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Abstract

In this paper, we propose a novel model with a hierarchical
photo-scene encoder and a reconstructor for the task of al-
bum storytelling. The photo-scene encoder contains two sub-
encoders, namely the photo and scene encoders, which are
stacked together and behave hierarchically to fully exploit the
structure information of the photos within an album. Specif-
ically, the photo encoder generates semantic representation
for each photo while exploiting temporal relationships among
them. The scene encoder, relying on the obtained photo repre-
sentations, is responsible for detecting the scene changes and
generating scene representations. Subsequently, the decoder
dynamically and attentively summarizes the encoded photo
and scene representations to generate a sequence of album
representations, based on which a story consisting of multiple
coherent sentences is generated. In order to fully extract the
useful semantic information from an album, a reconstructor
is employed to reproduce the summarized album representa-
tions based on the hidden states of the decoder. The proposed
model can be trained in an end-to-end manner, which re-
sults in an improved performance over the state-of-the-arts on
the public visual storytelling (VIST) dataset. Ablation studies
further demonstrate the effectiveness of the proposed hierar-
chical photo-scene encoder and reconstructor.

Introduction
Album storytelling (Yu, Bansal, and Berg 2017; Huang et
al. 2016; Liu, Li, and Shi 2017) is a task to produce a para-
graph to describe an ordered photo stream, and has become
a hot research topic in the vision and language community.
Images in an album are usually redundant and diverse, since
people tend to take multiple photos under multiple scenes.
To describe an album, the model needs not only to extract
the salient contents from the photo stream, but also gen-
erate coherent sentences to describe them. Hence, it is to-
tally different from the image captioning task and album
storytelling is more challenging. Human labeled examples
of both image captioning and album storytelling are illus-
trated in Fig. 1. In this example, five representative images
as well as their labeled captions and story are selected from
∗This work was done while Bairui Wang was a Research Intern

with Tencent AI Lab.
†Corresponding authors.
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1) After a long summer day of playing hard.

2) Swinging and playing and playing with friends.

3) Making up dances and helping clean up after the picnic.

4) We headed for the city fireworks.

5) What a great ending to a great day!

1) The picture is of a little boy sitting in a swing.

2) A young blonde girl soaking wet holding onto a ladder.

3) Two young girls wearing pink and posing the same for the picture.

4) The fireworks are shot off in the distance.

5) A large firework exploding in the sky on a dark night.
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Figure 1: Differences between album storytelling and image
captioning. Only five representative photos from an album
of visual storytelling (VIST) (Huang et al. 2016) dataset are
shown. Sentences in image captioning describe what exactly
happens in the current image, while the sentences in album
storytelling focus on the sentence coherence and story com-
pleteness. Please note that the blue and green boxes repre-
sent two different scenes in the album.

the album. It can be observed that the sentences for the im-
age captioning task are independent, only expressing the ex-
act visual content of each image. On the contrary, the sen-
tences for the album storytelling task take the sentence co-
herence and story completeness into consideration. Lastly,
some sentences in album storytelling might not describe any
photos in the stream. The goal of such sentences is to pre-
serve sentence coherence and story completeness. For ex-
ample, the last sentence in storytelling “what a great
ending to a great day!” does not describe any im-
ages in the album, but it perfectly concludes a story. For
these reasons, we need to consider how to extract related
salient information, detect the exiting events or scenes in the
album, and finally generate coherent sentences to present the
story.

Album storytelling is usually realized in an encoder-
decoder architecture. The encoder relies on the convolu-
tional neural network (CNN) widely used for different
works (Zhang, Yu, and He 2017; Zhang et al. 2018b; 2018a;
Ma, Lu, and Li 2016; Qi et al. 2018), to extract the visual
feature of each photo and fuses them together to yield the
whole album representation. The decoder usually employs
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long short-term memory (LSTM) or gated recurrent unit
(GRU), to generate the corresponding story. Liu et al. (Liu
et al. 2017) bridge the semantically related photos with large
visual gap by projecting them into one common semantic
space for capturing their visual variance, and construct a co-
herence matrix to enforce the sentence coherence for story-
telling. Yu et al. (Yu, Bansal, and Berg 2017) step further by
introducing a photo selector between encoder and decoder
to automatically choose five photos as the summarization of
an album,based on which five sequential sentences are gen-
erated as the album story. For the photos in one album, some
of them might reflect events in the same scene, although they
may have significant visual variance. For example, in Fig. 1,
the photos highlighted with blue boxes should be in the same
scene of “playing with friends”, while the other two pho-
tos highlighted in green boxes should be related to another
scene of “fireworks”. These scene changes are important for
the album storytelling, which are neglected for existing ap-
proaches.

