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Abstract

When facing large-scale image datasets, online hashing
serves as a promising solution for online retrieval and pre-
diction tasks. It encodes the online streaming data into com-
pact binary codes, and simultaneously updates the hash func-
tions to renew codes of the existing dataset. To this end, the
existing methods update hash functions solely based on the
new data batch, without investigating the correlation between
such new data and the existing dataset. In addition, existing
works update the hash functions using a relaxation process
in its corresponding approximated continuous space. And it
remains as an open problem to directly apply discrete op-
timizations in online hashing. In this paper, we propose a
novel supervised online hashing method, termed Balanced
Similarity for Online Discrete Hashing (BSODH), to solve
the above problems in a unified framework. BSODH employs
a well-designed hashing algorithm to preserve the similar-
ity between the streaming data and the existing dataset via
an asymmetric graph regularization. We further identify the
“data-imbalance” problem brought by the constructed asym-
metric graph, which restricts the application of discrete opti-
mization in our problem. Therefore, a novel balanced simi-
larity is further proposed, which uses two equilibrium factors
to balance the similar and dissimilar weights and eventually
enables the usage of discrete optimizations. Extensive exper-
iments conducted on three widely-used benchmarks demon-
strate the advantages of the proposed method over the state-
of-the-art methods.

Introduction
With the increasing amount of image data available on
the Internet, hashing has been widely applied to approx-
imate nearest neighbor (ANN) search (Wang et al. 2016;
2018). It aims at mapping real-valued image features to com-
pact binary codes, which merits in both low storage and effi-
cient computation on large-scale datasets. One promising di-
rection is online hashing (OH), which has attracted increas-
ing attentions recently. Under such an application scenario,
data are often fed into the system via a streaming fashion,
while traditional hashing methods can hardly accommodate
this configuration. In OH, the online streaming data is en-
coded into compact binary codes, while the hash functions
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are simultaneously updated in order to renew codes of the
existing data.

In principle, OH aims to analyze the streaming data while
preserving structure of the existing dataset1. In the litera-
ture, several recent works have been proposed to handle OH.
The representative works include, but not limited to, OKH
(Huang, Yang, and Zheng 2013), SketchHash (Leng et al.
2015), AdaptHash (Fatih and Sclaroff 2015), OSH (Fatih,
Bargal, and Sclaroff 2017), FROSH (Chen, King, and Lyu
2017) and MIHash (Fatih et al. 2017). However, the perfor-
mance of OH is still far from satisfactory for real-world ap-
plications. We attribute it to two open issues, i.e., updating
imbalance and optimization inefficiency.

In terms of the updating imbalance, the existing OH
schemes update hash functions solely based on the newly
coming data batch, without investigating the correlation be-
tween such new data and the existing dataset. To that ef-
fect, an asymmetric graph can be constructed to preserve
similarity between the new data and the existing dataset as
shown in Fig.1. Under online setting, the similarity matrix
is usually sparse and unbalanced, i.e., data-imbalance phe-
nomenon, since most image pairs are dissimilar and only a
few are similar. The updating imbalance issue, if not well
addressed, might cause the learned binary codes ineffective
for both the new data and the existing data, and hence lead
to severe performance degeneration for OH schemes.

In terms of the optimization inefficiency, the existing
OH schemes still rely on the traditional relaxation (Gong
and Lazebnik 2011; Datar et al. 2004; Jiang and Li 2015;
Liu et al. 2018; Lin et al. 2018) over the approximated con-
tinuous space to learn hash functions, which often makes the
produced hash functions less effective, especially when the
code length increases (Liu et al. 2014; Shen et al. 2015b).
Despite the recent advances in direct discrete optimizations
in offline hashing (Ji et al. 2017; Jiang and Li 2018) with dis-
crete cyclic coordinate descent (DCC) (Shen et al. 2015b),
such discrete optimizations can not be directly applied to
online case that contains serious data-imbalance problem,
since the optimization heavily relies on the dissimilar pairs,
and thus lose the information of similar pairs.

1The streaming data is usually in a small batch, which can be
processed easily to pursue a better tradeoff among computation,
storage, and accuracy.
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Figure 1: An example of data-imbalance problem and the
learned binary codes. The similarity matrix St is highly
sparse under online setting and thus tends to generate con-
sistent binary codes, which are indiscriminate and uninfor-
mative. With the introduction of the balanced similarity S̃t,
codes of similar items are tightened while codes of dissim-
ilar items are expanded. By combining with discrete opti-
mizations, advanced retrieval results are obtained.

