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Abstract

Image captioning and visual language grounding are two im-
portant tasks for image understanding, but are seldom con-
sidered together. In this paper, we propose a Progressive
Attention-Guided Network (PAGNet), which simultaneously
generates image captions and predicts bounding boxes for
caption words. PAGNet mainly has two distinctive properties:
i) It can progressively refine the predictive results of image
captioning, by updating the attention map with the predicted
bounding boxes. ii) It learns bounding boxes of the words us-
ing a weakly supervised strategy, which combines the frame-
works of Multiple Instance Learning (MIL) and Markov De-
cision Process (MDP). By using the attention map generated
in the captioning process, PAGNet significantly reduces the
search space of the MDP. We conduct experiments on bench-
mark datasets to demonstrate the effectiveness of PAGNet and
results show that PAGNet achieves the best performance.

1 Introduction
Deep neural networks have great advances on the tasks of
image understanding, such as object detection and image
captioning. Object detection aims to recognize and local-
ize the objects that occur in images, which overlooks the
relationships among objects in natural language and thus is
far from the end of image understanding. Image captioning
aims to compress salient visual information into descriptive
language and the state-of-the-art performance is achieved
by neural image captioning models (Anderson et al. 2018),
which usually adopt the encoder-decoder framework (Cho
et al. 2014) consisting of two components: a Convolutional
Neural Network (CNN) for image feature extraction and a
Recurrent Neural Network (RNN) for caption generation.

Considering the fact that each caption word is always
related to partial image contents, neural image captioning
models usually incorporate attention mechanisms to allow
their models to attend to different parts of the input image.
However, in these models the attended regions for predict-
ing each word may be meaningless and inaccurate (Liu et
al. 2017), which impedes their performance. Besides, these
models cannot predict accurate locations (i.e., the bounding
box) for the words of the generated captions, which is in-
consistent with the ability of human vision and limits their
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applicability to vision tasks, such as image annotation (Song
et al. 2016) and visual question answering (Anderson et al.
2018).

To address the above limitations, we propose a
Progressive Attention-Guided Network (PAGNet), which
not only generates descriptive sentences for input images,
but grounds (i.e., aligns) the words of the generated descrip-
tions to image regions.

1.1 Contributions
The contributions of this paper can be summarized as fol-
lows: 1) We combines the tasks of image captioning and
language grounding by a PAGNet, which has two appeal-
ing properties: i) PAGNet predicts caption sentences for im-
ages in a progressive manner. Specifically, the attention over
the image can be progressively updated using the grounding
results (i.e., bounding boxes) of the words, which enables
PAGNet to refine the predictive captions. ii) By combin-
ing the frameworks of MDP and MIL, PAGNet can predict
bounding boxes for caption words via only image-level an-
notations, without the requirement of region proposal algo-
rithms to hypothesize target locations. 2)We conduct exten-
sive experiments on several benchmark datasets to evaluate
the performance of PAGNet and results show that PAGNet
achieves state-of-the-art performance on all the datasets.

2 Related work
2.1 Image captioning
Many approaches (Anderson et al. 2018; Yao et al. 2017;
Chen et al. 2016; Xu et al. 2015) based on RNN have
been proposed for image captioning. Inspired by the hu-
man vision system that selectively processes salient fea-
tures with attention, some approaches (Xu et al. 2015;
Chen et al. 2016) incorporates different attention mecha-
nisms, which allows their models to focus only on related
image regions for predicting different words. For exam-
ple, Chen et al.(2016) proposed a spatial and channel-wise
attention-based model, which modulates the sentence gen-
eration context in multi-layer feature maps. Anderson et
al.(2018) proposed an attention model for image captioning
which combines bottom-up and top-down attention mech-
anisms. Lu et al.(2018) proposed an attention framework
called Neural Baby Talk for image captioning, which first
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Figure 1: The framework of PAGNet, which consists of three modules: VFE, PAD and WSWA.

generates template sentences that have slot locations tied to
image regions, then fills the slots with the concepts detected
from the regions using object detectors. The attention used
for predicting each word conveys the alignment information
from language space to image space, and the correctness of
the attention influences the final performance. However, the
aforementioned approaches implicitly infer the attention by
the hidden states of LSTM, which cannot ensure the correct-
ness of the learned attention (Liu et al. 2017).

