
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Learning Neural Bag-of-Matrix-Summarization with Riemannian Network
Hong Liu,†∗ Jie Li,†∗ Yongjian Wu,‡ Rongrong Ji†‡\

†Fujian Key Laboratory of Sensing and Computing for Smart City, Department of Cognitive Science,
School of Information Science and Engineering, Xiamen University, Xiamen, China

‡Peng Cheng Laboratory, Shenzhen, China
‡Tencent Youtu Lab, Tencent Technology (Shanghai) Co.,Ltd, Shanghai, China

lynnliu.xmu@gmail.com, lijie32@stu.xmu.edu.cn, littlekenwu@tencent.com, rrji@xmu.edu.cn
∗Contributed Equally, \Corresponding Author

Abstract

Symmetric positive defined (SPD) matrix has attracted in-
creasing research focus in image/video analysis, which mer-
its in capturing the Riemannian geometry in its structured 2D
feature representation. However, computation in the vector
space on SPD matrices cannot capture the geometric prop-
erties, which corrupts the classification performance. To this
end, Riemannian based deep network has become a promis-
ing solution for SPD matrix classification, because of its ex-
cellence in performing non-linear learning over SPD ma-
trix. Besides, Riemannian metric learning typically adopts a
kNN classifier that cannot be extended to large-scale datasets,
which limits its application in many time-efficient scenarios.
In this paper, we propose a Bag-of-Matrix-Summarization
(BoMS) method to be combined with Riemannian network,
which handles the above issues towards highly efficient and
scalable SPD feature representation. Our key innovation lies
in the idea of summarizing data in a Riemannian geomet-
ric space instead of the vector space. First, the whole train-
ing set is compressed with a small number of matrix features
to ensure high scalability. Second, given such a compressed
set, a constant-length vector representation is extracted by
efficiently measuring the distribution variations between the
summarized data and the latent feature of the Riemannian
network. Finally, the proposed BoMS descriptor is integrated
into the Riemannian network, upon which the whole frame-
work is end-to-end trained via matrix back-propagation. Ex-
periments on four different classification tasks demonstrate
the superior performance of the proposed method over the
state-of-the-art methods.

Introduction
Symmetric Positive Defined (SPD) matrix has been recently
popular for feature representation in various computer vi-
sion and artificial intelligence applications, e.g., image clas-
sification (Fathy and Chellappa 2017), action recognition
(Huang et al. 2017a), image retrieval (Ji et al. 2017) and
brain computer interface (BCI) data analysis (Lotte et al.
2018). Existing works in feature representation with SPD
matrix can be categorized into either using covariance ma-
trix (Wang et al. 2012) or using Gaussian distribution matrix
(Wang et al. 2015b). The former is to preserve the second-
order statistics of a set of vectors, while the latter targets

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

at capturing the overall probability of data variations. By
preserving such non-Euclidean geometric properties, SPD
matrices can measure nearness on a specific Riemannian
manifold (Sra 2012) rather than in the Euclidean space,
which considers the geodesic distance between two points
on the Riemannian manifold. As observed in (Arsigny et al.
2007), by using SPD matrices, the Riemannian space elim-
inates the large swelling effect that is previously existed in
the Euclidean space, which brings significant advantages in
handling various problems suiting for non-Euclidean met-
rics. However, directly applying traditional machine learn-
ing algorithms with Euclidean geometry to SPD metrics
often results in poor performance (Huang et al. 2017b).
To overcome this problem, the Riemannian metric based
learning model has received increasing focus, which can
directly conduct non-linear learning by fed into the SPD
matrix representations (Pennec, Fillard, and Ayache 2006;
Wang et al. 2015a).

Recently, deep learning methods have received much at-
tention in visual feature representation (Lin et al. 2018).
However, most schemes consider solely first-order statis-
tics using traditional neural networks. More recently, the
second-order statistics, such as covariance, are further con-
sidered to construct better regional descriptors to solve chal-
lenging problems like fine-grained visual recognition (Lin,
RoyChowdhury, and Maji 2015; Lin and Maji 2017). These
works do not use dimensionality reduction layers to obtain
effective second-order statistics, which instead directly use
the multiple fully-connected (FC) layers following the ma-
trix vectorization processing of the SPD matrices. However,
such non-Euclidean representation implies the lack of famil-
iar properties such as global parameterization, common co-
ordinates, vector space structure, and shift-invariance. Con-
sequently, basic operations like FC layers cannot be well de-
fined on the non-Euclidean domains (Bronstein et al. 2017).
Moreover, such vanilla deep structure will destroy the Rie-
mannian goemetry and corrupt the classification results, as
demonstrated in our experiments.

To overcome these problems, Riemannian SPD Matrix
Network (SPDNet) (Huang and Van Gool 2017) is proposed,
which receives SPD matrices as inputs. It aims to preserve
the SPD structure across layers to be non-linearly mapped
into latent space and then does the task like classification on
this latent space. In particular, SPDNet is composed of two

8746

Cl
as

si
fie

r B
lo

ck

Summarized
Data

𝑋"
BiMap ReEig

Feature Extractor Block BoMS Block

BiMap

Figure 1: The framework of our proposed Bag-of-Matrix
Summarization layer with SPDNet. (Best view in color)

traditional layers (i.e., the Fully-connected Layer and Soft-
max Layer) and three newly defined layers (i.e., the BiMap
Layer, ReEig Layer, and LogEig Layer). A special matrix
back-propagation method with stochastic gradient descend
(SGD) was proposed to train the deep SPDNet in an end-
to-end way. Note that, the LogEig layer in SPDNet is the
key to transform the geometric space to the Euclidean space,
which can then be plugged by the traditional neural lay-
ers. This layer needs to compute the matrix logarithms that
dramatically increase the computational cost, while its mo-
ments do not have closed forms (Cherian et al. 2013). More-
over, the existing works (Guo, Ishwar, and Konrad 2013;
Anirudh et al. 2017) typically adopt a flatten vector rep-
resentation towards tangent approximation or rolling maps,
and then uses SVM or kNN classifier to learn features in the
resulting flattened space. These shallow learning schemes
have led to suboptimal solutions on the specific nonlin-
ear manifolds, which also often require significantly more
time to conduct online predictions with complex calculation.
However, to preserve the original geometric relation that is
captured by such a matrix structure, we argue that a better
feature representation, e.g., from a statistical perspective, is
needed for various real-world applications.

