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Abstract

Knowledge of 3D properties of objects is a necessity in order
to build effective computer vision systems. However, lack of
large scale 3D datasets can be a major constraint for data-
driven approaches in learning such properties. We consider
the task of single image 3D point cloud reconstruction, and
aim to utilize multiple foreground masks as our supervisory
data to alleviate the need for large scale 3D datasets. A novel
differentiable projection module, called ‘CAPNet’, is intro-
duced to obtain such 2D masks from a predicted 3D point
cloud. The key idea is to model the projections as a continu-
ous approximation of the points in the point cloud. To over-
come the challenges of sparse projection maps, we propose
a loss formulation termed ‘affinity loss’ to generate outlier-
free reconstructions. We significantly outperform the exist-
ing projection based approaches on a large-scale synthetic
dataset. We show the utility and generalizability of such a
2D supervised approach through experiments on a real-world
dataset, where lack of 3D data can be a serious concern. To
further enhance the reconstructions, we also propose a test
stage optimization procedure to obtain reconstructions that
display high correspondence with the observed input image.

Introduction
3D Reconstruction from images is a key challenge in the
field of computer vision. While deep learning based ap-
proaches have achieved exceptional results in various com-
puter vision tasks (?; ?; ?; ?), the capability of such ap-
proaches is limited by the amount of data available. Ob-
taining large scale 3D data of objects can be expensive
and time-consuming. In contrast, capturing 2D data (image,
foreground mask etc.) from multiple view points is relatively
easy. We consider the task of single image 3D point cloud
reconstruction and aim to utilize such 2D observations in
place of point clouds as our supervisory data. Towards this
end, we propose a novel differentiable projection module to
obtain the 2D observations from the predicted points.

The nature of the projection module is dependent on our
choice of the 3D representation. Unlike 2D images, where
all the pixels add rich spatial and structural information, vol-
umetric representations suffer from sparsity of information.
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The information needed to perceive the 3D structure is pro-
vided by surface voxels, while the voxels within the volume
increase the representational and computational complexity
with minimal addition in information. 3D point clouds are a
more efficient alternative, since the points are sampled on
the surface of the object. However, lack of grid structure
and permutation invariance properties of point clouds pose
challenges in their processing. Recent works address these
issues using point cloud specific architectures and loss for-
mulations (?; ?; ?; ?; ?).

In the case of 3D voxel-based approaches, the projection
is obtained via a transformation between two grid repre-
sentations and hence can be performed by simple interpo-
lation operations (?). Point clouds, however, pose two im-
portant challenges: (1) Firstly, projecting low density point
clouds using conventional interpolation techniques can re-
sult in projections with holes. Generating high density point
clouds requires higher memory and computational power.
(2) Secondly, the process of obtaining the projections by dis-
cretizing the point cloud is a non-differentiable operation. To
address both these issues, we propose a continuous approx-
imation of points in the point cloud which produces smooth
projections in a differentiable manner.

However, a sparse projection map results in very low gra-
dients in regions where no point is projected, which leads
to outlier points. We propose a novel loss function, termed
Affinity Loss, to enforce effective flow of gradients in such
situations, resulting in cleaner and better reconstructions.

Since 2D observations like foreground masks can be ob-
tained from the input image, projection based approaches
provide a unique opportunity for optimization on the test
data. Given a test image, the point cloud obtained using
a pre-trained networked can be modified to exactly match
the corresponding mask. We introduce such a set-up and
obtain more accurate reconstructions with improved corre-
spondence to the input image.

To summarize, we make the following key contributions:

• We propose CAPNet, a continuous approximation projec-
tion module for a differentiable and accurate rendering of
3D point clouds, to enable weakly supervised 3D object
reconstruction. The proposed rendering module generates
smooth, artifact-free projections, while also overcoming
the lack of gradients that can exist in a naive discretiza-
tion based approach.
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• We formulate a loss function termed Affinity Loss for ef-
fectively penalizing outlier points, resulting in reconstruc-
tions of high quality.

• Using as little as a single mask as supervision, we fine-
tune a 3D supervised network on a real world dataset, and
demonstrate the efficacy of the approach in obtaining su-
perior reconstructions.

• We perform extensive quantitative and qualitative eval-
uation of CAPNet on synthetic and real datasets, and
show that it significantly outperforms the state-of-the-art
projection-based reconstruction methods.