2.2 Visual language grounding
This task has been studied by many works (Plummer et al.
2017; 2015; Karpathy and Fei-Fei 2015; Karpathy, Joulin,
and Fei-Fei 2014), which align text phrases to image re-
gions. For example, Plummer et al.(2017) proposed a frame-
work for localization or grounding of phrases in images.
Karpathy et al. (2014) decomposed images and sentences
into fragments and inferred their inter-modal alignment us-
ing a ranking objective. Different from these works that only
focus on learning correspondence between text phrases and
image regions, our model integrates image captioning and
language grounding into one framework, which not only can
generate captions for images, but can align each word of the
generated captions to image regions.

2.3 Object detection
Our model is also related to weakly supervised object de-
tection (WSD) (Durand, Thome, and Cord 2016) and Deep
Reinforcement Learning (DRL) based detection (Jie et al.
2016; Caicedo and Lazebnik 2015). Many WSD approaches
formulate the object localization as a MIL problem, where
each image is represented as a bag of instances. Though
localizing objects via only image-level annotations, most
WSD approaches depend on region proposal algorithms
(Zitnick and Dollár 2014) to hypothesize object locations.
This limitation does not exist for DRL based approaches,
which cast the object localization as a MDP. For example,
Caicedo and Lazebnik; Jie et al.(2015; 2016) proposed to
localize objects in images by a MDP, in which an agent

is set to deform a bounding box with a sequence of pre-
defined actions. However, during training phase these ap-
proaches need ground-truth boxes of objects, which are dif-
ficult to collect. In contrast, by combining MIL and DRL,
our model localizes words in images using only image la-
bels. Besides, as DRL is a trial-and-error process, its success
relies on the agent’s luck in achieving the goal by chance in
the first place(Lin 1992). The MDP in previous DRL based
approaches usually search the locations of objects starting
from the whole image, which makes it difficult to shorten
the learning time and even leads to a failure.

3 The Proposed Model
3.1 Overview
Figure 1 illustrates the framework of PAGNet, which pre-
dicts image captions by using the framework of encoder-
decoder, where Module I acts as the encoder and Module
II acts as the decoder. Module III predicts bounding boxes
for the caption words by combining MIL and DRL. The in-
puts to PAGNet is an image and its text captions {wt}Tt=1,
where T represents the number of words in the captions.
Specifically, Module I is a CNN that encodes the input image
into a convolutional feature map. Based on the feature map,
Module II predicts captions for the image by a Progressively
Attention guided LSTM (PA-LSTM), which can progres-
sively modulate its attention over the image. Besides, PA-
LSTM also outputs attention maps that comprises the atten-
tion weights over the input feature map. The attention maps
are fed into Module III consisting of two components: Atten-
tion Guided MDP (AG-MDP) and MIL classification. AG-
MDP aligns each caption word to an image region, whereas
the MIL classification plays an auxiliary role to align the
word to an region that constitutes an object.

3.2 Module I: VFE
The architecture of VFE is shown in Fig. 2. The first five
blocks of convolution layers have the same design as the
VGG16 (Simonyan and Zisserman 2015). Compared with
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higher convolution layers (e.g., the layers in block 5), the
lower convolution layers can capture more information for
the tiny objects in images. Thus, we combine feature maps
from lower and higher convolution layers. Specifically, we
concatenate the feature maps from last convolutional layers
of the Blocks 3, 4, 5 to form a unified feature map, i.e., the
Concat block. To apply the concatenation, the Blocks 3 and
4 are followed by max-pooling layers to synchronize their
feature maps to the same size, i.e., the size of the feature
maps from Blocks 5. Finally, a 1×1 convolution layer is ap-
pended to shrink the channel size of the Concat block. The
channel size of final feature map is the same as the convolu-
tion layer of Block 5.

Concat

Block 1

Block 3

1x1 
Conv

  

  

Block 4

Block 2

  

  

Block 5

Pooling

Pooling

Figure 2: The architecture of Module I.