To handle this issue, we propose to embed SPD matri-
ces by using a Bag-of-Visual-Word (BoVW) model under
a metric learning framework. Recently, BoVW has been in-
tegrated into the convolutional neural networks to perform
image classification and simultaneously compress the model
(Passalis and Tefas 2017). However, due to the SPD con-
straints, directly using BoVW is intractable, which serves as
the first problem need to be tackled in this paper. Although
recent works in (Sivalingam et al. 2015; Cherian et al. 2017)
have extended the dictionary learning to SPD matrix rep-
resentation with encoding model, the integration of BoVW
into deep Riemannian networks remains an open problem
due to the difficulty in optimization, which serves as the sec-
ond problem.

To solve the above two problems, we propose a novel
Bag-of-Matrix-Summarization (BoMS) model, which can
be efficiently inferred, be well scaled up to large dataset,
and can significantly improve the classification accuracy.
The BoMS is based on supervised learning that is de-
signed to learn nonlinear transformations to preserve the
neighbor structure with the labeled data. It simultaneously
learns an extremely small set of codewords, procedure of
which can be seen as a nonlinear Riemannian metric learn-
ing, i.e., a summarized version of the low-dimensional SPD
matrices. The summarized data can be seen as the code-

words, each of which contains the corresponding seman-
tic information like objective labels. Then, the output of
BiMap layer in SPDNet can be embedded into a vector
representation, each dimension of which captures the re-
spective divergence of the codeword output. Finally, the
data summarization and feature learning are learned jointly
through matrix back-propagation with stochastic gradient
descent (SGD) (Ionescu, Vantzos, and Sminchisescu 2015;
Liu et al. 2018), which ensures our model to be scalable to
large training sets. In particular, BoMS acts as a trainable
encoding layer, which can be plugged between the BiMap
layer and the FC layer to replace the LogEig Layer in the
original SPDNet. A sequence of BiMap and ReEig are fur-
ther used to construct the feature extractor, forming a low-
dimensional SPD matrix input to the corresponding classifi-
cation/recognition model.

We term the proposed method as BoMS+SPDNet, the
framework of which is shown in Fig.1. Quantitatively, we
compare the proposed model against various state-of-the-
art SPD matrix based classification methods on four bench-
marks, i.e., AFEW, HDM05, YTC, and BCI. Experiments
demonstrate that the proposed BoMS+SPDNet outperforms
the existing classification methods in terms of both accu-
racy and efficiency. The rest of this paper is organized as
follows: In Sec.2, we briefly overview the SPDNet, which
serves as basis to perform SPD matrix classification. Sec.3
describes the proposed BoMS+SPDNet and the experiments
are shown in Sec.4. Finally, we conclude this paper in Sec.5.

Preliminaries of SPDNet
We first briefly present the SPDNet (Huang and Van Gool
2017), which serves as the basis for the proposed BoMS
model. SPDNet is the first deep Riemannian network with
four different layers, i.e., BiMap Layer, ReEig Layer, Lo-
gEig Layer, and other layers. It receives SPD matrices as
inputs, preserves the Riemannian manifold structure across
layers, and non-linearly maps an input matrix into a vector
representation. Let Xk−1 ∈ Sym+

dk−1
be the SPD matrix of

the k-th layer, Wk ∈ Rdk×dk−1 (dk < dk−1) be the trans-
formation matrix in the k-th layer, and Xk ∈ Rdk×dk be
the resulting matrix in the k-th layer, where Sym+

dk−1
is the

space of SPD real dk−1 × dk−1 matrices.
The BiMap Layer is similar to the linear transformation

layer in auto-encoder, which transforms the input SPD ma-
trices to the low-dimensional SPD matrices by a bilinear
mapping fb as:

Xk = f
(k)
b (Xk;Xk−1) = WkXk−1W

T
k . (1)

To make the output Xk remain a SPD matrix, the transfor-
mation Wk should be constrained to a raw full-rank matrix.

The ReEig Layer is to utilize non-linear activation to im-
prove discrimination, which is similar to the ReLU layer
in the convolutional neural networks (ConvNets) (Nair and
Hinton 2010). As a consequence, ReEig Layer is devised to
a non-linear function fr, which rectifies the SPD matrices
by tuning up their small positive eigenvalues:

Xk = f (k)r (Xk−1) = Uk−1 max(εI,Σk−1)U
T
k−1, (2)

8747

where max(·, ·) is the maximum function, Uk−1 and Σk−1
are learned by the eigenvalue decomposition of Xk−1 =
Uk−1Σk−1U

T
k−1, ε is a threshold parameter, and I is the

identity matrix.
The LogEig Layer is similar to the Log-Euclidean Rie-

mannian metric learning (Huang et al. 2015), in which the
matrix logarithm operation log(·) is done on the SPD matri-
ces, and then the resulting matrix is flatted to a vector repre-
sentation. As a result, the classical Euclidean computations
can be applied to the logarithms of SPD matrix. Formally,
the layer can be defined as a function fl as:

Xk=f
(k)
l (Xk−1)=log(Xk−1)=Uk−1 log(Σk−1)U

T
k−1,

(3)
where Xk−1 = Uk−1Σk−1U

T
k−1 is the eigenvalue decom-

position.
Finally, the Other Layers are composed of a sequence of

neural blocks in the traditional neural networks, i.e., Fully
Connected (FC) layer and Softmax layers. FC layer is in-
serted after the LogEig Layer, which is set to be a projection
matrix Wfc ∈ Rdk×dk−1 where dk is the class number and
dk−1 is the dimension of the output of LogEig Layer. The fi-
nal output for classification can be a Softmax layers. To learn
this SPDNet, inspired by the matrix BP (Ionescu, Vantzos,
and Sminchisescu 2015), the back-propagation (BP) with
an SGD setting on Stiefel manifolds was proposed, which
makes the SPDNet trainable in an end-to-end setting.