We argue that, the above two issues are not independent.
In particular, to conduct discrete optimizations, the existing
offline methods typically adopt an asymmetric graph regu-
larization to preserve the similarity between training data.
Constructing the asymmetric graph consumes both time and
memory. Note that, since the streaming data is in a small
batch, such an asymmetric graph between the streaming data
and the existing dataset can be dynamically constructed un-
der online setting. However, as verified both theoretically
and experimentally later, it still can not avoid the generation
of consistent codes (most bits are the same) due to the data-
imbalance problem brought by the constructed asymmetric
graph in online learning, as illustrated in Fig.1.

In this paper, we propose a novel supervised OH method,
termed Balanced Similarity for Online Discrete Hashing
(BSODH) to handle the updating imbalance and optimiza-
tion inefficiency problems in a unified framework. First, un-
like the previous OH schemes, the proposed BSODH mainly
considers updating the hash functions with correlation be-
tween the online streaming data and the existing dataset.
Therefore, we aim to adopt an asymmetric graph regulariza-
tion to preserve the relation in the produced Hamming space.
Second, we further integrate the discrete optimizations into
OH, which essentially tackles the challenge of quantiza-
tion error brought by the relaxation learning. Finally, we
present a new similarity measurement, termed balanced sim-
ilarity, to solve the problem of data-imbalance during the
discrete binary learning process. In particular, we introduce
two equilibrium factors to balance the weights of similar and
dissimilar data, and thus enable the discrete optimizations.
Extensive experimental results on three widely-used bench-
marks, i.e., CIFAR10, Places205 and MNIST, demonstrate
the advantages of the proposed BSODH over the state-of-
the-art methods.

To summarize, the main contributions of the proposed
BSODH in this paper include:

• To capture the data correlation between online streaming

data and the existing dataset, we introduce an asymmet-
ric graph regularization to preserve such correlation in the
produced Hamming space.

• To reduce the quantization error in the Hamming space,
we design a customized discrete optimization algorithm.
It handles the optimization inefficiency issue in the exist-
ing OH scheme, making discrete learning feasible for the
first time in the online framework.

• We propose a balanced similarity matrix to handle the
data-imbalance problem, which further prevents the gen-
eration of consistent binary codes, i.e., a phenomenon that
previously occurred when directly applying discrete opti-
mizations in online setting.

Related Work
In this section, we briefly review the existing OH methods.
OH merits in efficiently updating the hash functions by using
the streaming data online, which can be further subdivided
into two categories: SGD-based OH methods, and matrix
sketch-based OH methods.

For SGD-based methods, Online Kernel Hashing (OKH)
(Huang, Yang, and Zheng 2013) is the first attempt to learn
hash functions via an online passive-aggressive strategy
(Crammer et al. 2006), which updates hash functions to
retain important information while embracing information
from new pairwise input. Adaptive Hashing (AdaptHash)
(Fatih and Sclaroff 2015) adopts a hinge loss to decide which
hash function to be updated. Similar to OKH, labels of pair-
wise similarity are needed for AdaptHash. Inspired by Error
Correcting Output Codes (ECOCs) (Dietterich and Bakiri
1995), Online Supervised Hashing (OSH) (Fatih, Bargal,
and Sclaroff 2017) adopts a more general two-step hash
learning framework, where each class is firstly deployed
with a vector from ECOCs, and then an convex function
is further exploited to replace the 0/1 loss. In (Fatih et al.
2017), an OH with Mutual Information (MIHash) is devel-
oped which targets at optimizing the mutual information be-
tween neighbors and non-neighbors.

Motivated by the idea of “data sketching” (Clarkson and
Woodruff 2009), skech-based methods provide a good al-
ternative for unsupervised online binary coding, via which
a large dataset is summarized by a much smaller data
batch. Leng et al. proposed the Online Sketching Hash-
ing (SketchHash) (Leng et al. 2015), which adopts an effi-
cient variant of SVD decomposition to learn hash functions.
More recently, Subsampled Randomized Hadamard Trans-
form (SRHT) is adopted in FasteR Online Sketching Hash-
ing (FROSH) (Chen, King, and Lyu 2017) to accelerate the
training process of SketchHash.