3.3 Module II: PAD
PAD consists of two components: i) PA-LSTM. ii) Attention
update.

PA-LSTM Previous attention based approaches infer the
attention using the hidden states of LSTM units, which can-
not ensure the correctness of the inferred attention. To solve
this limitation, PA-LSTM progressively modulates the atten-
tion by the results of the language grounding in Module III.
In PA-LSTM, we use the LSTM units (Zaremba, Sutskever,
and Vinyals 2014) consisting of an input gate i, a forget gate
f , an output gate o, a cell state c as well as the hidden state
h. At time step of t, the interaction between the gates and
the hidden state is defined by

it = σ(Wiyt−1 + Uiht−1 + Eixt + bi), (1)
ft = σ(Wfyt−1 + Ufht−1 + Efxt + bf ), (2)
ct = ftct−1 + ittanh(Wcyt−1 + Ucht−1 + Ecxt + bc), (3)
ot = σ(Woyt−1 + Uoht−1 + Eoxt + bo), (4)
ht = ottanh(ct), (5)

where W,U,Z denote weight matrices, b denotes the bi-
ases, σ is a sigmoid function, yt denotes the embedding vec-
tor of wt, xt denotes the attentive feature for generating wt.

Specifically, xt is computed by the weighted summation
over the vectors of feature set V = [v1,v2, · · · ,vm], which
is obtained by flattening the width W ′ and the height H ′
of the input feature map. The parameter m = W ′ × H ′

and each vi ∈ RC (1 ≤ i ≤ m) represents the feature of
the i-th location on the feature map, where C represents the

channel number of the feature map. The computation of xt
is formulated by

xt =

m∑
i=1

αtivi, (6)

where αti is the attention weight on the i-th location.
At time stpe t, the attention map is denoted by αt =
[αt1, αt2, · · · , αtm], which is computed using a multilayer
perceptron followed by a softmax function, and can be for-
mulated by

αt = softmax(Msst + b), (7)
st = tanh((MvV + bs)⊕Mhht−1), (8)

whereMv ∈ Rk×C ,Mh ∈ Rk×d andMs ∈ Rk are transfor-
mation matrices that map V and ht−1 to a common space.
The b ∈ R1 and bs ∈ Rk are biases, d denotes the dimen-
sionality of ht. The symbol ⊕ represents the addition of a
matrix and a vector, which is performed by adding each col-
umn of the matrix by the vector. After obtaining xt, PA-
LSTM follows (Xu et al. 2015) to predict the word wt by a
deep output layer (Pascanu et al. 2013) conditioned on xt,
ht, and wt−1, which is formulated by

p(wt|V,wt−1) ∝ exp(Po(yt−1 + Phht + Pzxt)), (9)
where the parameters Po, Ph, Pz are initialized randomly.

The ht and ct are initialized by inputting the average of
vi into two separate MLPs: c0 = finitc(

1
m

∑m
i=1 vi), h0 =

finith(
1
m

∑m
i=1 vi), where finitc and finith are the functions

of two MLPs.

Attention update In this part, we progressively modulate
αt using the bounding box of wt output by Module III. The
motivation is that the generated bounding box straightly in-
dicates the region highly related to wt, which is more impor-
tant than the rest regions. Thus, we update αt to α̃t by

α̃t = αt × zt, (10)
where zt = [zt1, zt2, · · · , ztm] is a binary coefficient vec-
tor and each element zti ∈ {0, 1}. If the i-th image location
is in the predicted bounding box of wt, zti is set to 1, oth-
erwise set to 0. In this way, the attention of PA-LSTM is
progressively led to the regions that are highly related to the
generated word, which prevents PA-LSTM from focusing on
meaningless regions.

With α̃t, PA-LSTM can refine the predictive captions.
Specifically, we first substitute Eq. (10) into Eq. (6) to com-
pute new attentive feature x̃t, which is then substituted into
Eq.(1) - Eq. (4) to compute new h̃t. Finally, h̃t and x̃t are
substituted into Eq. (9) to predict new captions. Besides, h̃t
is also substituted into Eq.(7) and (8) to compute new at-
tention maps, which are fed into Module III to start new
episodes. The details are described in Subsection 3.4.