The Proposed Method
As illustrated in Fig.1, the proposed BoMS+SPDNet is com-
posed of three blocks: a) a Feature Extraction Layer block
(composed of several BiMap Layers and ReEig Layers), b)
a BoMS Layer Block, and c) a Classification Layer Block.
We depict the details as below:

Feature Extraction Layer Block
As shown in the left part of Fig.1, feature extraction is the
fundamental block of the proposed method, which aims to
extract low dimensional SPD matrix that serves as the input
for the subsequent Riemannian feature learning process. In-
spired by the removal of fully-connected layers in the recent
deep feature extractor (Passalis and Tefas 2017), for the i-th
SPD feature extractor, we remove the LogEig Layer and the
Other Layers in SPDNet, the rest of which is composed into
a block sequence of BiMap Layer and ReEig Layer. In our
feature extractor, we use a similar architecture of SPDNet
with three BiMap layers f (k)b and two ReEig layers f (k)r , the
exemplar structure of which is X0 → f1b → f2r → f3b →
f4r → · · · → f lb → Z. The output of the last BiMap Layer,
denoted by the l-th layer, is used to feature extractor and
is subsequently fed into the BoMS block. Without loss of
generality, we define the output of the feature extractor as a
function F (X0) = Z1, which is subsequently fed into the
proposed BoMS block.

1Note that, the output Z is still SPD matrix, which can still hold
the Riemannian geometric properties.

BoMS Layer Block

Similar to the BoVW model, the proposed BoMS layer is an
encoding layer that captures the statistics of the feature ma-
trix Z. The goal of learning the BoMS layer is two-fold: a)
learn a dictionary set B = {B1,B2, ...,Bm} with m SPD
matrices, where each dictionary Bi ∈ Sym+

d , b) learn an ac-
cumulating scalar on each dictionary atom to best represent
the SPD matrix feature Z for classification,

We denote Zi ∈ Sym+
d as the i-th resulting feature

through the feature extractor with input SPD matrix Xi,
which can be collected as a set of N matrix features as
Z = {Z1,Z2, ...,ZN} with associated labels yi ∈ Y =
{y1, y2, ..., yN}. BoMS aims to output a fixed-length vector
representation v based on the dictionary set B. The proposed
layer can be viewed as a unified processing layer, whose
output is sent to a subsequent classifier. The output of the
BoVW can be defined by a nonlinear function fp as:

vi=fp(Zi)=
[
D(Zi,B1), ..., D(Zi,Bm)

]T ∈ Rm, (4)

where function D(·, ·) is the Riemannian metric to measure
two given SPD matrices.

Therefore, the key issue is how to define such a dictio-
nary set B, which is typically achieved by k-means cluster-
ing. However, the input features here are in a matrix style,
therefore the traditional clustering algorithms are not work-
able. On one hand, some methods have been proposed to
cluster the SPD matrix features (Cherian, Morellas, and Pa-
panikolopoulos 2016), they are unsuitable to be integrated
into the deep learning architecture, in which the dictionary
updating is separated with the feature learning, leading to a
suboptimal learning. On the other hand, the clustering algo-
rithm is unsupervised and cannot utilize the label informa-
tion to improve the quality of the dictionaries.

To solve this problem, inspired by the data summariza-
tion technology (Kusner et al. 2014), the goal of our dic-
tionary learning is to find a set of summarized samples
Ẑ = {Ẑ1, ..., Ẑm} (m � N) with labels Ŷ = {ŷ1, ..., ŷm}
to replace the dictionary B, so that the original training data
Z and Y can be best approximated via k-nearest neighbors.
Different from the traditional BoVW, the summarization set
Ẑ needs to be learned from the whole dataset, and the sum-
marized label set Ŷ should have the same proportional distri-
bution to the original label set2. Note that, the data summa-
rization can be viewed as a special case of supervised dic-
tionary learning, which aims to correctly classify as many
training inputs as possible in the deep matrix space.

However, two issues of data summarization need to be
further solved: 1) the learned metric should maximize the
margin between different classes. 2) all the summarized data
with the same labels maybe converge into a single point, as
we target at maximizing the classification accuracy. To solve
the first problem, we propose a margin-based loss function

2That is, if one category accounts for 60% of the original label
collection, it should occupies the same percentage in the summa-
rization collection.

8748

for the matrix summarization learning, which is defined as:

L1
ms(Z, Ẑ) =

N∑
i=1

m∑
j,k=1

[
0, α−D(Zi, Ẑj) +D(Zi, Ẑk)

]
,

s.t. yi = yj and yi 6= yk. (5)

For the second problem, the summarized data with the
same label should be dissociated, so that such samples can
best present the diversity of the training data. To this end,
the target is to maximize the pair-wise distance between two
input SPD matrices with the same label, that is:

L2
ms(Ẑ) =

m∑
i=1

m∑
j=1

δ(yi, yj)D(Ẑi, Ẑj), (6)

where δ(yi, yj) = 1 if yi = yj , and 0 otherwise. Then, the
final objective function of the proposed data summarization
is to combine Eq.5 and Eq.6 as follows:

Lms(Z, Ẑ) = λ1L
1
ms(Z, Ẑ)− λ2L2

ms(Ẑ), (7)

where λ1 and λ2 are two tradeoff parameters to control the
weights between two functions Eq.5 and Eq.6. As a result,
the proposed Bag-of-Matrix-Summarization (BoMS) layer
can be defined as:

vi=
[
D
(
F (Xi), Ẑ1

)
, ..., D

(
F (Xi), Ẑm

)]T
. (8)

Distance Metric
To learn better vector representation for the corresponding
SPD matrix, the key issue is to define an appropriated dis-
tance metric D(·, ·) in Eq.8. To this end, we introduce three
representative distance metric below.