However, existing sketch-based algorithms are based on
unsupervised learning, and their retrieval performance is
mostly unsatisfactory without fully utilizing label informa-
tion. Although most SGD-based algorithms aim to preserve
the label information via online hash function learning, the
relaxation process is adopted to update the hash functions,
which contradicts with the recent advances in offline hash-
ing where discrete optimizations are adopted directly, such
as Discrete Graph Hashing (Liu et al. 2014) and Discrete
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Supervised Hashing (Shen et al. 2015b). In this paper, we
are the first to investigate OH with discrete optimizations,
which have shown superior performance compared with the
quantization-based schemes.

The Proposed Method
Problem Definition
Given a dataset X = [x1, ...,xn] ∈ Rd×n with its corre-
sponding labels L = [l1, ..., ln] ∈ Nn, where xi ∈ Rd is the
i-th instance with its class label li ∈ N. The goal of hash-
ing is to learn a set of k-bit binary codes B = [b1, ...,bn] ∈
{−1,+1}k×n, where bi is the binary vector of xi. A widely-
adopted hash function is the linear hash mapping (Gong and
Lazebnik 2011; Fatih, Bargal, and Sclaroff 2017), i.e.,

B = F (X) = sgn(WTX), (1)

where W = [w1, ...,wk] ∈ Rd×k is the projection matrix
to be learned with wi being responsible for the i-th hash bit.
The sign function sgn(x) returns +1 if input variable x > 0,
and returns −1 otherwise.

For the online learning problem, the data is coming in a
streaming fashion. Therefore X is not available once for all.
Without loss of generality, we denote Xt

s = [xts1, ...,x
t
snt ] ∈

Rd×nt as the input streaming data at t-stage, and de-
note Lts = [lts1, ..., l

t
snt ] ∈ Nnt as the corresponding

label set, where nt is the size of the batch. We denote
Xt
e = [X1

s, ...,X
t−1
s ] = [xte1, ...,x

t
emt ] ∈ Rd×mt , where

mt = n1 + ... + nt−1, as the previously existing dataset
with its label set Lte = [L1

s, ...,L
t−1
s ] = [lte1, ..., l

t
emt ] ∈

Nmt . Correspondingly, we denote Bt
s = sgn(WtTXt

s) =

[bts1, ...,b
t
snt ] ∈ Rk×nt , Bt

e = sgn(WtTXt
e) =

[bte1, ...,b
t
emt ] ∈ Rk×mt as the discretely learned binary

codes for Xt
s and Xt

e, respectively. Under online setting, the
parameter matrix Wt should be updated based on the newly
coming batch Xt

s instead of the existing dataset Xt
e.

The Proposed Framework
Ideally, if data xi and xj are similar, the Hamming distance
between their binary codes should be minimized, and vice
versa. This is achieved by minimizing the quantization error
between the similarity matrix and the Hamming similarity
matrix (Liu et al. 2012). However, considering the streaming
batch data alone does not reflect the structural relationship
of all data samples. Therefore, following (Shen et al. 2015a;
Jiang and Li 2018), we resort to preserve the similarity in the
Hamming space between new data batch Xt

s and the existing
dataset Xt

e at t-stage with an asymmetric graph as shown in
Fig.1. To that effect, we minimize the Frobenius norm loss
between the supervised similarity and the inner products of
Bt
s and Bt

e as follows:

min
Bts,B

t
e

‖Bt
s
T
Bt
e − kSt‖2F

s.t. Bt
s ∈{−1, 1}k×nt ,Bt

e ∈ {−1, 1}k×mt .
(2)

where St ∈ Rnt×mt is the similarity matrix between Xt
s

and Xt
e. Note that stij = 1 iff both xtsi and xtej share the

same label, i.e., ltsi = ltej . Otherwise, stij = −12. And ‖ · ‖F
denotes the Frobenius norm.

Besides, we aim to learn the hash functions by minimiz-
ing the error term between the linear hash functions F in
Eq.1 and the corresponding binary codes Bt

s, which is con-
strained by ‖Bt

s−F (Xt
s)‖2F . It can be easily combined with

the above asymmetric graph that can be seen as a regularizer
for learning the hash functions, which is rewritten as:

min
Bts,B

t
e,W

t
‖Bt

s
T
Bt
e − kSt‖2F︸ ︷︷ ︸

term 1

+σt ‖F (Xt
s)−Bt

s‖2F︸ ︷︷ ︸
term 2

+

λt ‖Wt‖2F︸ ︷︷ ︸
term 3

s.t.Bt
s ∈ {−1, 1}k×nt ,Bt

e ∈ {−1, 1}k×mt ,

(3)

where σt and λt serve as two constants at t-stage to balance
the trade-offs among the three learning parts.