3.4 Module III: WSLG
As shown in Fig. 1, WSLG is a multi-group network, where
each group corresponds to one caption word and consists of
two components: i) AG-MDP. ii) MIL classification.
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AG-MDP MDP has been applied to localize objects in
many works (Jie et al. 2016) and achieves promising per-
formance. However, existing MDP searches targets starting
from the whole image, which greatly increases the difficulty
of localizing target boxes with such large state space.

To solve this problem, we propose a new AG-MDP that
can be directed to first explore the most promising region
containing targets, by using the attention map output by
Module II. Specifically, an attention box generated from the
attention map is used as the starting window for the MDP.
The attention region corresponding to each word is gener-
ated on the attention map by selecting a square region which
has the largest attention weights. The size of the selected re-
gion is set to 4× 4, which corresponds to a 64× 64 patch in
the original image. We also experimentally vary the size to
8× 8 and observe that the performance changes slightly.

As the attention map is progressively updated in Module
II, thus the staring window of each episode in MDP will pro-
gressively approximate the correct location of targets, which
is conducive to reducing the difficulty of localizing targets
and improving the localization accuracy. Note that AG-MDP
is performed on the last feature map of Module I, rather than
the original image. AG-MDP has a set of actions A, a set of
states S, and a reward function R, which are described as
below.

State: The state representation is the concatenation of two
components: a feature vector b of the current observed win-
dow and a memory vector vh that captures the last ten ac-
tions selected by the agent. The vector b is generated based
on the last feature map V of Module I and the attention
weights α. Specifically, we first modulate the V to Ṽ by
Ṽ = V · α = [ṽ1, ṽ2, · · · , ṽm]. Then, a ROI pooling layer
(Girshick 2015) is added on top of Ṽ to obtain a fixed-length
feature vector of the current window. The history vector vh
is a binary vector that indicates which actions have been
taken in the past. Each action in the history vector is rep-
resented by a 1-of-K vector, where only one element corre-
sponding to the taken action is 1 and all other elements are 0.
As there are 15 different actions presented in the following
section, the vh ∈ R150.

Left Right Up Down

Narrow_1

Shorter Thinner Higher Fatter

Smaller Bigger Narrow_2 Narrow_3 Narrow_4 Trigger

Figure 3: Illustration of the actions used in the MDP. Blue
windows with dashed lines represent the windows obtained
by taking one of the actions.

Actions: Figure 3 illustrates the set of actions A, which
consists of fourteen transformation actions that can be used
to deform the observed window, and one Trigger action used
to stop the searching process. The transformation actions
can be categorized into three groups: i) Move actions that
aim to change the location of the boxes. This group contains
four actions, each of which moves the window by 0.2 times

of the current window size. ii) Scaling actions that aim to
proportionally change the scales of the windows. This group
contains six scaling actions, each of which scales the win-
dow by 0.25 times of the current window size. iii) Ratio ac-
tions that aim to modify aspect ratios of the windows. This
group contains four ratio actions, each of which changes the
horizontal/vertical size by 0.15 times of the current window
size. The trigger action indicates that the agent has correctly
localized an object and the sequence of the current search
should be terminated.

Rewards: At time step t′ of MDP, the agent receives a
reward Rat′ for its action at′ , which moves the state from
st′ to st′+1. Each state st′ has an associated window bt′ .

As the grounding-truth bounding boxes of each word are
unavailable, PAGNet measures the reward Rat′ by

Rat′ =

{
1 τ(bt′+1,yt)− τ(bt′ ,yt) > 0.05
−1 τ(bt′+1,yt)− τ(bt′ ,yt) < 0
0 otherwise

(11)
where bt′+1 and bt′+1 denote the feature vector of the win-
dow bt′+1 and bt′ , respectively. The yt denotes the embed-
ding vector of wt, and τ (b,yt) denotes the semantic simi-
larity between bt′ (or bt′+1) and yt. The semantic similarity
is evaluated by the method in (Plummer et al. 2015), which
first learns an embedding of the window and word features
to a shared latent space using canonical correlation analysis
(Hotelling 1936), and then uses cosine distance in that space
to score the semantic similarity.

