
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Spatial and Temporal Mutual Promotion for Video-Based Person Re-Identification

Yiheng Liu,1 Zhenxun Yuan,2 Wengang Zhou,1 Houqiang Li1
1CAS Key Laboratory of Technology in GIPAS, EEIS Department, University of Science and Technology of China

2School of Electrical and Computer Engineering, Purdue University
lyh156@mail.ustc.edu.cn, yuan141@purdue.edu, {zhwg,lihq}@ustc.edu.cn

Abstract

Video-based person re-identification is a crucial task of
matching video sequences of a person across multiple cam-
era views. Generally, features directly extracted from a single
frame suffer from occlusion, blur, illumination and posture
changes. This leads to false activation or missing activation in
some regions, which corrupts the appearance and motion rep-
resentation. How to explore the abundant spatial-temporal in-
formation in video sequences is the key to solve this problem.
To this end, we propose a Refining Recurrent Unit (RRU) that
recovers the missing parts and suppresses noisy parts of the
current frame’s features by referring historical frames. With
RRU, the quality of each frame’s appearance representation
is improved. Then we use the Spatial-Temporal clues Inte-
gration Module (STIM) to mine the spatial-temporal infor-
mation from those upgraded features. Meanwhile, the multi-
level training objective is used to enhance the capability of
RRU and STIM. Through the cooperation of those modules,
the spatial and temporal features mutually promote each other
and the final spatial-temporal feature representation is more
discriminative and robust. Extensive experiments are con-
ducted on three challenging datasets, i.e., iLIDS-VID, PRID-
2011 and MARS. The experimental results demonstrate that
our approach outperforms existing state-of-the-art methods
of video-based person re-identification on iLIDS-VID and
MARS and achieves favorable results on PRID-2011.

Introduction
Person re-identification aims to identify persons across dif-
ferent cameras views. Recently, this topic has drawn more
and more attention thanks to its significant applications in
video surveillance analysis and retrieval. This task is very
challenging due to background clutter, blur, occlusion, as
well as the dramatic variation in illumination, pedestrian’s
postures and viewpoints. Generally, person re-identification
is approached with either image or video data for represen-
tation. Many image-based person re-identification methods
have achieved impressive progress. However, those meth-
ods are susceptible to the quality of images. Limited amount
of information in a single image results in a lower toler-
ance to noise. For similar pedestrians, if the discriminative
patches are lost due to occlusion or blur, it will easily lead
to misidentification.
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Compared with a single image to represent a person, a
video sequence contains richer information (Zheng et al.
2016). The information of different video frames comple-
ments each other, so that it is more robust to noise. More
importantly, motion context in video sequences is useful for
identifying pedestrians. Therefore, how to make full use of
spatial-temporal information is the key to video-based per-
son re-identification. Some methods (McLaughlin, del Rin-
con, and Miller 2016; Zhou et al. 2017; Xu et al. 2017)
use recurrent networks to fuse temporal information. An-
other alternative is to predict a quality score for whole or
part of each video frame (Liu, Yan, and Ouyang 2017;
Song et al. 2018; Li et al. 2018). However, a key effect of
temporal information is ignored by these methods: the tem-
poral information is useful to resist spatial noise. Usually,
in a video sequence, although a region in one frame is cor-
rupted by noise, the missing information can be recovered
by regions of the same location in some other frames. Given
a video frame, the difficulty lies in how to refine the noisy
regions with the features of previous video frames.

In this paper, we propose a new approach to handle the
difficulty of video-based person re-identification. Instead of
directly using the features of each video frame to extract
temporal features, we first propose a refining recurrent unit
(RRU) to recover the missing parts and suppress noisy parts
based on the appearance and motion context from historical
video frames. After that, with the refined feature representa-
tion, we introduce a spatial-temporal clues integration mod-
ule (STIM) to integrate spatial information and temporal in-
formation simultaneously. Meanwhile, the proposed multi-
level training objective further enhances the capability of
RRU and STIM. The cooperation of those modules enables
the network to learn more robust and discriminative feature
representation for accurate person re-identification.