• Finally, we present a technique for optimizing the pre-
dicted point clouds at test time using available foreground
masks, and obtain reconstructions that highly correspond
to the input image.

Related works
3D Supervision

A number of 3D reconstruction works employ training
procedures that utilize the complete 3D data available. With
the advent of deep neural network architectures in 2D im-
age generation tasks, the power of convolutional neural nets
have been directly transferred to the 3D domain using 3D
CNNs. There is vast literature on generating voxelized out-
put representations. (?) learnt a joint embedding of 3D voxel
shapes and their corresponding 2D images. (?) trained a re-
current neural network to encode information from many in-
put views. These works predict voxelized outputs and uti-
lize 3D voxel-based losses for supervision. But the compute
overhead and sparsity of information in voxel formats in-
spired lines of work that abstracted volumetric information
into smaller number of units with the help of the octree data
structure (?; ?; ?). More recently, Fan et al. (?), introduced
frameworks and loss formulations tailored for generating
unordered point clouds, and achieved single-view 3D recon-
struction results outperforming the volumetric state-of-art
approaches (?). Several other recent works tackle the prob-
lem of 3D point cloud reconstruction from a single image (?;
?; ?; ?). While all of the above works directly use full 3D
point cloud supervision, we show competitive 3D recon-
struction capability by using only 2D masks as supervision.

2D Supervision
Recent works have explored ways to reconstruct 3D

shapes from 2D projections such as silhouettes and depth
maps with the help of differentiable rendering modules.
(1) Volumetric Rendering: Perspective transformer nets

(PTN) (?) performs perspective transformation and grid
sampling of volumetric outputs to obtain the projec-
tions. Tulsiani et al. (?) use differentiable ray consis-
tency loss to train on 2D observations like foreground
mask, depth, color images and semantic maps. Marr-
Net (?) predicts normal, depth and silhouette maps from
2D images and reconstructs voxel outputs using the es-
timated 2.5D sketches, while also enforcing projection
consistency at test time.

(2) Point-cloud Rendering: Amongst the point-cloud
based works, Lin et al. (?) use a combination of depth

fusion and point projection as supervision. Our ap-
proach differs from Lin et al. in the following ways:
(a) In Lin et al., the network is first pretrained without
using projection loss, but directly regressing for depth
maps from eight fixed views, which are fused to ob-
tain the point cloud. The projection loss is only used
for fine-tuning this model once it has been trained. On
the other hand, our model requires no pretraining and
as little as a single mask from a random view can be
used as supervision. (b) The projection module in Lin
et al. consists of discretizing the (x, y) coordinates of
the point cloud and projecting the z values onto a plane.
To avoid point collisions, a memory intensive operation
(termed ’upsampling’) is performed. In contrast, we di-
rectly obtain the projected map via the continuous ap-
proximation module. Further, we introduce the Affinity
Loss in the training regime to remove outlier points.

Apart from volumetric and point-cloud based approaches,
differentiable rendering modules for 3D meshes have also
been proposed (?).

Approach
Problem Formulation
Given a single image of an object, we aim to reconstruct
its 3D point cloud representation. Let I be an image from
the training set. Let p = f(I) be the corresponding 3D point
cloud reconstruction obtained using the network f(.). A pro-
jection P (p, v) from an arbitrary view point v is obtained
by performing a perspective transformation and projecting
the transformed point cloud on to a plane. The view-point is
parametrized by the camera calibration matrix and extrinsic
parametersK and (R, t) respectively. We assume the knowl-
edge of these parameters in the training stage. Let N be the
number of points in the point cloud. Then the transformed
point p̂n = (x̂n, ŷn, ẑn) in the camera coordinates is ob-
tained as follows:

p̂n = K(Rvpn + tv) ∀n ∈ {1, · · ·, N} (1)

To train the 3D reconstruction network, the ground truth 2D
mask, M is used to supervise the projection, M̂ = P (p, v).