As seen from Eq. (11), when state st′ is changed to state
st′+1, the reward function returns +1 if the improvement of
the similarity τ is larger than 0.05, returns−1 if τ decreases,
or returns 0 otherwise. As the trigger does not transform the
box, we define its reward by

Rat′ =

{
+3 τ(φ(bt′),yt) > η
−3 otherwise

(12)

where η is a threshold that indicates the minimum semantic
similarity allowed to consider the word is correctly local-
ized. We set η = 0.8 during the training phase.

Localization policy: In MDP, the agent selects actions ac-
cording to a policy. We learn the optimal policy by the deep
Q-learning algorithm (Mnih et al. 2015), which estimates
the value of each state-action pair using a deep Q-network.
Specifically, the deep Q-network is a multi-layer neural net-
work containing two hidden layers, which takes the state
representation as input, and predicts a vector of action values
Q(s, a; θq). The θq are the parameters of the neural network.
The numbers of neurons in both hidden layers are 1024.

During training, the agent is set to interact with the en-
vironment in multiple episodes. Each episode starts from
the initial state and ends when the action trigger is selected.
The agent’s behavior during training is ε-greedy (Sutton and
Barto 1998). However, different from the previous MDP that
immediately restarts a new episode after one episode ter-
minate, our model returns to train Module II to refine the
predictive captions after one episode is completed. Detailed
training strategy is present in Subsection 3.5.
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C a p t i on  s e n te n c e : A man i s 
grilling green beans .

Image labels: Man, Beans.

A man in a green shirt , blue coat , and blue jeans walking 

A man in a green shirt , blue coat, 
and blue jeans is walking.

Image labels: Man, shirt, coat, jeans.

Column-wise 
max pooling

Instance-score 
label layer

Image-level
 score

Figure 4: Examples of word-region alignments generated by
AG-MDP.

MIL classification Although the reward function in AG-
MDP tends to find regions that has high semantic similarity
with the caption words, it still cannot ensure the obtained
regions are meaningful and described by the correspond-
ing caption words. For example, as shown in Fig. 4, AG-
MDP wrongly grounds the caption word in blue to the red
boxes, whereas the ground-truth is the blue boxes. This oc-
curs because the captions usually describe the objects of im-
ages. However, the reward function used in PA-LSTM can-
not guide the words to be grounded to the object regions.

To solve this problem, after AG-MDP we append a MIL
classification network, which takes the bounding boxes gen-
erated in AG-MDP as inputs, to perform MIL image clas-
sification. Specifically, each grounding box is treated as an
instance and one ROI pooling layer is used to extract the
feature representation of each instance. The labels used for
MIL classification refer to the objects (i.e., the nouns in cap-
tions) of images, and in this way the caption words are en-
forced to be grounded to the regions that constitute objects.
As shown in Fig.1, the MIL classification network consists
of two Fully Connected (FC) layers with ReLU activation,
one FC layer with softmax output for instance-level classifi-
cation scores. The final image-level classification scores are
computed using a max-pooling on the instance-level scores.

Objective function We jointly train AG-MDP and the
MIL classification network. The objective function J(θ) is

J(θ) = max
θq,θc

(
1

T

T∑
t=1

Rt(θq)− λH(θc,p
n, ỹn)), (13)

where θq and θc are the parameters of the deep Q-network
and the classification network, respectively. T represents the
number of time steps in PA-LSTM. Rt(θq) denotes the av-
erage of the expected reward over N samples and T ′ time
steps in AG-MDP. Specifically, Rt(θq) is computed by

R(θq) =
1

NT ′

N∑
n=1

T ′∑
t′=1

E[((r(ant′) + γmax ant′+1Q(snt′+1,

ant′+1; θq)−Q(snt′ , a
n
t′ ; θq))

2],
(14)

where γ denotes the discount factor. The function
H(θc,p

n, ỹn) denotes the average sigmoid cross entropy
loss over N training samples.