Related Works
Most prior works on person re-identification are based on
still images and dedicated to two key issues: discriminative
feature representation learning and distance metric learn-
ing. Features that are both discriminative and invariant to
background and viewpoint changes are crucial to person re-
identification. Handcrafted features such as color histograms
(Karanam, Li, and Radke 2015), texture histograms (Gray
and Tao 2008) and Local Binary Pattern (Xiong et al. 2014)
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are widely utilized. With feature representation, distance
metric learning approaches are widely explored to accu-
rately measure the similarity between pedestrians. Follow-
ing such a paradigm, many effective methods have been pro-
posed, such as LADF (Li et al. 2013), RankSVM (Zhao,
Ouyang, and Wang 2014), XQDA (Liao et al. 2015).

In recent years, the rapidly developing Convolutional
Neural Networks (CNN) have greatly advanced the progress
of person re-identification. Subramaniam et al. compute
the normalized correlation between two patch matrices to
handle inexact matching problems (Subramaniam, Chatter-
jee, and Mittal 2016). Wang et al. propose an approach to
learn single image representation and cross-image represen-
tation simultaneously (Wang et al. 2016). In (Qian et al.
2017), a multi-scale and saliency-based model is proposed
to learn deep discriminative feature representations at differ-
ent scales. Si et al. design a dual attention network to learn
context-aware feature sequences and apply dually attentive
comparison (Si et al. 2018). Meanwhile, many works try to
improve the representation capability of models based on lo-
cal parts. Wei et al. use a part extraction module to generate
part regions and learn discriminative features based on dif-
ferent part regions (Wei et al. 2017). Sun et al. propose a
refined part pooling to enhance the consistency in each part
(Sun et al. 2017). Zhao et al. use a pretrained human land-
mark generation model to extract body regions and then use
a tree-structured fusion strategy to integrate the full-body
features and different body subregion features (Zhao et al.
2017).

On the other hand, video-based person re-identification
has also gained considerable attention. Wang et al. propose
a model that automatically selects more discriminative video
fragments from the whole video sequence and learns cross-
view matching by ranking (Wang et al. 2014). You et al.
design a top-push distance learning model to enlarge the
inter-class margin and minimize intra-class variations in or-
der to improve the matching accuracy (You et al. 2016). Re-
cently, some other methods (Liu, Yan, and Ouyang 2017;
Song et al. 2018; Li et al. 2018) have been proposed to pre-
dict the quality scores for the features of video frames or
local regions. They average the frame or region features in
a weighting manner based on the quality scores as the final
representation of a video sequence. Although their strategies
alleviate the noise problem, the neglect of important tempo-
ral context limits their capability. To make better use of the
temporal information in video sequences, RNN or LSTM
(Vinyals et al. 2015) is adopted to fuse the feature vectors
extracted from video frames (McLaughlin, del Rincon, and
Miller 2016; Zhou et al. 2017). The temporal average pool-
ing (McLaughlin, del Rincon, and Miller 2016) is applied at
each time step to generate the final representation of video
sequences. Although the temporal clues are captured with
the recurrent models, the motion context of different regions
in video sequences is lost, which results in limited perfor-
mance.

Different from the above methods, our work aims to take
full advantage of spatial-temporal information in video se-
quences. To this end, we propose two effective modules, i.e.,
refining recurrent unit (RRU) and spatial-temporal clues in-

tegration module (STIM). The former resists noise and re-
covers missing activation occurred in different regions while
the latter integrates both spatial and temporal clues in a uni-
fied framework. Further, we apply a multi-level training ob-
jective to simultaneously optimize them. To the best of our
knowledge, this is the first attempt to refine appearance rep-
resentation with spatial-temporal information in person re-
identification task which achieves promising performance.

