does the
man in sweater do after lay on bed?”.

• Count This is an open-ended task which counts the num-
ber of repetition of a certain action. Even though it is
an open-ended question, all the answers are numbers and
there are 11 possible answers, ranging from 0 to 10. For
example, “How many times does the woman sway hips?”.

• FrameQA It is an open-ended task and it is similar to
image-QA. Each question in this task can be answered
from one of the frames in a video. For instance, “What is
the color of the woman’s hair?”.

For each task, the total number of QA-pairs and GIFs as well
as the numbers of training/testing are displayed in Tab. 1.

4.2 Evaluation Metrics
For multi-choice tasks, including Action and Trans., we use
accuracy as the evaluation metric to evaluate video QA mod-
els. For open-ended tasks, the FrameQA also adopts accu-
racy, while the Count task utilizes the Mean Square Error
(MSE) between the predict answer and the ground truth an-
swer to measure the model’s performance. Note that for a
model, the accuracy should be as higher as better, while the
MSE score is exactly opposite.

4.3 Implementation Details
Given a video, we equally select 35 frames. For each frame,
we take the output of pool5 layer of ResNet-152 (He et al.
2016) as visual features. The dimension of each frame fea-
ture is 2048. Given a question, we firstly covert all words
to lower cases and then get rid of all punctuations. Next,
each question is split by blank space to acquire words, while
each word is further spitted to obtain characters. Specifi-
cally, each word is transfered to a 300-D feature vector by a
pre-trained GloVe (Pennington, Socher, and Manning 2014)
and each character is finally embedded into a 64-D vector.

In order to train the model, we employ the Adamax op-
timizer. For both Count and FrameQA, we set the size of

Table 2: Comparison with the state-of-the-art methods on
TGIF-QA dataset. Action, Trans., FrameQA and Count are
four tasks in TGIF-QA dataset. R denotes ResNet feature, C
denotes C3D feature and F denotes flow CNN.

Model Action Trans FrameQA Count
Random Chance 20.0 20.0 0.06 20.4

VIS+LSTM(aggr) 46.8 56.9 34.6 5.09
VIS+LSTM(avg) 48.8 34.8 35.0 4.80
VQA-MCB(aggr) 58.9 24.3 25.7 5.17
VQA-MCB(avg) 29.1 33.0 15.5 5.54

Yu et al. 56.1 64.0 39.6 5.13
ST(R+C) 60.1 65.7 48.2 4.38

ST-SP(R+C) 57.3 63.7 45.5 4.28
ST-SP-TP(R+C) 57.0 59.6 47.8 4.56

ST-TP(R+C) 60.8 67.1 49.3 4.40
Co-memory(R+F) 68.2 74.3 51.5 4.10

PSAC(R) 70.4 76.9 55.7 4.27

minibatch as 128. For Action and Trans., the size of mini-
batch is set as 16. For all CNN layers, the dropout rate is
0.2. Following (Vaswani et al. 2017), the number of scaled
parallel attention l in both VPSA and QPSA is set as 8.

4.4 Comparison with State-of-the-art Methods
In this subsection, we introduce several state-of-the-art base-
line methods and show the comparisons of our proposed
model with baselines. The comparison results are shown in
Tab. 2. We have the following observations:

• Random Chance is to select an answer in the answer vo-
cabulary randomly. As expected, it performs the worst
compared with the other methods.

• In order to compare with the best image-based VQA
methods, including VIS+LSM and VQA-MCB (i.e., the
winner of the VQA 2016 challenge), Jang et al. pro-
posed two ways to extend them for video question answer-
ing task. They are early fusion based approaches includ-
ing VIS+LSTM (aggr) and VQA-MCB (aggr), and late
fusion based methods including VIS+LSTM (avg) and
VQA-MCB (avg). For four models, they select one in four
frames and then use the pre-trained ResNet-152 model to
extract frame features. In addition, the aggr. methods ob-
tain the input visual feature by averaging all frame fea-
tures, while agv. methods take one frame at a time to
predict the answer and then average the accuracy across
all frames of all videos. Compared with Random Chance,
they perform better but the performance is still quite low.
This is because both aggr. and avg. based methods ignores
long-term dependencies in videos.
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Table 3: The effect of VPSA. The w/ L VPSA indicates our
model with L stacked VPSA layers. The experiments are
conducted on the TGIF-QA dataset.