We analyze that using such a framework can learn bet-
ter coding functions. Firstly, in term 2, Wt is optimized
based on the dynamic streaming data Xt

s, which makes the
hash function more adaptive to unseen data. Secondly, As in
Eq.7, the training complexity for Xt

s-based learning Wt is
O(d2nt + d3), while it is O(d2mt + d3) for the learnt Wt

based on Xt
e. Therefore, updating Wt based on Xt

e is im-
practical when mt � nt with the increasing number of new
data batch. Further, it also violates the basic principle of OH
that Wt can only be updated based on the newly coming
data. Last but not least, with the asymmetric graph loss in
term 1, the structural relationship in the original space can
be well preserved in the produced Hamming space, which
makes the learned binary codes Bt

s more robust. The above
discussion will be verified in the subsequent experiments.

The Data-Imbalance Issue
As shown in Fig.1, the similarity matrix St between the
streaming data and the existing dataset is very sparse3. That
is to say, there exists a severe data-imbalance phenomenon,
i.e., most of image pairs are dissimilar and few pairs are sim-
ilar. Due to this problem, the optimization will heavily rely
on the dissimilar information and miss the similar informa-
tion, which leads to performance degeneration.

As a theoretical analysis, we decouple the whole sparse
similarity matrix into two subparts, where similar pairs and
dissimilar pairs are separately considered. Term 1 in Eq.3 is
then reformulated as:

term 1=
∑

i,j,Stij=1

(btsi
T
btej − k)2︸ ︷︷ ︸

term A

+
∑

i,j,Stij=−1

(btsi
T
btej + k)2

︸ ︷︷ ︸
term B

s.t. btsi ∈ {−1, 1}k,btej ∈ {−1, 1}k.
(4)

Analysis 1. We denote St1 = {Stij ∈ St|Stij = 1}, i.e.,
the set of similar pairs and St2 = {Stij ∈ St|Stij = −1}, i.e.,

2At each stage, St is calculated on-the-fly.
3Here, “sparse” denotes the vast majority of elements in a ma-

trix are −1.
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the set of dissimilar pairs. In online setting, when nt � mt

with the increase of new data batch, the similarity matrix St

becomes a highly sparse matrix, i.e., |St1| � |St2|. In other
words, term 1 suffers from a severe data-imbalance problem.
Furthermore, since term 1� term 2 in Eq.3 and term B �
term A in Eq.4, the learning process of Bt

s and Bt
e heavily

relies on term B.
A suitable way to minimize term B is to have btsi

T
btej =

−k, i.e., btsi = −btej . Similarly, for any bteg ∈ Bt
e with

g 6= j, we have btsi = −bteg . It is easy to see that btej = bteg .
In other words, each item in Bt

e shares consistent binary
codes. Similarly, each item in Bt

s also shares consistent bi-
nary codes which are opposite with Bt

e. Fig.1 illustrates such
an extreme circumstance. However, as can be seen from term
2 in Eq.3, the performance of hash functions deeply relies
on the learned Bt

s. Therefore, such a data-imbalance prob-
lem will cause all the codes produced by Wt to be biased,
which will seriously affect the retrieval performance.

Balanced Similarity
To solve the above problem, a common method is to keep a
balance between term 1 and term 2 in Eq.3 by scaling up the
parameter σt. However, as verified later in our experiments
(see Fig.5), such a scheme still suffers from unsatisfactory
performance and will get stuck in how to choose an appro-
priate value of σt from a large range4. Therefore, we present
another scheme to handle this problem, which expands the
feasible solutions for both Bt

e and Bt
s. Concretely, we pro-

pose to use a balanced similarity matrix S̃t with each ele-
ment defined as follows:

S̃tij =

{
ηsS

t
ij , Stij = 1,

ηdS
t
ij , Stij = −1,

(5)

where ηs and ηd are two positive equilibrium factors used
to balance the similar and dissimilar weights, respectively.
When setting ηs > ηd, the Hamming distances among sim-
ilar pairs will be reduced, while the ones among dissimilar
pairs will be enlarged.

Analysis 2. With the balanced similarity, the goal of term
B in Eq.4 is to have btsi

T
btej ≈ −kηd. The number of com-

mon hash bits between btsi and btej is at least bk(1−ηd)2 c5.
Therefore, by fixing btsi, the cardinal number of feasible so-
lutions for btej is at least

( k

b k(1−ηd)2 c

)
. Thus, the balanced

similarity matrix S̃t can effectively solve the problem of
generating consistent binary codes, as showed in Fig.1.