Method
In this section, we first introduce the overall architecture
of the proposed method. Then we elaborate the key com-
ponents in our framework, including refining recurrent unit
(RRU), spatial-temporal clues integration module (STIM)
and multi-level training objective, separately.

Framework Overview
The overall architecture of the proposed model is shown in
Fig. 1. Vi = {Vi,k}Kk=1 represents K video sequences of
person i. Each video sequence contains T frames. We use
Vi,k,t to represent the tth frame of Vi,k. We adopt Inception-
v3 (Szegedy et al. 2016) as the backbone of feature extrac-
tion module. Given a video sequence Vi,k, each frame Vi,k,t

is fed to Inception-v3 module to extract frame-level feature
maps Xi,k,t ∈ RC×H×W from the outputs of the final incep-
tion block. Feature maps of all frames in a video sequence
are fed into RRU for refinement. The refined feature maps
are then fed into STIM to generate the final video-level fea-
ture representation fi,k ∈ R256.

Refining Recurrent Unit
In the involved video data for person re-identification, it is
common that some regions of a target person suffer from
occlusion, blur and varied postures. In the degraded regions,
the raw feature maps Xi,k,t are easily polluted. However,
the appearance and motion information remembered from
regions of the same position in other frames can help to re-
cover the lost information. Inspired by such observation, we
design a recurrent unit to remove noise and recover missing
activation regions by implicitly referring the appearance and
motion information extracted from previous video frames.

As illustrated in Fig. 2(a), for time step t, RRU takes
three inputs: the raw feature Xi,k,t−1 and the refined feature
Si,k,t−1 of the last frame, as well as the raw feature Xi,k,t

of current frame. In the first time step, Xi,k,0 and Si,k,0 are
initialized with Xi,k,1. The update gate model g contained in
RRU is used to decide how to update Si,k,t.

The refined appearance representation Si,k,t−1 of last
frame lends itself as a good reference to evaluate the quality
of current frame. So we use (Xi,k,t − Si,k,t−1) as an input
of g to model the appearance differences. Between neigh-
boring frames, pedestrian’s movement causes translation of
feature responses in spatial space. With such consideration,
we use (Xi,k,t − Xi,k,t−1) as another input of g to capture
motion context. These two terms are concatenated to form
Zi ∈ R2C×H×W for g to determine the update gate of dif-
ferent regions. The update gate Z is defined as follows,

Z = g(Zi) = g([Xi,k,t − Si,k,t−1,Xi,k,t − Xi,k,t−1]) . (1)
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Figure 1: The overall architecture of the proposed method. The weights of all layers are shared for each time step. RRU: refining
recurrent unit. STIM: spatial-temporal clues integration module. The auxiliary classifier is not drawn for the convenience of
display.

Fig. 2(b) illustrates the detailed structure of update gate
model g. The first layer of the update gate model g named
transition layer consists of a convolutional layer with 256
filters of size 1 × 1, a batch normalization (BN) layer and a
rectified linear unit (ReLU). It is designed to summarize the
appearance and motion information of each spatial location
and reduce the feature dimension. Then a spatial attention
model and a channel attention model are applied to the tran-
sitional feature Zt ∈ R256×H×W produced by the first layer,
separately.

For spatial attention model, we first use a global cross-
channel average pooling layer to get the overall response in
each spatial position. Then two FC layers (the first 128-node
FC layer is followed by ReLU) are applied to generate the
spatial attention maps Zs ∈ R1×H×W . It is formulated as

Zs = W2
s ×ReLU(W1

s × ZH,W
t ) , (2)

where ZH,W
t ∈ RH,W is the result of Zt after cross-channel

average pooling and × is matrix multiplication.
For channel attention model, we first introduce a global

spatial space average pooling layer to get overall response of
each channel. Then a FC layer is applied to get the channel
attention maps Zc ∈ RC×1×1, which is formulated as