Inspired by the study in (Arsigny et al. 2006), we first use
the Log-Euclidean metric (LEM) to define the distance func-
tion D(·, ·) in Eq.4, which aims at exploiting the Lie group
structure under the typical matrix exponential and logarithm
operators. Such that, the Riemannian distance between two
SPD matrices is defined by LEM, i.e.,

D(Zi,Zj) = ‖ log(Zi)− log(Zj)‖, (9)

where ‖ · ‖ is the Frobenius norm of the matrix.
However, as mentioned in (Cherian et al. 2013), the flat-

tening of the manifold in LEM often leads to less accurate
distance computations and therefore affect the performance.
To solve this problem, an intuitive method is to use metric
learning method to reduce such computation error, which
serves as our second distance measure, i.e.,

D(Zi,Zj)=
∥∥Wvec

(
log(Zi)

)
−Wvec

(
log(Zj)

)∥∥
2
, (10)

where vec(·) is the matrix vectorization processing.
On the other hand, LEM is interpreted as an Euclidean

distance between the matrices mapped in the tangent space
at the identity, which implies a deformation. Therefore, a
more natural measure should be considered to hold the Rie-
mannian geometry. To this end, we consider an effective
and efficiency divergence measure, termed Jensen-Bregman
LogDet Divergence (JBLD), which redefines Eq.4 as:

D(Zi,Zj) = log |(Zi + Zj)/2| − 0.5 ∗ log |ZiZj |, (11)

where | · | denotes the determinant.

Classification Block
The final block is to perform the classification, which is for-
mulated via the following objective function:

Lc(Z,W) =
∑N

i=1
f(vi, yi;W), (12)

where the function f(·) with parameter setW aims at learn-
ing the classifier on vi according to the provided class labels
yi, and vi is the resulting vector representation from the pro-
posed BoMS layer. There are several choices for the defini-
tion of f , we resort to the cross-entropy loss function with
FC layer and softmax layer.

At last, combing Lms and Lc together, we get the final
loss function for SPD classification as:

L = Lms

(
F (X), Ẑ

)
+ Lc

(
fp
(
F (X)

)
,W
)
. (13)

Learning with BoMS
For the SPD matrix based classification, the proposed BoMS
can be directly integrated into the SPDNet, which can be
written as a composition of sequentially connected functions
with the input SPD matrix X and the output predicted class
label. To train such a deep network, one can use the ma-
trix back-propagation (Ionescu, Vantzos, and Sminchisescu
2015) together with stochastic gradient descent. Fortunately,
the gradients of the parameters in the FC layer and Softmax
layer can be easily calculated in the traditional ways, as these
layers lie in the Euclidean space. The major problem here is
that the matrix must hold the SPD constraint in the BiMap
layer, the ReEig layer, and the proposed BoMS layer.

For the gradients of function F in Eq.8 containing BiMap
layer and ReEig layer, similar to that in SPDNet, we use a
customized updating on Stiefel manifolds. For the proposed
BoMS layer, the gradients of the corresponding parameters
can be from two information flows: One is the gradients
from the classification block, and the other is from the loss of
the data summarization in Eq.7. Specifically, there are three
components that need to be updated: the layer parametersQ,
the summarized data Ẑ, and the gradient that is propagated
to the feature extraction block F .

As for each summarized Ẑi and function F , the updating
schemes are achieved by the following chain rule:

∂L

∂Ẑi

=
(∂L1

ms

∂fp
− ∂L2

ms

∂fp
+
∂Lc

∂vi
◦ ∂vi

∂fp

)
◦ ∂fp
∂Ẑi

, (14)

∂L

∂F
=
(∂L1

ms

∂fp
+

m∑
i=1

(∂Lc

∂vi
◦ ∂vi

∂fp

))
◦ ∂fp
∂F

, (15)

where vi = fD
(
F (X), Ẑi

)
is the i-th dimension in the

BoMS feature.
Due to the different distance measures from Eq.9 to

Eq.11, we use different updating schemes to calculate the
gradients. For Eq.9, the function fp can be replaced by fl in
Eq.3, and the calculating gradients ∂fp

∂Ẑi
and ∂fp

∂F are with the
same updating rules in SPDNet. Comparing to Eq.9, Eq.10
has an additional parameters W whose updating scheme is:

∂L

∂W
=
∂L1

ms

∂W
− ∂L2

ms

∂W
+

m∑
i=1

(∂Lc

∂fp
◦ ∂fp
∂W

)
. (16)

8749

For Eq.11, the gradient is ∂D/∂Zi = (Zi + Zj)
−1 − 0.5 ∗

Z−1i . Therefore, the gradients of Ẑi and F can be easily cal-
culated as similar to the LogEig layer.

Discussion
The proposed feature learning layer can better present the
SPD matrix as a vector to do the classification task. We now
show the relationship between the BoMS layer and the Lo-
gEig layer: If we replace the summarized data Ẑ in Eq.9 to
the Identity matrix, the loss function Eq.7 can be reduced to
a scalar constant. As a result, when Ẑ is the identity matrix,
the proposed BoMS will degenerate into the original LogEig
layer. Therefore, the LogEig layer can be viewed as a special
case of our BoMS. Moreover, the summarized data are gen-
erated from supervised dictionary learning, which not only
influents the previous feature network with the predefined
metric, but also helps learn a better classifier. Adding these
two points into Riemannian network can further improve the
classification accuracy, whose quantitative evidences will be
shown in our experiments. Finally, the proposed BoMS is
more flexible and more scalable, where the distance function
can be replaced with better metrics to reflect the Riemannian
property, as also demonstrated in our experiments.