To hierarchically exploit the image and scene informa-
tion, we propose to employ a scene encoder, stacked on the
photo encoder, to detect the scene changes and meanwhile
aggregate the scene information. Afterwards, the decoder at-
tentively summarizes the photo and scene representations to
form a sequence of album representations and decodes them
into multiple coherent sentences. With the scene information
taken into consideration, the problem of large visual vari-
ances in a photo stream is addressed, which helps improve
the sentence coherence in a story.

Additionally, observed the effectiveness of dual learning
in machine translation (Tu et al. 2017) and video caption-
ing (Wang et al. 2018a), we employ the technique of dual
learning to boost the album storytelling performance by re-
constructing the album representations from decoder hidden
states. As such, the hierarchical image and scene informa-
tion are fully exploited in our model.

The major contributions of this work are summarized as
follows: 1) To detect scene changes and aggregate the scene
representation, a hierarchical photo-scene encoder for album
storytelling is proposed. 2) We propose to reconstruct the
attentively aggregated album representations from decoder
hidden states, which help exploit the image and scene infor-
mation. 3) Extensive results on the video storytelling dataset
indicate that the proposed photo-scene encoder and recon-
structor can help boost the performance, resulting in a new
state-of-the-art on album storytelling.

Related Work
Album storytelling, a special case of generating natural sen-
tences from visual contents, is related to image caption-
ing (Karpathy, Joulin, and Fei-Fei 2014; Ma et al. 2015;
Vinyals et al. 2015; Chen et al. 2018b; Jiang et al. 2018a;
2018b) and video captioning (Pan et al. 2017; Wang et al.
2018a; 2018b; Chen et al. 2018a), which share some com-
mon techniques. In this section, we present a short survey on
the related works.

Image and Video Captioning. In the early stage, tem-
plate based methods were proposed to generate captions

from images. The sentences are generated by filling a pre-
defined template with contents detected from input image.
Later, inspired by the advance in neural machine translation,
the encoder-decoder framework (Vinyals et al. 2015) was
introduced into image captioning. Nowadays, many variants
have been proposed (Xu et al. 2015; He et al. 2016a). Re-
cently, reinforcement learning are introduced in this area and
achieved remarkable results (Rennie et al. 2016; Ren et al.
2017). Similar to image captioning, encoder-decoder based
methods were also proposed for video captioning (Venu-
gopalan et al. 2015; Pan et al. 2016). Different from image
captioning, video captioning models need to exploit tempo-
ral information in videos, which is the key to boost perfor-
mance.

Album Storytelling. Different from image and video cap-
tioning, the task of album storytelling aims at generating
several sentences to describe a set of images which may vi-
sual uncorrelated. The first work for this area is (Park and
Kim 2015), in which two datasets named NYC and Disney-
land are released. The authors in (Park and Kim 2015) em-
ployed a local coherence model (Barzilay and Lapata 2008)
to parse the patterns of local transitions of sentences in the
whole text. After that, Huang et al. (Huang et al. 2016) con-
structed a dataset named VIST which contains more rele-
vant stories. Liu et al. proposed to obtain a semantic space
by jointly embedding each image and its corresponding sen-
tence to bridge the images that have similar semantics but
large visual variances. Meanwhile, a semantic relation ma-
trix is identified by distance measure in the semantic space,
which is used to enforce the sentence coherence (Liu et al.
2017). To automatically summarize the contents of the al-
bum for the decoder, Yu et al. (Yu, Bansal, and Berg 2017)
utilized a learnable selector on the top of visual encoder. Al-
though previous works modeled the relationships between
the photos in an album, the effects of scenes are never con-
sidered.