Zc = Wc × ZC
t , (3)

where ZC
t ∈ RC is the result of Zt after global spatial space

average pooling.
The overall attention maps of current input feature are

the product of spatial attention maps and channel attention
maps. After a sigmoid operation, the overall attention maps
are normalized into the range between 0 and 1, formulated
as

Z = sigmoid(Zs � Zc) , (4)

where Z ∈ RC×H×W is the update gate of Xi,k,t and � de-
notes element-wise multiplication. Then RRU refines Xi,k,t

with the previous refined feature Si,k,t−1 as

Si,k,t = (1− Z)� Si,k,t−1 + Z� Xi,k,t , (5)

where Si,k,t ∈ RC×H×W is the refined feature of the raw
input Xi,k,t of the current video frame. The value of each po-
sition in Z denotes the probability for the activation value in
corresponding position of Xi,k,t to be reserved. Higher prob-
ability value indicates that the update gate model g considers
that feature in this location has high quality and should be re-
served, and on the contrary, locations with lower probability
will be dominated by previous refined feature. Given the re-
fined feature Si,k,t of each frame in a video sequence, we
stack them to Si,k ∈ RC×T×H×W , where T is the number
of frames in this video sequence.

Unlike the previous recurrent units (RNN or LSTM),
RRU is used to upgrade the frame-level feature by refer-
ring the spatial-temporal information instead of extracting
new features from temporal feature vectors. From the above
formulas, we can see that Si,k,t and Xi,k,t share the same
feature space, which means that RRU refines features in
the same feature space. This allows RRU to be applied to
other video-based models to reduce spatial noise and im-
prove quality of feature at each time step. We will provide
justification on this issue in the later experiments section.

Spatial-temporal Clues Integration Module
Many previous works use RNN or weighted average pooling
to integrate temporal information from feature vectors that
are extracted from video frames. In those methods, the mo-
tion context in different spatial locations is ignored (Zhou
et al. 2017; Liu, Yan, and Ouyang 2017). In order to fully
exploit spatial-temporal information, we propose a spatial-
temporal clues integration module (STIM) to enable our
model to learn the appearance representation and capture
motion context simultaneously.

STIM contains two 3D convolution blocks and a global
average pooling layer. Each 3D convolution block is com-
posed of three consecutive operations: a 3D convolutional
layer (Tran et al. 2015) with 256 filters followed by a 3D
BN layer and ReLU. In the first 3D convolution block, the
kernel size is set to be 1× 1× 1, so as to reduce the feature
dimension. The second 3D convolution block with 3×3×3
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(a) (b)

Figure 2: (a) The architecture of refining recurrent unit (RRU). g is the update gate model. (b) The architecture of proposed
update gate model g.

kernels outputs the spatial-temporal feature maps Oi,k ∈
R256×T×H×W . After temporal and spatial space average
pooling, we get the final feature representation fi,k ∈ R256

as

fi,k =
1

T

1

H

1

W

T∑
t=1

H∑
h=1

W∑
w=1

Oi,k,t . (6)

The 3 × 3 × 3 convolution kernels allows STIM to cap-
ture the movement of human body parts in spatial space.
Meanwhile, the simultaneous integration of spatial informa-
tion and temporal information also helps STIM to resist local
spatial noise.

Multi-level Training Objective
The identity classifier and auxiliary classifier of raw
Inception-v3 model (Szegedy et al. 2016) are retained to
learn more robust and informative features. These two cross-
entropy losses are denoted as Lc. We replace the FC layer in
identity classifier with a classifier block (Zhong et al. 2018),
which consists of a 512-node FC layer, BN, ReLU, Dropout,
another FC layer and a Softmax layer. We feed fi,k to clas-
sifier block to generate the prediction of identity.