Experiments
In this section, we evaluate our BoMS model on SPDNet
to the state-of-the-art SPD matrix based classification meth-
ods on four different tasks, i.e., emotion recognition, action
recognition, face recognition and brain computer interface.

1) Emotion Recognition. We use Acted Facial Expres-
sion in the Wild (AFEW) dataset, which collects 1, 345
video sequences of facial expressions acted by 330 actors in
movies. This dataset has been divided into training, valida-
tion, and test sets, where each video is classified into one of
seven expressions. Since the ground truth of the test set has
not been released, we follow the setting in (Liu et al. 2014;
Huang and Van Gool 2017) to evaluate the performance on
the validation set. To augment the training set, we also seg-
ment the training videos into 1, 747 small clips. And each
facial frame is normalized to an image of size 20×20. Then,
we compute the covariance matrix feature of size 400×400.

2) Action Recognition. We evaluate our model on the
task of skeleton-based human action recognition using the
HDM05 dataset, which is a large-scale dataset for SPD ma-
trix based representation. This dataset contains 2, 337 se-
quences of 130 action classes, which provides 3D locations
of 31 joints of the subjects. To preprocess this dataset, we
divide the training sequences set to around 18, 000 small
subsequences. Then we represent each sequence by a co-
variance descriptor of size 93× 93, which is calculated by a
second order statistics of the 3D coordinates for the 31 joints
in each frame.

3) Face Recognition. We use the YouTube Celebrities
(TYC) dataset to perform video face recognition, which
contains 1, 910 video clips of 47 subjects collected from
YouTube, and most of the clips contain hundreds of frames.
The dataset is randomly split into a training set and a test-
ing set, with a splitting ratio of 1 : 2. Each face image in a

video is cropped into a 20 × 20 intensity image and is then
histogram-equalized to eliminate lighting effects. We extract
the set-based covariance matrix for each video sequence in
this dataset, the matrix size of which is 401× 401.

4) BCI classification. We further evaluate the classi-
fication performance on the BCI Competition IV dataset
2a (BCI) 3, which is a 22-electrode EEG motor-imagery
dataset. It consists of 9 subjects and 2 sessions, each sub-
ject of which has 288 four-second trials of imagined move-
ments. To preprocess this dataset, we train the models on
each subject on the first session, and test on its correspond-
ing subject on the second session. We report the average
precision results among 9 subjects. As the similar prepro-
cessing to (Schirrmeister et al. 2017), for each channel, all
the EED data are first band-pass filtered with a bandwidth of
4− 38Hz, and electrode-wise exponential moving standard-
ization is then performed to compute exponential moving
means and variances, both of which are used to standardize
the continuous data. As a result, each EEG signal is repre-
sented by a 22× 22 SPD matrix.

Compared Methods. We mainly compared to six state-
of-the-art SPD matrix learning methods: i.e., Covariance
Discriminative Learning (CDL) (Wang et al. 2012), Log-
Euclidean Metric Learning (LEML) (Huang and Van Gool
2017), SPD Manifold Learning (SPDML) (Harandi, Salz-
mann, and Hartley 2017) that uses affine-invariant met-
ric (SPDML-AIM) (Pennec, Fillard, and Ayache 2006) and
Stein divergence (SPDML-Stein) (Sra 2016), Riemannian
Sparse Representation (RSR) (Harandi et al. 2012), Matrix-
Square Root Normalization (MSRN) (Lin and Maji 2017),
and Riemannian Network (SPDNet) (Huang and Van Gool
2017). For the above methods, we use the source codes
kindly provided by the authors and tune the parameters ac-
cording to the original settings. For SPDNet, we use the
settings with the best performance from the original work,
which uses three blocks of BiMap/ReEig layer for AFEW
and HDM05, and uses one BiMap layer and one ReEig layer
for BCI competition. To verify the efficiency of Riemannian-
based network, we also compare to the vanilla neural net-
work, which is composed of multiple fully-connected layers
and one softmax layer. For MSRN, we use the best structure
in (Lin and Maji 2017), which contains matrix-square root,
element-wise signed square-root normalization, FC layer,
and softmax layer. In details of vanilla NN and MSRN, three
FC layers are used on AFEW and HDM05, and one FC layer
is used on BCI.

The Proposed Riemannian Network. BoMS mainly
contains three types of measures, named BoMS-1, BoMS-
2, and BoMS-3 according to Eq.9 to Eq.11, respectively.
To further validate the proposed model, we also compare
to the abbreviated versions based on the proposed BoMS-
2: We first delete the metric learning part in Eq.5, termed
BoMS−ML, which considers the BoMS as the traditional
BoVW model, as similar to (Passalis and Tefas 2017). We
then delete the loss taking account of the data divergence
in Eq.6, while preserving the metric learning loss. We name
this method as BoMS−D. Finally, we delete all the part of

3http://www.bbci.de/competition/iv/

8750

Table 1: The results for the AFEW, HDM05, and BCI 4 2A
datasets. Note that, the baseline results on AFEW and
HDM05 are cited from (Huang and Van Gool 2017), which
we have also reproduced. All accuracy rates are averaged
number. The last column shows the testing time for different
methods, which is conducted on all testing set in AFEW.

Method AFEW HDM05 BCI YTC Times
CDL 31.81% 41.74% 45.02% 83.99% 2243s

LEML 25.13% 46.87% 40.39% 81.93% 1823s
SPDML-AIM 26.72% 47.25% 57.72% 80.49% 5366s
SPDML-Stein 24.55% 46.21% 53.47% 74.52% 1849s

RSR 27.49% 41.12% 45.49% 81.8% 4841s
MSRN N/A 59.92% 47.72% - N/A
SPDNet 34.23% 61.45% 55.59% 89.01% 6.29 s
BoMS-1 35.04% 71.03% 61.65% - 6.39 s
BoMS-2 38.81% 71.79% 65.20% 89.81% 6.49 s
BoMS-3 36.93% 70.42% 62.23% - 11.53 s

BoMS-ML 34.23% 68.84% 61.11% 83.04% -
BoMS-D 36.93% 70.80% 65.08% 89.04% -
BoMS-A 32.88% 68.61% 60.42% 80.02% -

Vanilla NN N/A 49.29% 49.88% - N/A

data summarization in Eq.7 to evaluate the importance of
BoMS model, named BoMS-A.