H(θc,p
n, ỹn) = − 1

N

N∑
n=1

K∑
k=1

[ỹnk × log(pnk ) + (1− ỹnk )

× log(1− pnk )],
(15)

where pn = [pn1 , p
n
2 , · · · , pnK ] denotes the predictive score

vector of the n-th image with respect to each label, ỹn =
[ỹn1 , ỹ

n
2 , · · · , ỹnK ] denotes the corresponding ground-truth la-

bel vector and K is the total number of labels.

3.5 Training strategy
During training, we first train Module I separately to ob-
tain visual features of the input image, then fix the layers of
Module I and train module II and III alternatively. Specifi-
cally, we first train Module II to predict image captions and
attention maps. Then, we fix Module II and fed the attention
maps into Module III, which searches the bounding boxes
for each word by a MDP. The starting window of the MDP
is generated using the input attention maps. After obtaining
the bounding boxes of all the caption words, we fix Module
III and input the generated bounding boxes to the component
Attention update of Module II, for modulating the attention
maps and refining the results of image captioning.

The motivation behind this alternative strategy is that: i)
The attention map provides important clues to find the re-
gions related to words, and thus can act as a teacher to guide
AG-MDP of Module III to first explore the most promis-
ing region that contains target objects. The more accurate
the attention map is, the more effective it is in reducing the
difficulty of the localization and improving the accuracy of
localization. ii) With the progress of training, the accuracy
of the bounding boxes of caption words output by Module
III becomes higher and higher, which is conducive to gradu-
ally improving the accuracy of the attention maps. We repeat
the alternative training several times for better performance.

4 Experiments
4.1 Datasets
For the task of image captioning, we report the experimental
results obtained by different models on the the COCO (Lin
et al. 2014) and Flickr30k Entities (Plummer et al. 2015)
datasets. COCO contains 123, 000 images and Flickr30k En-
tities contains 31, 783 images. Flickr30k Entities augments
the Flickr30k dataset (Young et al. 2014) with bounding
boxes for each entity (noun phrases) of image captions.
The entities are categorized into eight types including peo-
ple (peo.), body parts (body.), animals (ani.), clothing/color
(clo.), instruments (ins.), vehicles (veh.), scene (sce.), and
other. In some cases where some phrases correspond to mul-
tiple boxes, we follow (Plummer et al. 2015) to treat the
union of the boxes as ground truth. Each image of these two
datasets has at least five ground-truth captions.

To make our results comparable to others, we use the
publicly available splits1 of training, testing and validating

1https://github.com/karpathy/neuraltalk
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sets for both Flickr30k Entities and COCO. Specifically, for
COCO dataset we use 113,287 images for training, 5, 000
images for both validation and testing. For Flickr30k Enti-
ties dataset we use 1,000 images for validation, 1, 000 im-
ages for testing and the rest for training. We convert all sen-
tences to lowercase, filter non-alphanumeric characters and
words that occur less than 5 times in the training set, which
results in 7, 414, and 8, 791 words for Flickr30K Entities and
COCO datasets, respectively.

4.2 Evaluation metrics
For the task of image captioning, we use BLEU (B1, B2, B3,
B4)2 (Papineni et al. 2002), METEOR (M) (Banerjee and
Lavie 2005), CIDEr (C) (Vedantam, Lawrence Zitnick, and
Parikh 2015), and ROUGE-L (R) (Lin 2004) as evaluation
metrics. The scores of these metrics are computed with the
codes3 released by COCO Evaluation Server.

The task of language grounding is akin to object detec-
tion, we evaluate the performance using the mean Average
Precision (mAP), which is computed over all the regions
processed by the agent during the episodes in AG-MDP. we
consider that a word is correctly grounded if the predicted
bounding box has an IoU ratio of at least 50% with the corre-
sponding ground-truth bounding box. We only report the ex-
perimental results of language grounding on Flickr30k Enti-
ties, as the ground-truth of the bounding boxes of the words
in COCO is not available.