By replacing the similarity matrix St in Eq.3 with the bal-
anced similarity matrix S̃t, the overall objective function can
be written as:

min
Bts,B

t
e,W

t
‖Bt

s
T
Bt
e − kS̃t‖2F︸ ︷︷ ︸

term 1

+σt ‖F (Xt
s)−Bt

s‖2F︸ ︷︷ ︸
term 2

+

λt ‖Wt‖2F︸ ︷︷ ︸
term 3

s.t.Bt
s ∈ {−1, 1}k×nt ,Bt

e ∈ {−1, 1}k×mt .

(6)
4Under the balanced similarity, we constrain σt to [0, 1].
5b·c denotes the operation of rounding down.

The Optimization
Due to the binary constraints, the optimization problem of
Eq.6 is still non-convex with respect to Wt,Bt

s,B
t
e. To find

a feasible solution, we adopt an alternative optimization ap-
proach, i.e., updating one variable with the rest two fixed
until convergence.

1) Wt-step: Fix Bt
e and Bt

s, then learn hash weights Wt.
This sub-optimization of Eq.6 is a classical linear regression
that aims to find the best projection coefficient Wt by mini-
mizing term 2 and term 3 jointly. Therefore, we update Wt

with a close-formed solution as:

Wt = σt(σtXt
sX

t
s
T
+ λtI)−1Xt

sB
t
s
T
, (7)

where I is a d× d identity matrix.
2) Bt

e-step: Fix Wt and Bt
s, then update Bt

e. Since only
term 1 in Eq.6 contains Bt

e, we directly optimize this term
via a discrete optimization similar to (Kang, Li, and Zhou
2016), where the squared Frobenius norm in term 1 is re-
placed with the L1 norm. The new formulation is:

min
Bte
‖Bt

s
T
Bt
e − kS̃t‖1 s.t. Bt

e ∈ {−1, 1}k×mt . (8)

Similar to (Kang, Li, and Zhou 2016), the solution of Eq.8
is as follows:

Bt
e = sgn(Bt

sS̃
t). (9)

3) Bt
s-step: Fix Bt

e and Wt, then update Bt
s. The corre-

sponding sub-problem is:

min
Bts
‖Bt

s
T
Bt
e − kS̃t‖2F + σt‖WtTXt

s −Bt
s‖2F

s.t. Bt
s ∈ {−1, 1}k×nt .

(10)

By expanding each term in Eq.10, we get the sub-optimal
problem of Bt

s by minimizing the following formulation:

min
Bts
‖Bt

e
T
Bt
s‖2F + ‖kS̃t‖2F︸ ︷︷ ︸

const

−2tr(kS̃tBt
e
T
Bt
s)

+ σt(
∥∥WtTXt

s

∥∥2
F︸ ︷︷ ︸

const

+
∥∥Bt

s

∥∥2
F︸ ︷︷ ︸

const

−2tr(Xt
s
T
WtBt

s))

s.t. Bt
s ∈ {−1, 1}k×nt ,

(11)

where the “const” terms denote constants. The optimization
problem of Eq.11 is equivalent to

min
Bts
‖Bt

e
T
Bt
s︸ ︷︷ ︸

term I

‖2F − 2tr(PTBt
s︸ ︷︷ ︸

term II

) s.t.Bt
s ∈ {−1, 1}k×nt ,

(12)

where P = kBt
eS̃

tT + σtWtTXt
s and tr(·) is trace norm.

The problem in Eq.12 is NP-hard for directly optimizing
the binary code matrix Bt

s. Inspired by the recent advance on
binary code optimization (Shen et al. 2015b), a closed-form
solution for one row of Bt

s can be obtained while fixing all
the other rows. Therefore, we first reformulate term I and
term II in Eq.12 as follows:

term I = b̃ter
T
b̃tsr + B̃t

e

T
B̃t
s, (13)
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Algorithm 1 Balanced Similarity for Online Discrete Hash-
ing (BSODH)
Require: Training data set X with its label space L, the

number of hash bits k, the parameters σ and λ, the total
number of streaming data batches T .