The Setting of Network Architecture. The architecture
of the proposed BoMS+SPDNet is X → F → fp → fr →
fs → ŷ, where F , fp, fr, fs and ŷ indicate the feature ex-
tractor, BoMS, FC, softmax, and approximated label. For the
first two datasets, we use the similar architecture of SPDNet
with three BiMap layers f (k)b and two ReEig layers f (k)r ,
the exemplar structure of which is X0 → f1b → f2r →
f3b → f4r → f5b → Z. The parameters in AFEW are set to
400×200, 200×100, and 100×50, respectively. The param-
eters on HDM05 are set to 93×70, 70×50, and 50×30, re-
spectively. And the parameters on YTC are set to 401×200,
200× 100, and 100× 50 , respectively. For the BCI dataset,
we verify the performance with just one BiMap Layer and
one ReEig Layer as the feature extractor, whose parameters
are set to 22× 15.

Parameter Setting. We implement our Riemannian Net-
work with BoMS using Pytorch on a single PC with Dual
Core I7-3421 and 128G memory. We use the stochastic gra-
dient descent to update the network parameters, and the
learning rate is set to 1 × 10−3 with 5 × 10−4 weight de-
cay. The batch size is set to 30, the weights are initialized as
random semi-orthogonal matrices, as similar to the SPDNet.
As described before, the summarized data is uniformly sam-
pled according to the label ratio. For the unbalanced label
rations, we have at least one data for each category. For all
three benchmarks, the scale of the summarized data set is se-
lected based on the randomly sampled validation set. In all
our experiments, we empirically set λ1 = 1.2 and λ2 = 0.7
according to parameter’s tuning.

Results and Analysis. As shown in Tab.1, we report
the proposed model with three different distance measures,
which have 10.8%, 12.8%, and 10.1% accuracy improve-
ments when compared to the second best methods respec-
tively, such as SPDNet and SPDML-AIM. It is worth to
note that, Riemannian based neural networks, e.g., both

0.2 0.1 0.0 0.1 0.2 0.3 0.4

0.10

0.05

0.00

0.05

0.10

(a) Original data.
0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

(b) Summarization.

<5 5~10 10~15 15~20 >20
0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

HDM05

SPDNet
BoMS-2

(c) Acc vs. Label.

Figure 2: The subfigure (a-b) show the visualization of the
summarized data on AFEW dataset . Each color point repre-
sents a category in the dataset. The figure (a) shows the ini-
tialized distribution, and the right (b) shows the distribution
after training. The black circle point presents the summa-
rized data. The subfigure (c) shows the detailed evaluation
for imbalanced label dataset, HDM05. (Best view in color)

SPDNet and ours, not only achieve competitive results, but
also use less time for online prediction. When comparing
with Vanilla NN and MSRN that have been widely used
in bilinear models (Lin, RoyChowdhury, and Maji 2015;
Lin and Maji 2017), our proposed models have average
35.3% accuracy improvements, respectively.

As the result in Tab.1, we report the testing time for dif-
ferent models. All the traditional Riemannian-based mod-
els require significantly more time to conduct online predic-
tions, for which the k-NN classifier requires pairwise dis-
tance computation and comparison. Since the scale of SPD
feature is 400× 400 in AFEW, the vectorized dimension of
such matrix is too high and make the training of both vanilla
NN and MSRN intractable to achieve. Therefore, their accu-
racy and testing time are not reported here.

Moreover, HDM05 is an imbalance label dataset. We cal-
culate the variance of precision for each label, and the aver-
age variance score of SPDNet is 0.1017 and that of BoMS-
2 is 0.0935. More details experimental results are given in
Fig.2 (c). As a conclusion, our work still achieves the best
statistical results, which demonstrates that BoMS is more
robust in the imbalance classification task.

In addition, our proposed method BoMS-1 calculates the
LEM between features and summarized set multiple times.
However, compared to SPDNet, but the method is still ef-
ficient. It is worth to note that, the testing time of BoMS-1
is faster than that of BoMS-3, which is due to the frame-
work we used that can handle batch data directly. When we
test BoMS-1 using the same calculation way as BoMS-3, the
testing time is 15.55s, which is slower than BoMS-3. As a
result, the Riemannian based NNs are all effective and ef-
ficiency for online testing, which verifies the importance of
the Riemannian-based NNs to solve the SPD matrix input.

Comparing BoMS-1 with SPDNet, although BoMS-1
also uses Log-Euclidean metric in calculation, the accura-
cies on all three benchmarks are better than SPDNet. To an-
alyze, each dimension in vector v represents the probabil-
ity of SPD feature belonging to the corresponding category,
where a small value in the i-th dimension means the feature
is close to the category of the i-th summarized data. On the

8751

50 100 150 200
The number of training epoch

0

1

2

3

4

5

6
Lo

ss
HDM05

Train
Test

(a) Convergence curve.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

2

AFEW
36

37

37

36

36

36

36

36

36

36

36

35

36

35

35

36

37

37

37

38

37

37

36

37

37

37

37

37

37

36

37

37

37

37

38

36

37

37

37

37

37

37

37

37

36

38

36

38

37

37

38

37

37

37

37

37

37

36

37

37

38

36

37

37

37

37

37

37

37

36

36

36

37

36

36

37

36

36

37

37

36

37

37

37

37

37

36

36

37

37

37

37

36

36

37

36

37

37

37

37

37

38

37

36

37

37

38

36

37

37

37

37

37

37

37

37

37

37

37

37

37

39

37

37

37

37

37

37

37

37

37

37

37

37

37

37

37

36

36

37

37

38

38

37

37

37

37

37

37

37

37

37

37

37

37

38

39

37

37

37

37

37

37

37

37

37

37

38

36

36

38

39

38

38

37

37

36

37

37

37

37

37

38

36

37

37

36

37

37

37

37

37

37

37

37

37

37

38

37

37

36

37

36

38

36

37

37

37

37

37

37

37

37

37

37

37

37

37

36

37

37

36

37

37

37
35

35.5

36

36.5

37

37.5

38

38.5

(b) λ1 vs. λ2.