4.3 Implementation details
The size of input images is 224 × 224. The length of the
captions longer than 18 in COCO or 22 in Flickr30k Entities
are truncated. Each caption word is represented as a 300-D
word2vec (Mikolov et al. 2013) feature. During training, the
layers of the first five convolution blocks in Module I are ini-
tialized with the weights of the corresponding layers of the
VGG16 pre-trained on ImageNet. The rest layers of Mod-
ule I are randomly initialized with Gaussian distributions
G(µ;σ), where µ = 0 and σ = 0.01. We train PAGNet with
SGD at a learning rate of 0.0001 and a mini-batch size of 64.
The momentum and weight decay are set to 0.9 and 0.0005,
respectively. During the training and testing, we align each
word of the generated captions to image regions. The words
other than nouns are aligned to the regions that constitute an
object or a part of an object. This is because image descrip-
tions often make frequent references to objects that occur in
images. During testing, for the task of language grounding,
we use the Stanford parser to identify nouns of the gener-
ated captions and evaluate the performance only on these
nouns, because other words (e.g. determiner and preposi-
tion) do not have accurate location. In Flickr30k Entities
dataset, the bounding boxes associated with noun-phrases
is viewed as the ground-truth bounding boxes of the nouns
in the phrases. As the generated captions are often different
from the ground-truth captions, we evaluate the performance
only on the matched nouns between the generated captions
and the ground-truth captions.

2Bn is the geometric average of the n-gram precision.
3https://github.com/tylin/coco-caption

4.4 Experimental results
Ablation study To reveal the contribution of each com-
ponent, we test the performance of PAGNet with different
configurations, including: i) PAGNet-1, which is obtained
by removing the component Attention update from Mod-
ule II. Without Attention update, the bounding boxes output
by Module III cannot be used to update the attention and
thus the predicted captions cannot be refined. ii) PAGNet-2,
which is obtained by removing the component MIL classifi-
cation from Module III.

Table 1: Results (%) of the ablation study on COCO test set.

Algorithms B1 B2 B3 B4 M R C

PAGNet-1 68.6 51.8 36.7 28.5 23.2 50.8 86.1
PAGNet-2 76.3 59.7 44.9 35.8 26.9 55.2 110.3
PAGNet 83.2 62.8 46.3 40.8 30.4 58.6 118.6

Table 2: Results (%) of the ablation study on Flickr30k En-
tities test set.

Algorithms B1 B2 B3 B4 M R C

PAGNet-1 65.6 43.3 30.4 21.2 19.1 53.3 49.6
PAGNet-2 70.3 51.2 38.3 27.5 22.6 57.9 54.3
PAGNet 74.8 55.8 41.2 30.7 25.2 61.4 57.5

The experimental results of the ablation study on image
captioning are shown in Table 1 for COCO dataset and Ta-
ble 2 for Flickr30k Entities dataset. From the tables, we can
observe that PAGNet (w/o update) exhibits the worst perfor-
mance in all metrics, which indicates that the component At-
tention update matters more than the component MIL classi-
fication. Without the Attention update, PAGNet (w/o update)
cannot update attention weights for each word and thus lose
the ability to refine the predictive captions, which results in
a significant performance drop. With the incorporation of
the Attention update, PAGNet (w/o MIL) outperforms PAG-
Net (w/o update) on both experimental datasets. However,
without the MIL classification network, PAGNet (w/o MIL)
cannot ensure that words are grounded to the regions of ob-
jects, which may lead the PA-LSTM to focus on meaningless
background clutter and thus impedes the performance.

Table 3: AP (%) values of the ablation experiments on
Flickr30k Entities test set.

Algorithms peo. body. ani. clo. ins. veh. sce. other mAP

PAGNet-1 42.8 19.4 22.8 26.4 28.5 39.2 36.4 27.9 30.4
PAGNet-2 48.4 24.5 33.7 31.1 29.2 44.1 38.9 29.3 34.9
PAGNet 54.6 28.4 35.8 39.2 34.3 52.6 46.2 34.5 40.7

As the ground-truth bounding boxes of caption words are
not available in COCO dataset, we only conduct an abla-
tion study on Flickr30k Entities dataset for language ground-
ing and show the results in Table 3. We can see that PAG-
Net (w/o update) performs worse than PAGNet (w/o MIL),
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which indicates Attention update has a larger influence on
language grounding. For example, compared with PAGNet
(w/o update), PAGNet improves the mAP from 30.4% to
40.7%, with a 10.3% margin at most. This is because the in-
troduction of the Attention update enables PA-LSTM to pro-
gressively update the attention map corresponding to each
word, which results in a more accurate starting window for
AG-MDP. Compared with PAGNet (w/o MIL), PAGNet im-
proves the performance by 5.8%, which reveals that the MIL
Classification does contribute to improve the performance of
language grounding. The MIL Classification can be viewed
as a discriminator to penalize the agents that align words to
background clutter.