In addition to the cross-entropy losses, we propose a
multi-level training objective to further enhance the capa-
bility of RRU and STIM, which consists of the video-level
ranking constraint Lv and part-level ranking constraint Lp.
Then, the overall training objective is defined as

L = Lc + Lv + Lp . (7)
We apply batch hard triplet loss (Hermans, Beyer, and

Leibe 2017) on fi,k as the video-level ranking constraint,
formulated as

Lv =
1

N

1

K

N∑
i=1

K∑
a=1

[m+ max
p=1···K

D(fi,a, fi,p)

− min
j=1···N
n=1···K

j 6=i

D(fi,a, fj,n))]+ ,
(8)

where m is the margin and D(·, ·) denotes the Euclidean dis-
tance between two feature vectors. N denotes the number
of pedestrians in a mini-batch. The video-level ranking con-
straint forces the distance between the overall representation
of positive pairs to be smaller than negative pairs.

However, as the overall description of a video sequence,
fi,k ignores the spatial differences. The most important func-
tion of RRU is to refine features of different regions. So the
video-level ranking constraint can not let RRU exert its full
capability. To further enhance the refining capability of RRU
in local parts, we propose the part-level ranking constraint
based on the batch hard triplet loss. We split the original
feature maps Si,k,t output by RRU into H horizontal strips
and get the part-level feature representation as follows,

pr
i,k =

1

T

1

W

T∑
t=1

W∑
w=1

Sr
i,k,t , (9)

where Sr
i,k,t ∈ RC×W is the strip feature from rth row of

Si,k,t. Given the part-level feature vector pr
i,k ∈ RC , we

define the part-level ranking constraint as

Lp =
1

N

1

K

1

H

N∑
i=1

K∑
a=1

H∑
r=1

[m+ max
p=1···K

D(pr
i,a,pr

i,p)

− min
j=1···N
n=1···K

j 6=i

D(pr
i,a,pr

j,n))]+ .

(10)

Unlike previous methods (Zhao et al. 2017; Wei et al.
2017; Sun et al. 2017), our part-based method does not re-
quire additional parameters, which makes our strategy more
efficient and flexible. For the same strip, part-level ranking
constraint pulls features of video sequence belonging to the
same identity closer and pushes features of video sequence
belonging to different identities farther. This forces RRU to
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Figure 3: Examples of the feature maps from sequentially sampled frames in a video. The feature responses are shown above
the original frame. The first row displays the raw input feature maps X and the second row shows the refined feature maps S by
RRU. The feature maps are from three different videos which are separated by the dotted line.

learn a better update gate model g, which can measure the
quality of different regions better.

In our approach, those modules are optimized in a collab-
orative way. Given the raw low-quality feature maps of each
frame, RRU first refines them based on spatial-temporal in-
formation. Then STIM extracts better spatial-temporal fea-
ture representation from high-quality appearance feature
maps generated by RRU. The video-level ranking constraint
forces STIM to learn more discriminative spatial-temporal
representation for each video sequence. The part-level rank-
ing constraint helps RRU to focus on different local parts
and enhance its refining capability for spatial space. Through
the cooperation between these modules, the final represen-
tation is more discriminative and robust to occlusion, blur,
illumination and posture changes.

Experiments
In this section, we evaluate our method on three public video
datasets for person re-identification including iLIDS-VID
(Wang et al. 2014), PRID-2011 (Hirzer et al. 2011) and
MARS (Zheng et al. 2016). We first introduce the experi-
ment setting in Sec. 4.1 and 4.2. Then, we make a ablation
study on the effectiveness of each component of our method
in Sec. 4.3. After that, in Sec. 4.4, we compare our approach
with the state-of-the-art video-based person re-identification
methods.

Datasets and Protocols
iLIDS-VID consists of 600 video sequences of 300 persons.
For each person, there are two video sequences observed
from two non-overlapping cameras views at an airport ar-
rival hall. The video sequences range in length from 23 to
192 frames with an average length of 73. The challenging
factors on this dataset include blur, occlusion and large vari-
ations in pose, viewpoints and illumination.