Figure 3: The convergence curves on the representative
HDM05 dataset, and the parameters’ analysis on the rep-
resentative AFEW dataset. (Best view in color)

other hand, the summarized data can be defined as the im-
portance samples in their corresponding categories, which
leads to a higher information entropy for each dimension in
the vector representation. When ignoring this part in Eq.7,
the performance decreases significantly on all three bench-
marks. It demonstrates that the data summarization is very
important for improving the classification accuracy, which
can be viewed as a supervised pooling layer. Besides, com-
paring to SPDNet, BoMS-A is always better and competi-
tive, which demonstrates our argumentation that a better sta-
tistical feature representation is needed.

To demonstrate the divergence among the summarized
data, we first plot the summarized data by class before or
after training, as shown in Fig.2 (a-b). Before training, the
distribution of data features was chaos and difficult to be dis-
tinguished between categories. After training, category in-
formation can be easily separated. Besides, the summarized
data (black circle points) is not aggregated to the center of
the category, but is relatively dispersed within the category.

However, the Log-Euclidean metric has some inherent
disadvantages. We therefore propose two other solutions to
further improve the accuracy, such as BoMS-2 and BoMS-3.
When metric learning is introduced into the Log-Euclidean
metric, the performance is the best. Although BoMS-3
achieves the second best performance in all three bench-
marks, its training is very efficient. It is worth to note that,
the accuracy of Jensen-Bregman LogDet Divergence can be
also improved with metric learning.

The results on three tasks show that the proposed BoMS
has superior classification accuracy. The convergence curve
of our network is shown in Fig.3(a), which suggests that
our Riemannian network can converge quickly. In addi-
tion, we analyze the validity of different parts of the pro-
posed model, by which we have found that the representa-
tive model BoMS-2 achieves the best result. Consequently,
we evaluate the classification results by simultaneously tun-
ing the parameters λ1 and λ2 on the validation set for all
three datasets. And the results on representative AFEW are
shown in Fig.3 (b). We have found that the best accuracy is
achieved when empirically setting λ1 = 1.2 and λ2 = 0.7,
which is consistent in all datasets.

Table 2: The training time of each epoch (Times), compres-
sion ratio (CR.), and accuracy (ACC.) with different scale of
Summarized dataset, where the results is conducted on the
representative AFEW dataset.

Ẑ 11 18 25 31 38 46 53
Times (s) 43.7 47.0 51.1 53.5 55.9 63.2 67.9
CR. (%) 0.62 1.03 1.43 1.78 2.18 2.63 3.03
Acc. (%) 35.3 36.4 36.4 38.8 35.9 34.8 34.5

Comparing to BoMS-D that sets λ2 = 0, adding diver-
gence can bring certain performance improvement, which
indicates that the divergence should be considered in the data
summarization. When we delete the triplet metric learning
part, BoMS-ML shows a significant performance decrease
comparing to BoMS-2. To analyze, as mentioned before,
LEM often leads to less accurate distance measure, where
metric learning needs to be considered to reduce such loss.
The same phenomenon also appears in the comparison of
BoMS-1 and BoMS-3.

The number m reflects the scale of the summarized set,
whose relation to the classification accuracy is shown in
Tab.2. The results show that either large or small number
will lead to poor performance. A small number means the
representative information contained in the summary data is
limited, which therefore cannot conclude sufficient training
data. In contrast, a large number means more unrelated data
is combined to bring more noise. Moreover, Tab.2 shows
the training time with the increasing number of summarized
data. The results show that a large number needs longer
training time. So, the suitable size not only improves the
performance of classification, but also improves the train-
ing efficiency. According to the results, this number is set to
31, 258, 210 and 32 for AFEW, HDM05, YTC and BCI ac-
cording to the accuracies on the validation set, respectively.

Conclusion
This paper has proposed a Bag-of-Matrix-Summarization
method, which is combined with SPDNet towards SPD ma-
trix based classification. The proposed BoMS addresses the
Riemannian codebook learning and Riemannian NNs’ opti-
mization issues in the existing approaches, which is based on
the idea of summarizing data via a metric learning scheme
to compress the whole training data by a predefined feature
set. Then, the low-dimensional SPD matrix through Rieman-
nian network is quantized into the predefined matrix sum-
marization bins. Finally, a constant length vector represen-
tation is extracted for each SPD matrix by calculating the
divergence of data feature and matrix summarization. The
proposed method can be integrated into the Riemannian net-
work, and the whole framework can be end-to-end trained
via the regular matrix back-propagation. The experiments
on four benchmarks demonstrate that the proposed method
has outperformed all existing state-of-the-arts in SPD ma-
trix classification. In our future works, we mainly consider
to integrate other divergence for Riemannian geometry, such
α−β divergence, etc.

8752

Acknowledge
This work is supported by the National Key R&D Program
(No.2017YFC0113000, and No.2016YFB1001503), Nature
Science Foundation of China (No.U1705262, No.61772443,
and No.61572410), the Post Doctoral Innovative Talent
Support Program under Grant BX201600094, China Post-
Doctoral Science Foundation under Grant 2017M612134,
Scientific Research Project of National Language Commit-
tee of China (Grant No.YB135-49), and Nature Science
Foundation of Fujian Province, China (No.2017J01125 and
No.2018J01106).