Continuous Approximation Projection
The 3D reconstruction network consists of an encoder which
takes in a 2D image as input, followed by a decoder which
reconstructs the point cloud (Fig. 1). The predicted points
are projected from V different view-points and the loss is
calculated with the corresponding ground truth projections.
Let M̂v

i,j be the pixel value of vth projected mask at (i, j)
coordinates. The projected mask is obtained as follows:

M̂v
i,j = tanh

(
N∑

n=1

φ(x̂n − i)φ(ŷn − j)

)
(2)

where tanh is the hyperbolic tangent function and φ(.) is a
kernel function. To obtain a smooth projection, we use an
un-normalized Gaussian kernel of variance σ2:

φ(k) = exp
(−k2

2σ2

)
(3)

8820



(a) (b)

Figure 1: Network architecture and projection module: (a) An encoder-decoder architecture is used to obtain point cloud
reconstructions from a 2D image. The point cloud is projected from multiple view points and compared with corresponding
ground truth mask. We use a combination of binary cross-entropy and point affinity loss as our projection consistency loss. (b)
An overview of our projection module is shown. Each point in the prediction (red dot in the image) is projected on to a 2D grid
by generating a Gaussian map centered at the (x,y) location of the the point. The Gaussian maps from all the points are then
combined to obtain a smooth projection that matches the ground truth. Image best viewed zoomed and in color.

The variance of the kernel is set such that the projection
is smooth while retaining the finer structures present in the
ground truth mask. Refer to Discussion Section for details.

The proposed point cloud rendering module is signifi-
cantly different from the existing volumetric approaches for
the following reasons: (1) Unlike an ordered voxel repre-
sentation, a point cloud does not reside in a discretized grid
world, but rather in continuous free space. A direct applica-
tion of volumetric rendering would require embedding the
point cloud in a 3D grid, and such a discretization oper-
ation is non-differentiable, preventing back-propagation in
neural networks. We navigate this problem by treating the
value at every pixel to be a continuous approximation of the
points in the point cloud. (2) Volumetric rendering in (?)
is handled by the Spatial Transformer Network (STN) (?),
which performs bilinear interpolation at the grid cell cor-
ners. Apart from being non-differentiable for point sets, this
approach would produce ’holes’ in the projection for low
density point clouds. On the contrary, we introduce a contin-
uous approximation module which utilizes a Gaussian ker-
nel to obtain smooth and accurate projections (Discussion
Section, Fig. 7b).

Loss Formulation
We enforce consistency between the projected and ground
truth maps using the binary cross-entropy loss, given by:

Lbce =

V∑
v=1

−MvlogM̂v − (1−Mv)log(1− M̂v) (4)

whereMv and M̂v are the ground truth and predicted masks
respectively of dimension (H,W ). However, we observe

that training the network with just Lbce results in recon-
structions with a large number of outlier points. To alleviate
this effect, we propose a loss function that penalizes outlier
points in the projected maps by enforcing a nearest point
affinity loss, defined as follows:

Laff =

V∑
v=1

H,W∑
i,j

min
(k,l)∈Mv

+

((i− k)2 + (j − l)2)M̂v
i,jM

v
k,l

+

V∑
v=1

H,W∑
i,j

min
(k,l)∈M̂v

+

((i− k)2 + (j − l)2)Mv
i,jM̂

v
k,l

(5a)

where Mv
+ and M̂v

+ are sets of pixel coordinates of the
ground truth and predicted projections whose values are
non-zero. Intuitively, this constraint minimizes the nearest
neighbour distance between two pixel maps weighted by
pixel confidence. We observe that the use ofLaff is critical in
obtaining meaningful reconstructions (Discussion Section).
Regions in the mask where ground truth confidence is one,
but the prediction is near zero, might result in weak gradients
if there are no predicted points in the nearby region. Similar
issues arise when an incorrect isolated prediction is present.
Affinity loss helps in alleviating both these issues. The final
loss function during optimization is a combination of binary
cross-entropy and affinity loss:

L = Lbce + λ · Laff (6)

Test-Stage Optimization (TSO)
While the reconstructions obtained by training a network as
described above are reasonably correct, they fail to exactly
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match the input image. Existing state-of-the-art approaches
also produce outputs that do not correspond completely, and
often fail to reconstruct finer details visible in the image.
We propose a test-stage optimization procedure that starts
from an initial point cloud y, that is the output from any
point cloud prediction network, and outputs an optimized
point cloud ŷ. This procedure aims to exactly match the re-
constructed point cloud in the region visible in the input im-
age, while obtaining meaningful structure in the occluded re-
gions. To achieve this, we match the projection of the point
cloud from the input image view. We make the reasonable
assumption of the presence of ground truth mask for the in-
put image in the test stage. We explore three ways of updat-
ing the predicted point cloud:

(1) Update onlyE: Keeping the decoder fixed, we only up-
date the parameters of the encoder by optimizing for the
binary cross entropy loss Lbce (Eqn. 4).