PRID-2011 includes 400 video sequences of 200 iden-
tities captured by two camera views. The length for each
video sequence varies from 5 to 675 frames with an average
length of 100. Following (Yan et al. 2016; Zhou et al. 2017;

Liu, Yan, and Ouyang 2017), video sequences with more
than 21 frames are used. Compared with iLIDS-VID, PRID-
2011 is relatively less challenging because of relatively sim-
ple backgrounds and rare occlusions.

MARS is the largest video-based person re-identification
dataset, which consists of 1261 different pedestrians and
around 20,000 video sequences. Those video sequences are
generated by DPM detector and GMMCP tracker, which
make MARS more realistic and challenging.

Following (Zheng et al. 2016), the partition for training
and testing set in MARS dataset is given. The results are
reported in terms of Cumulative Matching Characteristic
(CMC) table and mean average precision (mAP). Following
(McLaughlin, del Rincon, and Miller 2016; Liu, Yan, and
Ouyang 2017), iLIDS-VID and PRID-2011 datasets are ran-
domly split into two sets with the same number of pedestri-
ans for training and testing. For testing set, video sequences
from one camera view are used as probe set, while video se-
quences from another camera view are used as gallery set.
We use the average CMC table over 10 trials with differ-
ent train/test splits to evaluate the performance of different
methods on these two datasets.

Implementation Details
The Inception-v3 model (Szegedy et al. 2016) is first pre-
trained on the ImageNet dataset. Each input video frame is
resized to 299× 299 pixels. It is notable that we don’t apply
any data augmentation strategy. During training process, we
set N = 10, K = 2, T = 8 and m = 0.4. The dropout
rate in classifier block is set to 0.5. Network is updated by
stochastic gradient descent algorithm with a learning rate of
0.01, weight decay of 5× 10−4 and nesterov momentum of
0.9. For the pretrained layers, the learning rate is set to 0.1×
of the base learning rate. During test process, we extract the
feature vector fi,k using all frames of one video sequence
Vi,k and compute the cosine distance with feature vectors
of other video sequences. The code will be made publicly
available1.

1https://github.com/yolomax/rru-reid
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Table 1: Ablation study on each module of the proposed methods on iLIDS-VID and PRID-2011 datasets. The CMC scores (%)
at rank 1, 5, 20 are reported. The baseline approach contains only the Inception-v3 model trained by Lc. RRU(s) means that we
only use the spatial attention Zs to compute the update gate Z. RRU(c) means that only channel attention Zc is used. RRU(ad)
means that we only use the appearance differences [Xi,k,t−Si,k,t−1] as the input of update gate model g. RRU(od) denotes that
we use [Xi,k,t,Si,k,t−1] as the input of update gate model g. When LSTM is inserted into the network, the frame-level feature
maps are first fed into a global average pooling layer to get a C-dim feature vector. The feature vectors of all frames are orderly
fed into the LSTM with a hidden size of 256. The temporal average pooling (McLaughlin, del Rincon, and Miller 2016) is
applied to the outputs of LSTM to get the final representation.

Method iLIDS-VID PRID-2011

R1 R5 R20 R1 R5 R20

Baseline 57.7 78.9 91.3 84.4 96.2 99.5
Baseline+Lv 72.2 89.7 97.5 88.0 97.2 99.9
Baseline+LSTM+Lv 71.5 90.4 96.5 86.7 97.1 99.8
Baseline+STIM+Lv 77.3 92.8 97.7 91.1 98.6 100.0

Baseline+RRU(s)+Lv 73.5 90.4 97.0 90.8 98.5 99.9
Baseline+RRU(c)+Lv 73.4 90.0 96.0 88.7 97.6 99.8
Baseline+RRU(ad)+Lv 74.0 89.8 96.7 90.1 97.6 99.9
Baseline+RRU(od)+Lv 73.3 90.4 95.5 89.2 98.5 100.0
Baseline+RRU+Lv 75.0 90.9 97.0 91.3 98.3 99.9

Baseline+RRU+LSTM+Lv 72.3 90.1 97.1 89.6 98.0 100.0
Baseline+RRU+STIM+Lv 80.5 94.1 98.8 91.5 98.8 99.9
Baseline+RRU+STIM+Lv+Lp 84.3 96.8 99.5 92.7 98.8 99.8

Table 2: Performance comparison for whether RRU or part-
level constraint Lp is added to the network on MARS
dataset.