Ensure: Binary codes B for X and hash weights W.
1: for t = 1→ T do
2: Denote the newly coming data batch as Xt

s;
3: if t = 1 then
4: Initialize Wt with normal Gaussian distribution;
5: Compute Bt

s = sgn(WtTXt
s);

6: else
7: Compute St based on the label sets Lts and Lte;
8: Compute S̃t via Eq.5;
9: Initialize Bt

s = sgn(WtTXt
s);

10: Update Wt via Eq.7 and Bt
e via Eq.9;

11: repeat
12: for r = 1→ k do
13: Update b̃tsr via Eq.17;
14: end for
15: until (convergency or reaching maximum itera-

tions)
16: end if
17: Set Xt

e = [Xt
e;X

t
s] and Bt

e = [Bt
e;B

t
s];

18: end for
19: Set W = Wt;
20: Compute B = sgn(WTX);
21: Return W and B.

term II = p̃Tr b̃
t
sr + P̃T B̃t

s, (14)

where b̃ter, b̃
t
sr and p̃r stand for the r-row of Bt

e, B
t
s and

P, respectively. Also, B̃t
e, B̃

t
s and P̃ represent the matrix of

Bt
e excluding b̃ter, the matrix of Bt

s excluding b̃tsr and the
matrix of P excluding p̃r, respectively.

Taking Eq.13 and Eq.14 back to Eq.12 and expanding it,
we obtain the following optimization problem:

min
b̃tsr

‖b̃ter
T
b̃tsr‖2F︸ ︷︷ ︸

const

+ ‖B̃t
e

T
B̃t
s‖2F︸ ︷︷ ︸

const

+2tr(B̃t
s

T
B̃t
eb̃

t
er

T
b̃tsr)

− 2tr(p̃Tr b̃
t
sr)− 2 tr(P̃T B̃t

s)︸ ︷︷ ︸
const

s.t. b̃tsr ∈ {−1, 1}nt .

(15)

Note that ‖b̃ter
T
b̃tsr‖2F = k2, which is a constant value.

The above optimization problem is equivalent to:

min
b̃tsr

tr((B̃t
s

T
B̃t
eb̃

t
er

T
− p̃Tr )b̃

t
sr) s.t. b̃tsr ∈ {−1, 1}nt .

(16)
Therefore, this sub-problem can be solved by the follow-

ing updating rule:

b̃tsr = sgn(p̃r − b̃terB̃
t
e

T
B̃t
s). (17)

The main procedures of the proposed BSODH are sum-
marized in Alg.1. Note that, in the first training stage,

i.e., t = 1, we initialize W1 with normal Gaussian distri-
bution as in line 4 and compute B1

s as in line 5. When t ≥ 2,
we initialize Bt

s in line 9 to fasten the training iterations from
line 11 to line 15. By this way, it is quantitatively shown in
the experiment that it takes only one or two iterations to get
convergence (see Fig.6).

Experiments
Datasets
CIFAR-10 contains 60K samples from 10 classes, with
each represented by a 4, 096-dimensional CNN feature (Si-
monyan and Zisserman 2015). Following (Fatih et al. 2017),
we partition the dataset into a retrieval set with 59K samples,
and a test set with 1K samples. From the retrieval set, 20K
instances are adopted to learn the hash functions.

Places205 is a 2.5-million image set with 205 classes.
Following (Fatih et al. 2017; Fatih, Bargal, and Sclaroff
2017), features are first extracted from the fc7 layer of the
AlexNet (Krizhevsky, Sutskever, and Hinton 2012), and then
reduced to 128 dimensions by PCA. 20 instances from each
category are randomly sampled to form a test set, the re-
maining of which are formed as a retrieval set. 100K samples
from the retrieval set are sampled to learn hash functions.

MNIST consists of 70K handwritten digit images with
10 classes, each of which is represented by 784 normalized
original pixels. We construct the test set by sampling 100
instances from each class, and form a retrieval set using the
rest. A random subset of 20K images from the retrieval set
is used to learn the hash functions.

Baselines and Evaluated Metrics
We compare the proposed BSODH with several state-of-the-
art OH methods, including Online Kernel Hashing (OKH)
(Huang, Yang, and Zheng 2013), Online Sketch Hash-
ing (SketchHash) (Leng et al. 2015), Adaptive Hashing
(AdaptHash) (Fatih and Sclaroff 2015), Online Super-
vised Hashing (OSH) (Fatih, Bargal, and Sclaroff 2017)
and OH with Mutual Information (MIHash) (Fatih et al.
2017).