Encoder layer Action Trans FrameQA Count
w/o VPSA 69.0 76.3 55.5 4.41
w/ 1 VPSA 70.4 76.9 55.7 4.27
w/ 2 VPSA 68.2 76.7 56.1 4.32
w/ 3 VPSA 69.2 75.7 55.9 4.40
w/ 4 VPSA 66.4 76.2 55.4 4.38
w/ 5 VPSA 64.6 75.9 55.5 4.36
w/ 6 VPSA 67.3 76.2 55.6 4.44

• Later on, Yu et al. proposed a high-level concept word
detector to generate a list of concepts words. Next, the
detected words are combined through a semantic atten-
tion for captioning, retrieval and question answering. The
results show that it further improves the performance of
video question answering on the TGIF-QA dataset, reach-
ing 56.1% Action, 64.0% Trans, 39.6% FrameQA and
5.13 Count.

• Both ST and its variants (Jang et al. 2017) and CO-
memory (Gao et al. 2018a) are video-based methods.
Compared with ST and its variants with C3D features and
ResNet features as the visual input, Co-memory (R+F)
with optical flow features and ResNet features performs
better. Specially, Co-memory (R+F) achieves the lowest
score on the Count task with 4.10.

• By observing the whole Tab. 2, we reach a conclusion
that our model performs best in terms of Action, Trans.
and FrameQA tasks. Compared with Co-memory (R+F),
our model achieves higher accuracy, with an increase
of 2.2% for Action task, 2.6% for Trans., and 4.2% for
FrameQA. For Count task, our model performs slightly
worse than Co-memory (R+F), 4.27 vs 4.10 respectively.
However, in essential both ST-based methods and Co-
memory (R+F) are not comparable, because they utilize
extra visual features either C3D feature or optical flow
feature. Our model only makes use of the ResNet visual
feature. Therefore, we believe that the results demonstrate
the effectiveness of our proposed framework.

4.5 Ablation Study
Why Video Positional Self-Attention? Here, we conduct
several experiments to study the effect of video positional
self-attention block (VPSA). Firstly, we remove the VPSA
block and directly use original frame features to replace po-
sitional self-attended visual features to conduct question an-
swering. The experimental result is shown in Tab. 3. Without
VPSA, we find out that the performance of our PSAC model
decreases by 1.4% on Action task, 0.6% on Trans., 0.2% on
FrameQA and increases MSE 0.14 on Count. Furthermore,
we continue to explore the role of L stacked VPSA layers.
From Tab. 3, we can see that for Action, Trans., and Count,
the best results are obtained when L = 1, and for FrameQA,
the best results (56.1%) is achieved when L = 2. Therefore,
we set L = 1 in the rest of this paper.

Table 4: Comparison results and time cost (seconds) on vi-
sual positional self-attention (VPSA) and Bi-LSTM layer.

model program Action Trans FrameQA Count

PSAC result 70.4 76.9 55.7 4.27
s/epoch 269 698 122 74

Bi-LSTM result 67.6 75.1 53.9 4.39
s/epoch 337 870 143 83

Table 5: The effect of character embedding: without or with
word character information.

Action Trans FrameQA Count
PSAC w/o Char. 66.89 75.74 54.80 4.40
PSAC w/ Char. 70.36 76.89 55.67 4.27

In addition, we compare our VPSA to the recurrent layers
which are commonly used for mapping one variable-length
sequence of features to another sequence with equal length.
Here, we adopt the bidirectional LSTM (Bi-LSTM) to re-
place the VPSA, thus the self-attended visual features are
replaced by a set of Bi-LSTM hidden states. The dimen-
sion of all hidden states are 1024. The comparison results
are shown in Tab. 4. Compared with Bi-LSTM layer, our
VPSA brings improvements for all four tasks. In theory,
given a n length sequence, where a recurrent layer requires
O (n) steps, while VPSA only requires a constant number of
sequentially executed operations. Experiments empirically
show that for each epoch, PSAC with VPSA respectively
takes 269s, 698s, 122s and 74s for training Action, Trans.,
FrameQA and Count, while PSAC with Bi-LSTM spends
337s, 870s, 143s and 83s. The time difference is small, due
to the reason that we are dealing with shot videos with
n = 35. If n is big enough, the time difference can be more
obvious.