Method mAP R1 R5 R20

Baseline+STIM+Lv 71.1 83.2 92.4 96.1
Baseline+RRU+STIM+Lv 72.2 83.9 93.4 95.8
Baseline+RRU+STIM+Lv+Lp 72.7 84.4 93.2 96.3

Ablation Study of the Proposed Method
The baseline approach contains only the Inception-v3 model
trained by Lc. We use average pooling to generate the final
representation. As shown in Table 1, after applying video-
level ranking constraint Lv , the rank-1 accuracy of the base-
line approach is improved by 14.5% on iLIDS-VID and
3.6% on PRID-2011. This shows that it is very effective
to introduce the video-level ranking constraint for the net-
works.

Analysis on STIM. When we use a LSTM with a hid-
den size of 256 directly to integrate temporal information,
the performances are even worse than average pooling ap-
proach on both datasets because of the noise in raw fea-
tures and the neglect of spatial information. If we replace
LSTM with STIM, the rank-1 accuracy is improved by a
large margin, which means that STIM can better integrate
spatial-temporal information. Meanwhile, it also indicates
that it is necessary to preserve the spatial resolution when
mining temporal information, which makes STIM more ro-
bust to noise than LSTM.

Analysis on RRU. When we apply RRU to Baseline+Lv ,

the rank-1 accuracy is improved by 2.8% on iLIDS-VID and
3.3% on PRID-2011. We show some examples of the feature
maps before and after being refined by RRU in Fig. 3. For
the left video sequence fragment, due to the severe blur, the
responses to the legs of the raw feature maps in the second
frame and third frame are almost lost as shown in the white
boxes. After refinement by RRU, the responses are well re-
covered. For the middle video sequence fragment, the model
suffers from background clutter. As shown in the gold box in
the second frame, the background part has noisy responses.
After the process of RRU, the noisy responses are well re-
moved. Meanwhile, the drifting responses of upper body in
raw feature maps of second frame and the nearly missing
responses in the white box of the fourth frame are well cor-
rected. For the right video sequence fragment, the hand in
the fourth frame is occluded by the sign. After refinement by
RRU, the responses are well recovered, and the almost lost
responses in the first frame are also well recovered. Those
examples verify the denoising and recovering capabilities of
RRU.

We evaluated the effects of update gate model g with dif-
ferent component setting. As shown in Table 1, the combi-
nation of Zs and Zc achieves better performances than using
them alone. We also investigate the effect of the input infor-
mation for update gate model g, which is shown in Table 1.
When we remove the motion information [Xi,k,t−Xi,k,t−1]
and only keep the appearance differences [Xi,k,t−Si,k,t−1],
the performance declines on both datasets. This indicates the
motion information is useful for g to evaluate the quality of
feature maps. When we directly use the concatenated feature
maps [Xi,k,t,Si,k,t−1] as input without explicitly indicating
the appearance differences and motion information, the per-
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Table 3: Performance comparison with the state-of-the-art methods on iLIDS-VID, PRID-2011 and MARS datasets. The CMC
scores (%) at rank 1, 5, 20 are reported. For MARS, the mAP results are also compared.