References
Anirudh, R.; Turaga, P.; Su, J.; and Srivastava, A. 2017.
Elastic functional coding of riemannian trajectories. TPAMI.
Arsigny, V.; Fillard, P.; Pennec, X.; and Ayache, N. 2006.
Log-euclidean metrics for fast and simple calculus on diffu-
sion tensors. Magnetic resonance in medicine.
Arsigny, V.; Fillard, P.; Pennec, X.; and Ayache, N. 2007.
Geometric means in a novel vector space structure on sym-
metric positive-definite matrices. SIAM JMAA.
Bronstein, M. M.; Bruna, J.; LeCun, Y.; Szlam, A.; and Van-
dergheynst, P. 2017. Geometric deep learning: going beyond
euclidean data. SPM.
Cherian, A.; Sra, S.; Banerjee, A.; and Papanikolopoulos, N.
2013. Jensen-bregman logdet divergence with application to
efficient similarity search for covariance matrices. TPAMI.
Cherian, A.; Stanitsas, P.; Harandi, M.; Morellas, V.; and Pa-
panikolopoulos, N. 2017. Learning discriminative α-β di-
vergences for positive definite matrices. ICCV.
Cherian, A.; Morellas, V.; and Papanikolopoulos, N. 2016.
Bayesian nonparametric clustering for positive definite ma-
trices. TPAMI.
Fathy, M. E., and Chellappa, R. 2017. Image set classifica-
tion using sparse bayesian regression. WACV.
Guo, K.; Ishwar, P.; and Konrad, J. 2013. Action recognition
from video using feature covariance matrices. TIP.
Harandi, M. T.; Sanderson, C.; Hartley, R.; and Lovell, B. C.
2012. Sparse coding and dictionary learning for symmetric
positive definite matrices: A kernel approach. ECCV.
Harandi, M.; Salzmann, M.; and Hartley, R. 2017. Di-
mensionality reduction on spd manifolds: The emergence of
geometry-aware methods. TPAMI.
Huang, Z., and Van Gool, L. J. 2017. A riemannian network
for spd matrix learning. AAAI.
Huang, Z.; Wang, R.; Shan, S.; Li, X.; and Chen, X. 2015.
Log-euclidean metric learning on symmetric positive def-
inite manifold with application to image set classification.
ICML.
Huang, Z.; Wan, C.; Probst, T.; and Van Gool, L. 2017a.
Deep learning on lie groups for skeleton-based action recog-
nition. CVPR.
Huang, Z.; Wang, R.; Li, X.; Liu, W.; Shan, S.; Van Gool, L.;
and Chen, X. 2017b. Geometry-aware similarity learning on
spd manifolds for visual recognition. TCSVT.

Ionescu, C.; Vantzos, O.; and Sminchisescu, C. 2015. Matrix
backpropagation for deep networks with structured layers.
ICCV.
Ji, R.; Liu, H.; Cao, L.; Liu, D.; Wu, Y.; and Huang, F. 2017.
Toward optimal manifold hashing via discrete locally linear
embedding. TIP.
Kusner, M.; Tyree, S.; Weinberger, K.; and Agrawal, K.
2014. Stochastic neighbor compression. ICML.
Lin, T.-Y., and Maji, S. 2017. Improved bilinear pooling
with cnns. BMVC.
Lin, S.; Ji, R.; Chen, C.; Tao, D.; and Luo, J. 2018. Holistic
cnn compression via low-rank decomposition with knowl-
edge transfer. TPAMI.
Lin, T.-Y.; RoyChowdhury, A.; and Maji, S. 2015. Bilinear
cnn models for fine-grained visual recognition. ICCV.
Liu, M.; Shan, S.; Wang, R.; and Chen, X. 2014. Learn-
ing expressionlets on spatio-temporal manifold for dynamic
facial expression recognition. CVPR.
Liu, H.; Ji, R.; Wang, J.; and Shen, C. 2018. Ordinal
constraint binary coding for approximate nearest neighbor
search. TPAMI.
Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo,
M.; Rakotomamonjy, A.; and Yger, F. 2018. A review of
classification algorithms for eeg-based brain–computer in-
terfaces: a 10 year update. Journal of neural engineering.
Nair, V., and Hinton, G. E. 2010. Rectified linear units
improve restricted boltzmann machines. ICML.
Passalis, N., and Tefas, A. 2017. Learning bag-of-features
pooling for deep convolutional neural networks. ICCV.
Pennec, X.; Fillard, P.; and Ayache, N. 2006. A riemannian
framework for tensor computing. IJCV.
Schirrmeister, R. T.; Springenberg, J. T.; Fiederer, L. D. J.;
Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter,
F.; Burgard, W.; and Ball, T. 2017. Deep learning with con-
volutional neural networks for eeg decoding and visualiza-
tion. Human brain mapping.
Sivalingam, R.; Boley, D.; Morellas, V.; and Papanikolopou-
los, N. 2015. Tensor dictionary learning for positive definite
matrices. TIP.
Sra, S. 2012. A new metric on the manifold of kernel matri-
ces with application to matrix geometric means. NIPS.
Sra, S. 2016. Positive definite matrices and the s-divergence.
AMS.
Wang, R.; Guo, H.; Davis, L. S.; and Dai, Q. 2012. Co-
variance discriminative learning: A natural and efficient ap-
proach to image set classification. CVPR.
Wang, L.; Zhang, J.; Zhou, L.; Tang, C.; and Li, W. 2015a.
Beyond covariance: Feature representation with nonlinear
kernel matrices. ICCV.
Wang, W.; Wang, R.; Huang, Z.; Shan, S.; and Chen, X.
2015b. Discriminant analysis on riemannian manifold of
gaussian distributions for face recognition with image sets.
CVPR.

8753