Why Word Character? In this section, we conduct two
experiments: PSAC w/o Char. and PSAC w/ Char. The ex-
perimental results are shown in Tab. 5. The results demon-
strate the effects of character. Without word character, PSAC
decreases the performance by 3.47%, 1.15% and 0.87% on
Action, Trans. and FrameQA respectively, and increases the
MSE error to 4.40 for Count. The positive impact of word
character further proves that a video question answering
model could gain benefit by fully exploring the question
multi-level information (e.g., word and character level).

Why Video-Question Co-attention? We compare the
performance of non-video question co-attention and video
question co-attention method in Tab. 6. We see that co-
attention outperforms non co-attention method on three
tasks, including Action, Trans., and Count, respectively
reaching 70.36%, 76.89% and 4.27 of MSE error. For
FrameQA, with or without co-attention, their performance
are almost the same. Compared with other three tasks Ac-
tion, Trans., and Count, which require to analyze multiple
frames, FrameQA only needs one of the frame to answer the
question. Therefore, the nature of FrameQA task makes as-
signing weights for multiple frames ineffective. In addition,
we further study the effect of question-to-video (Q2V) at-
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Ours: 4      

Ours: smile        Ours: lick tube    

Ours: shake right arm       Ours: raise hands        

Ours: cookie       

Question：How many times does Woman blink eyes ? Question：How many times does the puppy paw kitten ?

   Ours: 2      GT: 2 ST-TP: 2  

Question：What does the cat do before hit tube ?

Question：What does the woman do 2 times ?

Question：What is the man talking on a headset and using ?

Question: What does the man who wear a sun glass do 4 times ?

Question：What is being placed in the white ice cream cone ?

Question：What does the man do after slide chair ?

 GT: lick tube ST-TP: lick tube   

GT: raise hands ST-TP: raise hands

GT: laptop ST-TP: laptop    Ours: laptop    

GT: 4 ST-TP: 5  

GT: smile ST-TP: laugh

GT: shake right arm ST-TP: jump 

GT: cookie SP-TP: milk 

Count

Trans.

Action

Frame

QA

Figure 2: For each task, two examples are provided. Answers are predicted by ST-TP(R+C) model and our PSAC(R) model.
The incorrect answers are marked with red.

Table 6: The effect of video-question co-attention block
Action Trans FrameQA Count

without QA-Co 67.15 75.73 55.84 4.32
with Q2V 68.38 76.33 55.49 4.50

with QA-Co 70.36 76.89 55.67 4.27

tention and the results is shown in the second row of Tab. 6.
The performance of with Q2V is higher than without QA-Co
but lower than with QA-Co. The comparison results demon-
strate the positive role of Q2V and V2Q.

4.6 Qualitative Analysis
In this section, we provide some qualitative results pro-
duced by ST-TP(R+C) (Jang et al. 2017) and our PSAC(R).
We cannot provide the answers from Co-memory(R+F), be-
cause the code has not been released yet. All the quali-
tative examples are displayed in Fig. 2. The first column
shows some positive examples where both ST-TP(R+C) and
our PSAC(R) can provide the accurate answers. The second
column demonstrates some examples where ST-TP(R+C)
fails to provide the correct answer. For Count task, our
PSAC(R) model can recognize and locate the action pre-
cisely. For example, our PSAC(R) can correctly count the
number of times of “puppy paw kitten”. For Trans. task,
our PSAC(R) can precisely identify the action after “slide
chair” that is “smile”, while the answer for ST-TP(R+C) is
“laugh”. The answer for ST-TP(R+C) is acceptable but not

precise. For Action task, when ask “what does the man who
wear glass do 4 times”, our PSAC(R) provides an accurate
answer “shake right arm”. Even though ST-TP(R+C) ana-
lyzes both appearance and motion information, it provides
a wrong answer “jump”. For FrameQA task, compared with
ST-TP(R+C) with an answer “milk”, our model PSAC(R)
provides an accurate answer “cookie”. To conclude, the sec-
ond column demonstrates the effectiveness of our PSAC(R)
for video question answering task, even without analyzing
the video motion features.

5 Conclusion
In this work, we introduce a simple and interpretable net-
work named Positional Self-Attention with Co-Attention
for video question-answering, which adopts positional self-
attention block to replace LSTM to model the data depen-
dencies. Besides, video-question co-attention is used to help
attend to both visual and textual information which makes
the answers more accurate. Experimental results on TGIF-
QA demonstrate that our approach outperforms state-of-the-
art methods significantly on three tasks and achieve compa-
rable result on Count task. Our model requires less compu-
tation time and achieves better performance compared with
the RNNs-based methods.
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