(2) Update E and D: We update the parameters of both
the encoder and decoder to match the projection. In or-
der to preserve the structure in the occluded regions, we
additionally employ a regularization loss on the update
of the point cloud. The total loss is defined as

Ltso = Lbce + γ · d(y, ŷ) (7)

where d(.) is a distance function, y and ŷ are the initial
and optimized point clouds respectively.

(3) Directly update p: We directly update the predicted
points using Eqn. 7, without updating any of the net-
work parameters. This approach enables the optimiza-
tion procedure to be utilized even in cases where the
point cloud prediction network is not available during
inference.

Experiments
3D Reconstruction on ShapeNet
Implementation details We fix the number of projections
to four in all the experiments. The view-points are randomly
selected as in (?). The kernel variance σ2 in Eqn. 3 is cho-
sen as [0.4, 0.4, 0.1] for [chair,car,airplane] in the single-
category experiments and 0.4 in the multi-category exper-
iments. λ is set to 1 in Eqn. 6. We use Adam optimizer to
train the network with a learning rate of 5e−5. The network
architecture details are provided in the supplementary ma-
terial. For the test-stage optimization procedure, we experi-
ment with different hyperparameter settings for each of the
three variants and choose settings that are optimal for each.
Learning rates are set to 1e−6, 5e−6, and 5e−4 for variants
1, 2 and 3 respectively. The weightage for regularization is
set to 1e6 in Eqn. 7. The optimization procedure is run for
50 iterations and takes 1s on an Nvidia GTX 1080Ti GPU.

Dataset We use the textured 3D CAD models from the
synthetic ShapeNet dataset (?) for our experiments. We con-
sider three exemplar categories: airplane, car and chair. We
follow the set-up of (?) and use the same train/val/test splits
so as to be comparable to existing works.

Evaluation Methodology We use the Chamfer distance
between point clouds as our metric to evaluate re-
construction. The Chamfer distance between two point
clouds P̂ and P is defined as dChamfer(P̂ , P ) =∑

x∈P̂ miny∈P ||x− y||22 +
∑

x∈P̂ miny∈P ||x− y||22. The
ground truth point cloud is obtained by randomly sampling
16,384 points on the surface of the object and performing
farthest point sampling to obtain 1024 points. To evaluate
approaches which reconstruct voxelized representations, we
use the code provided by (?) to convert them to point clouds.
The procedure consists of first generating an iso-surface
from the voxels using the Marching Cubes algorithm (?),
and then sampling points on the generated surface to obtain
the final point cloud.

Comparison We benchmark our proposed approach
against state-of-the-art 3D and 2D supervision works. For
3D supervision, we compare our work with the fully-
connected decoder variant of (?), hereby referred to as
PSGN-FC. The PSGN-FC network is trained with 3D point
cloud supervision, and Chamfer distance is used as the loss
function. We follow the same network architecture that is
used for our 2D supervision experiments. For evaluating our
approach against 2D supervision works,we compare with
DRC (?), which outputs voxelized 3D reconstructions. To
evaluate DRC, we use the pre-trained models provided by
the authors, and convert the representations to the point
cloud format as described in the evaluation section. We also
compare against Lin et al. (?), who fuse depth maps from
eight fixed views to obtain the point cloud. Since Lin et al.
predictions are dense, we apply farthest point sampling on
the outputs to obtain 1024 points for evaluation.

Results Table 1 presents the results on the ShapeNet
dataset with comparisons against the 3D-supervised PSGN-
FC, 2D-supervised DRC and depth-fusion-based Lin et al.
We significantly outperform DRC while achieving results
comparable to the 3D supervised PSGN-FC. It is interest-
ing to note that our approach, with just foreground masks as
supervision, outperforms even the depth-based approaches
of DRC and Lin et al. Fig. 2 shows qualitative results on
ShapeNet. We observe that unlike DRC, our approach accu-
rately reconstructs structures with concavities. Lin et al. pre-
dictions are rough and have a number of outlier points, while
our predictions are sharper and more accurate. Our network
is also able to better predict finer details, e.g. hollow regions
in the back of chairs, which the 3D-supervised method fails
to capture. We also train a single network on all three cat-
egories. We observe that the network performs comparably
to the single category variants (Table 1 and Fig.3).