Method iLIDS-VID PRID-2011 MARS

R1 R5 R20 R1 R5 R20 mAP R1 R5 R20

STA (Liu et al. 2015) 44.3 71.7 91.7 64.1 87.3 92.0 - - - -
TDL (You et al. 2016) 56.3 87.6 98.3 56.7 80.0 93.6 - - - -
DVDL (Karanam, Li, and Radke 2015) 25.9 48.2 68.9 40.6 69.7 85.6 - - - -
RNN (McLaughlin, del Rincon, and Miller 2016) 58.0 84.0 96.0 70.0 90.0 97.0 - - - -
CNN+XQDA (Zheng et al. 2016) 53.0 81.4 95.1 77.3 93.5 99.3 49.3 68.3 82.6 89.4
SeeForest (Zhou et al. 2017) 55.2 86.5 97.0 79.4 94.4 99.3 50.7 70.6 90.0 97.6
TSSCNN (Chung, Tahboub, and Delp 2017) 60.0 86.0 97.0 78.0 94.0 99.0 - - - -
ASTPN (Xu et al. 2017) 62.0 86.0 98.0 77.0 95.0 99.0 - 44.0 70.0 81.0
QAN (Liu, Yan, and Ouyang 2017) 68.0 86.8 97.4 90.3 98.2 100.0 - - - -
RQEN (Song et al. 2018) 76.1 92.9 99.3 92.4 98.8 100.0 51.7 73.7 84.9 91.6
DRSTA (Li et al. 2018) 80.2 - - 93.2 - - 65.8 82.3 - -

Baseline 57.7 78.9 91.3 84.4 96.2 99.5 64.7 81.7 91.8 96.2
Ours 84.3 96.8 99.5 92.7 98.8 99.8 72.7 84.4 93.2 96.3

formance also drops. This indicates that it is more efficient to
provide the priori information about appearance differences
and motion information than to let g directly learn how to
integrate the information from the Si,k,t−1 and Xi,k,t.

When we insert RRU before LSTM, the rank-1 accuracy
is improved by 0.8% on iLIDS-VID and 2.9% on PRID-
2011. When RRU is inserted before STIM, RRU boosts the
rank-1 accuracy by 3.2% on iLIDS-VID and 0.4% on PRID-
2011. Specifically, when collaborated with RRU, STIM
achieves greater performance improvement than LSTM on
challenging iLIDS-VID dataset, since STIM makes better
utilization of the refined appearance representation gener-
ated by RRU, while LSTM ignores the spatial information.
After applying part-level ranking constraint on RRU, RRU
further boosts the rank-1 accuracy of STIM by 3.8% on
iLIDS-VID and 1.2% on PRID-2011. The video sequences
of MARS dataset (Zheng et al. 2016) are generated by DPM
detector and GMMCP tracker, which are not well-aligned
and make it more challenging than other datasets. As shown
in Table 2, RRU and Lp still boost the accuracy. RRU re-
fines feature maps instead of raw RGB images. The large
receptive fields of neurons in the backbone model mitigate
the impact of imperfect pedestrian detection bounding box.
We can conclude that RRU is well compatible with other
models. Meanwhile, the combination of video-level ranking
constraint and part-level ranking constraint is important for
further improving the learning capability of networks.

Comparison to the State-of-the-Art methods
We compare the performance of our approach with other
state-of-the-art methods on three datasets in Table 3. Our
approach achieves the best performance on iLIDS-VID and
MARS for rank-1 accuracy and mAP accuracy. Compared
with DRSTA, the improvements achieved by our approach
are 4.1% and 2.1% for rank-1 accuracy on iLIDS-VID and
MARS, respectively. Specifically, for MARS, our approach
exceeds DRSTA by 6.9% for mAP accuracy. On PRID-2011
dataset, our approach is only slightly lower than DRSTA in

terms of rank-1 accuracy. As discussed before, PRID-2011 is
relatively less challenging because of relatively simple back-
ground and rare occlusion, which makes the capability of
our model fail to be fully expressed.

Conclusions
In this paper, we propose a new network architecture for
video-based person re-identification, which consists of two
key modules, i.e., refining recurrent unit (RRU) and spatial-
temporal clues integration module (STIM). The former re-
fines the feature activations with a recurrent paradigm, while
the latter integrates the abundant spatial-temporal infor-
mation. Those modules are collaboratively optimized with
a multi-level training objective. Extensive experiments on
three popular benchmark video datasets demonstrate the ef-
fectiveness of our approach.
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