Comparison with other models To the best of our best
knowledge, no previous works have conducted the experi-
ments of grounding the words of the generated captions to
image regions. Therefore, we only compare PAGNet with
other models on the task of image captioning.

Table 4: Experimental results (%) of image captioning for
different models on COCO dataset.

Algorithms B1 B2 B3 B4 M R C

M-RNN 62.5 45.0 32.1 23.0 19.5 - 66.0
LSTM+Attn 71.8 50.4 35.7 25.0 23.0 - -

Adaptive-Attn 74.2 58.0 43.9 33.2 26.6 - 108.5
LSTM-A 73.5 56.6 42.9 32.4 25.5 53.9 99.8
CNN+attn 71.1 53.8 39.4 28.7 24.4 52.2 91.2
up-down 77.2 - - 36.2 27.8 56.4 113.5
PAGNet 83.2 62.8 46.3 40.8 30.4 58.6 118.6

Table 5: Experimental results (%) of image captioning for
different models on Flickr30k entities dataset.

Algorithms B1 B2 B3 B4 M R C

M-RNN 57.3 36.9 24.0 15.7 - - -
LSTM+Attn 66.9 43.9 29.6 19.9 18.5 - -

Adaptive-Attn 67.7 49.4 35.4 25.1 20.4 - 53.1
PAGNet 74.8 55.8 41.2 30.7 25.2 61.4 57.5

The baseline models include non-attention models and
attention-based models. The non-attention models in-
cludes M-RNN(Karpathy and Fei-Fei 2015) and LSTM-
A(Yao et al. 2017). The attention-based models includes
LSTM+Attn(Xu et al. 2015), Adaptive-Attn(Lu et al. 2017),
CNN+attn(Aneja, Deshpande, and Schwing 2018), up-
down(Anderson et al. 2018). The experimental results on
COCO and Flickr30k Entities datasets are shown in Ta-
ble 4 and Table 5, respectively. We also show some qual-
itative results and analysis in supplementary material. As
shown in the tables, the results across all evaluation met-
rics consistently indicate that PAGNet achieves better per-
formance than all other models. In particular, taking the re-
sults on COCO as an example, PAGNet makes the relative
improvement over the non-attention models by at least 8.4%,
4.9%, 4.7%, 18.8% in BLUE(B-4), METEOR, ROUGR-L
and CIDEr, respectively. PAGNet also outperforms all the

attention-based models, improves the state-of-the-art on B-
4 from 36.2% to 40.8%, METEOR from 27.8% to 30.4%,
ROUGR-L from 56.4% to 58.6%, and CIDEr from 113.5%
to 118.6%. Similarly, on Flickr30k Entities, PAGNet im-
proves the state-of-the-art with a large margin.

The superior performance of PAGNet can be attributed
to the following two reasons: i) PAGNet can progressively
update the attention map for predicting each word. The cor-
rectness of the attention map is a key factor in improving the
performance of image captioning. However, these baseline
models cannot ensure the correctness of the attention (Liu et
al. 2017). ii) By combining the framework of MIL and MDP,
PAGNet grounds the word to the regions of the objects in im-
ages, which prevents the PA-LSTM from focusing on mean-
ingless background clutter. In contrast, the baselines allow
their models to attend any visual parts of images.

5 Conclusion
In this paper, we propose PAGNet that combines image cap-
tioning and language grounding, which can be mutually re-
inforced to improve their performance. Specifically, PAGNet
generates captions for input images by a PA-LSTM, which
can progressively update the attention corresponding to each
word by using the outputs of language grounding. PAGNet
grounds each word to image regions by a AG-MDP, which
searches target bounding boxes starting from the window
generated by the attention map output by PA-LSTM, rather
than the whole image. Experimental results show that PAG-
Net outperforms all the baselines on all datasets.
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