3D Reconstruction on Pix3D
To show the efficacy of our approach on real data, we con-
sider Pix3D, a real world dataset with 3D CAD models and
corresponding 2D images from multiple view-points. We
use the 3D models only for evaluation. We randomly select
80% of the dataset as the train set and the rest as the test set.
We show that fine-tuning a PSGN-FC network pre-trained
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Table 1: Chamfer metrics on ShapeNet (all values are scaled by 1000). We significantly outperform both mask and depth
variants of DRC, and obtain scores close to 3D supervised PSGN-FC. In comparison to Lin et al., who fuse depth maps from
eight fixed views, we obtain better performance using just mask projection from four random views.

Method Supervision Airplane Car Chair Mean

PSGN-FC (?) 3D 1.36 1.40 3.98 2.25
PSGN-FC (multi-cat) (?) 3D 1.33 1.41 3.94 2.23

DRC-Depth (?) Depth 6.30 4.33 11.38 7.34
Lin et al. (?) Depth 2.01 2.50 6.35 3.62

DRC-Mask (?) Mask 18.94 4.92 15.91 13.26
Ours Mask 2.00 1.65 4.42 2.69
Ours (multi-cat) Mask 2.57 1.74 5.09 3.13

GT Lin et al. OursInput GT Lin et al. OursInputDRC DRCPSGN-FC PSGN-FC

Figure 2: Qualitative comparison on ShapeNet. Our network achieves better reconstructions, with high correspondence to the
input image. While DRC outputs are blobby and lack concavity, Lin et al. predictions are rough and have a number of outlier
points. In contrast, our predictions are sharper and more accurate. Our network also predicts finer structures like bars on the
back of chairs, which the 3D-supervised network fails to capture.

GT PSGN-FC OursInput GT PSGN-FC OursInputDRC DRC

Figure 3: Qualitative results for the multi-category experiment on ShapeNet.

on ShapeNet with the additional 2D training data results
in improved performance. To adapt to the domain of real
world images, the PSGN-FC network is trained with syn-
thetic ShapeNet images overlaid on random natural back-
grounds, as done in (?). Results are reported in Table 2.
Qualitative results are presented in Fig. 4. We observe that
as in the case of the synthetic dataset, our approach results
in more faithful reconstructions. The finer details present in

the leg and handle regions of chairs are effectively captured.
This demonstrates the applicability of our training method-
ology for real world scenarios.

Test Stage optimization
To evaluate our test stage optimization (TSO) approach,
we train a PSGN-FC network to reconstruct point clouds
aligned with the input image view. We then perform the op-
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GT PSGN-FC OursInput GT OursInput PSGN-FC

Figure 4: Qualitative comparison on the real-world Pix3D dataset (?). Our network fine-tuned with just a single mask as
supervision, is able to effectively reconstruct from real world images. Shapes and finer details are better captured in comparison
to the 3D supervised network trained only on ShapeNet.

(a)

(b)

Input                 GT             Ours
        

Figure 5: Failure modes. (a) Multi-category training pro-
duces narrower airplanes. (b) Cars trained with just a single
mask as supervision have slightly deformed bodies.

Table 2: Chamfer metrics on Pix3D (all values are scaled by
1000). (Fwd: GT→ Pred, Bwd: Pred→ GT.
Chamfer: Fwd+Bwd.)

Method Fwd Bwd Chamfer

PSGN-FC 5.04 5.06 10.1
Ours(joint) 4.44 4.76 9.2

timization step at the test stage for every input image. We set
the distance function d in Eqn. 7 to be the Chamfer distance
between the initial and optimized point clouds in all our ex-
periments. Table 3 shows quantitative metrics for the TSO
variant where both the encoder and decoder are updated by
optimizing the projection and regularization losses (Eqn. 7).
We report the Chamfer distance along with the correspond-
ing forward and backward losses on the test set. We observe
that all three variants of TSO lead to improved performance
compared to the intial prediction from the pre-trained net-
work. In our qualitative study, we observed that the TSO

Table 3: Chamfer metrics on test stage optimization (metrics
are scaled by 1000). (Fwd: GT→ Pred, Bwd: Pred→ GT.
Chamfer: Fwd+Bwd.)