To evaluate the proposed method, we adopt a set of
widely-used protocols including mean Average Precision
(denoted as mAP), mean precision of the top-R retrieved
neighbors (denoted as Precision@R) and precision within
a Hamming ball of radius 2 centered on each query (denoted
as Precision@H2). Note that, following the work of (Fatih
et al. 2017), we only compute mAP on the top-1, 000 re-
trieved items (denoted as mAP@1,000) on Places205 due
to its large scale. And for SketchHash (Leng et al. 2015), the
batch size has to be larger than the size of hash bits. Thus,
we only report its performance when the hash bit is 32.

Quantitative Results
We first show the experimental results of mAP
(mAP@1, 000) and Precision@H2 on CIFAR-10, Places205
and MNIST. The results are shown in Tab.1 and Tab.2.
Generally, the proposed BSODH is consistently better in
these two evaluated metrics on all three benchmarks. For a
depth analysis, in terms of mAP, compared with the second
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Table 1: mAP (mAP@1, 000) and Precision@H2 comparisons on CIFAR-10 and Places205 with hash bits of 32, 64 and 128.

Method
CIFAR-10 Places205

mAP Precision@H2 mAP-1, 000 Precision@H2
32-bit 64-bit 128-bit 32-bit 64-bit 128-bit 32-bit 64-bit 128-bit 32-bit 64-bit 128-bit

OKH 0.223 0.268 0.350 0.100 0.175 0.372 0.122 0.114 0.258 0.026 0.217 0.075
SketchHash 0.302 - - 0.385 - - 0.202 - - 0.220 - -
AdaptHash 0.216 0.305 0.293 0.185 0.166 0.164 0.195 0.222 0.229 0.012 0.021 0.022

OSH 0.129 0.127 0.125 0.137 0.083 0.038 0.022 0.043 0.164 0.012 0.030 0.059
MIHash 0.675 0.667 0.664 0.657 0.500 0.413 0.244 0.308 0.332 0.204 0.202 0.069
BSODH 0.689 0.709 0.711 0.691 0.690 0.602 0.250 0.308 0.337 0.241 0.212 0.101

Table 2: mAP (mAP@1, 000) and Precision@H2 compar-
isons on MNIST with hash bits of 32, 64 and 128.

Method mAP Precision@H2
32-bit 64-bit 128-bit 32-bit 64-bit 128-bit

OKH 0.224 0.301 0.404 0.457 0.522 0.124
SketchHash 0.348 - - 0.691 - -
AdaptHash 0.319 0.292 0.208 0.535 0.163 0.168

OSH 0.130 0.146 0.143 0.192 0.109 0.019
MIHash 0.744 0.713 0.681 0.814 0.720 0.471
BSODH 0.747 0.766 0.760 0.826 0.814 0.643

best method, i.e., MIHash, the proposed method achieves
improvements of 5.11%, 1.40%, and 6.48% on CIFAR-10,
Places-205 and MNIST, respectively. As for Precision@H2,
compared with MIHash, the proposed method acquires
29.97%, 2.63% and 9.2% gains on CIFAR-10, Places-205
and MNIST, respectively.

We also evaluate Precision@R with R ranging from 1 to
100 under the hash bit of 64. The experimental results are
shown in Fig.2, which verifies that the proposed BSODH
also achieves superior performance on all three benchmarks.

Parameter Sensitivity
The following experiments are conducted on MNIST with
the hash bit fixed to 64.

Sensitivities to λt and σt. The left two figures in Fig.3
present the effects of the hyper-parameters λt and σt. For
simplicity, we regard λt and σt as two constants across the
whole training process. As shown in Fig.3, the performance
of the proposed BSODH is sensitive to the values of σt and
λt. The best combination for (λt, σt) is (0.6, 0.5). By con-
ducting similar experiments on CIFAR-10 and Places-205,
we finally set the tuple value of (λt, σt) as (0.3, 0.5) and
(0.9, 0.8) for these two benchmarks.

Necessity of S̃t. We validate the effectiveness of the pro-
posed balanced similarity S̃t by plotting the Precision@H2
curves with respect to the two positive equilibrium factors,
i.e., ηs and ηd. As shown in the right two figures of Fig.3, the
performance stabilizes when ηs ≥ 1 and ηd ≤ 0.3. When
ηd = 1 and ηs = 1, S̃t degenerates into an un-balanced ver-
sion St. However, as observed from the rightmost chart in
Fig.3, when ηs = 1, the proposed method suffers from se-
vere performance loss. Precisely, the Precision@H2 shows
the best of 0.814 when ηs = 1.2 and ηd = 0.2, while it is
only 0.206 when ηs = 1 and ηd = 1. Compared with the
un-balanced St, the proposed balanced similarity S̃t gains

Figure 2: Precision@R curves of compared algorithms on
three datasets with hash bit of 64.

a 295.15% increase, which effectively shows the superiority
of the proposed balanced similarity S̃t. In our experiment,
we set the tuple (ηs, ηd) as (1.2, 0.3) on MNIST. Similarly,
it is set as (1.2, 0.2) on CIFAR-10 and (1, 0) on Places205.