Method Fwd Bwd Chamfer

Pre-trained Net 2.45 2.19 4.64
TSO - update E, fix D 2.29 2.14 4.43
TSO - update E and D 2.28 2.09 4.37
TSO - directly update p 2.36 2.13 4.49

Table 4: Dependency of reconstruction performance on
number of views. Chamfer scores are scaled by 1000

Num Views 1 2 3 4 5 6 8

Airplane 2.40 2.02 2.0 2.0 1.98 1.99 2.01
Car 3.47 1.68 1.65 1.65 1.68 1.65 1.68
Chair 4.53 4.41 4.35 4.36 4.43 4.42 4.56

variant with the decoder fixed had limited capacity to cap-
ture the finer details present in the image, while the other
two variants ((E,D) updated, and only p updated) performed
better in generating point clouds that correspond to the input
image. Fig. 6 shows qualitative results on samples from the
test set before and after running the optimization routine. We
observe that the reconstructions match the input image from
the visible view, while preserving the structure in the oc-
cluded regions. The optimized point clouds display geomet-
ric and structural details (curved backrest, bars, etc) present
in the input image, that are absent in the initial predictions.

Discussion
Variance of kernel We plot the category-averaged L1 er-
ror between the ground truth mask and corresponding pro-
jection for different σ2 values (Eqn. 3) in Fig. 9. Projections
for a sample model are shown in Fig. 7c. Lower σ2 values
result in holes whereas higher values fill large areas. σ2 is
set to 0.4 for chair and car, and 0.1 for airplane. In the multi-
category setup, it is set to 0.4 for optimal performance. For
comparison, we also display the obtained projection map
from a naive discretization-based method (Fig. 7a) and Lin
et al.’s method (with upsampling factor U = 5) (Fig. 7b).

Effect of number of projections We study the effect of
number of ground truth projections per image used during
training (Table 4). We observe that the network is able to
reconstruct well with just a single mask as supervision. The
performance improves with two masks and stays constant
with higher number of projections.

Role of Affinity Loss To analyze the role of the affinity
loss Laff (Eqn. 5), we train a network with only cross en-
tropy loss Lbce (Eqn. 4). We observe that the reconstruc-
tions are noisy with a lot of outlier points, resulting in higher
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Input GT Before TSO

View 1 View 2

After TSO

View 1 View 2 View 1 View 2 View 1 View 2

Input GT Before TSO After TSO

Figure 6: Qualitative results showing the generated point clouds before and after test-stage optimization (TSO). The optimized
point clouds display geometric and structural details (curved backrest, bars, etc) present in the input image, that are absent in
the initial predictions. Reconstruction results are shown from two different viewing angles so as to highlight the retention of
structure when seen from a different view and the correspondence with the input image when seen from the same view.

 = 0.2U = 5

(b) Lin et al. (c) Ours at different      values

 = 0.4  = 0.6

Ground truth(a) Discretization

Figure 7: Projection maps for discretized projection, Lin et al., and our method. (a) and (b) have a lot of ’holes’. (c) Our
projections are smooth due to the continuous approximation module. Here, σ2 = 0.4 fills in holes while retaining finer details.

(a)

(b)

Figure 8: Projected predictions trained (a) without and (b)
with affinity loss, which helps in outlier point removal.

Figure 9: Variance of kernel, σ2 vs L1 error for mask pro-
jections plotted for different categories.

Chamfer scores. The addition of Laff , results in better recon-
structions (Fig. 8). However, in the case of chairs, we notice
that a high weightage toLaff delays the emergence of thinner
structures like legs. Hence, we reduce the the weight of Laff

after a fixed number of iterations. The loss weighing strategy
between Lbce and Laff is provided in the supplementary.

Failure modes We analyze the failure modes for our
method in Fig. 5. (a) Certain instances of airplanes have a
narrower body in comparison to the ground truth for multi-
-category trained models. Choosing σ2 values per category
alleviates this effect. (b) Cars trained with only single view
mask supervision (V=1) have a slight deformation in the
depth dimension. Using an additional view during supervi-
sion corrects this.

Conclusion
We introduced a continuous approximation projection mod-
ule for a differentiable and accurate rendering of 3D point
clouds, to enable weakly supervised 3D object reconstruc-
tion. A loss formulation was introduced in the training pro-
cedure to improve reconstructions. We highlighted the utility
of such an approach in real world scenarios by improving the
reconstruction performance using as little as a single mask as
supervision. Quantitative and qualitative evaluation on syn-
thetic and real-world datasets show that the generated point
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clouds are of better quality in comparison to the current
state-of-art projection-based reconstruction methods. Fur-
thermore, we also demonstrated that the presence of object
masks at test stage can be utilized to obtain highly corre-
sponding 3D reconstructions. In the future, we would like
to explore ways of extending the projection framework to
obtain depth maps, color images and any other features as-
sociated with the object.
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