To verify the aforementioned Analysis 1 and Analysis 2,
we further visualize the learned binary codes in the last train-
ing stage via t-SNE (Maaten and Hinton 2008). As shown in
Fig.4, (a), (b) and (c) are derived under un-balanced similar-
ity St with ηs = 1 and ηd = 1. And Fig.4 (d), (e) and (f)
are obtained under balanced similarity S̃t with ηs = 1.2 and
ηd = 0.2.

Though the discretely optimized binary codes Bt
e (a), Bt

s

(b) and linearly mapped binary codes sgn(WtTXt
s) (c) are

clustered, each cluster is mixed with items from different
classes and only four out of ten clusters are formed with
each close to each other. That is to say, the majorities of
Hamming codes are the same, which conforms with Analy-
sis 1. However, under the balanced setting, both Bt

e and Bt
s

are formed into ten separated clusters without mixed items in
each clusters, which conforms with Analysis 2. Under such
a situation, the hash functions Wt are well deduced by Bt

s,
with the hash codes in Fig.4 (f) more discriminative.

Scaling up σt. As aforementioned, an alternative ap-
proach to solving the data-imbalance problem in Analysis
1 is to keep a balance between term 1 and term 2 in Eq.3
via scaling up the parameter σt. To test the feasibility of this
scheme, we plot the values of Precision@H2 with σt vary-
ing in a large scale in Fig.5. Intuitively, scaling up σt affects
the performance quite a lot. Quantitatively, when the value
of σt is set as 10, 000, Precision@H2 achieves the best, i.e.,
0.341. We argue that this scheme shows its drawbacks in
two aspects. First, it suffers from the unsatisfactory perfor-
mance. As shown in Tab.2, when hash bit is 64, the proposed
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Figure 3: Precision@H2 with respect to varying values of λt, σt, ηs and σd.

(a) Bt
e (b) Bt

s (c) sgn(W tTXt
s)

(d) Bt
e (e) Bt

s (f) sgn(W tTXt
s)

Figure 4: The t-SNE visualization of hash codes. The top
row shows the un-balanced results. The bottom row shows
the balanced results. Given 10 data clusters, only four are
formed for un-balanced results due to the existence of data-
imbalance problem. It can be solved by the proposed bal-
anced similarity with more clusters being formed.

Figure 5: Precision@H2 results when scaling up σt.

BSODH gets 0.814 in term of Precision@H2 on MNIST.
Compared with scaling up σt, the proposed method achieves
more than 2.5 times better performance. Second, scaling up
σt also easily gets stuck in how to choose an appropriate
value due to the large range of σt. To decide a best value,
extensive experiments have to be repeated, which is infeasi-
ble in online learning. However, σt is limited to [0, 1] under
the proposed BSODH. It is much convenient to choose an
appropriate value for σt.

Convergence of Bt
s. Each time when the new streaming

data arrives, Bt
s is updated based on iterative process, as

shown in lines 11−15 in Alg.1. Fig.6 shows the convergence
ability of the proposed BSODH on the input streaming data
at t-stage. As can be seen, when t ≤ 2, it merely takes two

Figure 6: Convergence of the proposed BSODH.

iterations to get convergence. What’s more, it costs only one
iteration to finish updating Bt

s when t > 2, which validates
not only the convergence ability, but also the efficiency of
the proposed BSODH.

Conclusions
In this paper, we present a novel supervised OH method,
termed BSODH. The proposed BSODH learns the correla-
tion of binary codes between the newly streaming data and
the existing database via a discrete optimization, which is
the first to the best of our knowledge. To this end, first we
use an asymmetric graph regularization to preserve the sim-
ilarity in the produced Hamming space. Then, to reduce the
quantization error, we mathematically formulate the opti-
mization problem and derive the discrete optimal solutions.
Finally, to solve the data-imbalance problem, we propose a
balanced similarity, where two equilibrium factors are intro-
duced to balance the similar/dissimilar weights. Extensive
experiments on three benchmarks demonstrate that our ap-
proach merits in both effectiveness and efficiency over sev-
eral state-of-the-art OH methods.
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