Architecture

For an album with m photos A = {a1,a2, . . . ,am},
where ai denotes the i-th photo, the album storytelling
aims at generating a story composed of n sentences S =
{S1,S2, . . . ,Sn} to describe the album, where Sj ={
sj1, s

j
2, . . . , s

j
t−1

}
is the j-th sentence and sjt denotes the

i-th word in sentence Sj . In this paper, we propose an
encoder-decoder-reconstructor architecture for the album
storytelling, as shown in Fig. 2. Specifically, a novel hier-
archical photo-scene encoder, containing stacked photo en-
coder and scene encoder, exploits the hierarchical structure
information within the album photos. The decoder dynam-
ically and attentively summarizes the outputs of the photo-
scene encoder and decodes several sequential sentences to
form a story. A reconstructor that relies on the decoder
hidden states is employed to regenerate the summarization
by the decoder, which further helps exploit the information
from the album.
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Figure 2: The proposed framework for album storytelling. It consists of three components, namely hierarchical photo-scene
encoder, decoder and reconstructor. The hierarchical photo-scene encoder is composed of two sub-encoders, namely photo en-
coder and scene encoder. The photo encoder extracts the semantic representations of the photos, and the scene encoder explores
scene representations. The decoder attentively summarizes the photo and scene representations and generates multiple coherent
sentences as one story for each album. The reconstructor translates story back to the album representations. Superscripts of
hidden states, such as penc, senc, attn, and dec, denote photo encoder, scene encoder, attention, and decoder, respectively. The
⊕ and � denote weighted sum and average process.

Hierarchical Photo-Scene Encoder
The proposed photo-scene encoder contains two sub-
encoders, namely photo encoder and scene encoder. The
photo encoder models the contents and the temporal infor-
mation of the album. The scene encoder detects the scene
changes. We will present the details in the following subsec-
tions.

Photo Encoder. In our model, the image contents are
extracted with a CNN, specifically the ResNet (He et al.
2016b), and the temporal information in the photo stream
is captured with a bidirectional GRU (Bi-GRU). The details
of the photo encoder are listed as follows:

fi = CNN (ai) ,

−→
h

(penc)
i =

−→
GRU

(
fi,
−→
h

(penc)
i−1

)
,

←−
h

(penc)
i =

←−
GRU

(
fi,
←−
h

(penc)
i−1

)
,

vi = ReLU
([−→
h

(penc)
i ,

←−
h

(penc)
i

]
+Wffi

)
,

(1)

whereWf is a linear function,
−→
h

(penc)
i and

←−
h

(penc)
i are hid-

den states of Bi-GRU and vi is the representation for the in-
put photo ai. Obviously, vi not only contains the photo con-
tent but also captures the context information (other photos)
of one album in both forward and backward directions. In
this way, an album A can be encoded as a sequence of photo
representations V = {v1, v2, . . . , vm}.

Scene Encoder. Different from the videos, in which the
visual appearances of adjacent frames are very similar, the
photos in an album may be not visually relevant, as illus-
trated in Fig. 1. Although these photos are of great differ-
ences, they may be taken in the same scene and describe

GRU

ℎ𝑖−1
(𝑠𝑒𝑛𝑐 )

GRU𝑣𝑖 

Linear

Classifier 𝑘𝑖

𝑥𝑖−1 

𝑥𝑖 

𝑣𝑖−1 

···

···

ℎ𝑖−1
(𝑠𝑒𝑛𝑐 )

ℎ𝑖
(𝑠𝑒𝑛𝑐 ) 

ℎ𝑖
(𝑠𝑒𝑛𝑐 ) 

Figure 3: The framework of the scene encoder. Taking the
phone representations, the scene encoder meanwhile detects
the scene changes with a linear classifier and summarizes the
scene representations with a GRU when the scene bound-
aries are detected. The ⊗ and 	 denote multiplication and
subtraction process.

the same activities within an album. In this paper, we iden-
tify the semantic discontinuities between photos and thereby
detect the scene changes. Meanwhile, each detected scene is
further encoded as one scene representation. We adapt a sim-
ilar boundary detection technique in video (Baraldi, Grana,
and Cucchiara 2016) to detect scene changes in an album
based on the obtained photo representations V. As shown in
Fig. 3, the scene encoder consists of a linear classifier and
one GRU to detect scene changes and summarizes the scene
information. The two components couple together to gener-
ate the final scene representations.

For a given photo representation sequence, the scene de-
tector acts as a judger to determine whether the current in-
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put denotes a start of a new scene, with the consideration of
the previous GRU hidden states, which relates to the context
scene information. Specifically, the scene detector is realized
by a linear classifier:

ki =

{
1, if σ

(
wTsvvi + wTshh

(senc)
i−1 + bs

)
> 0.5,

0, otherwise
(2)

where ki is the flag indicating whether a new scene is de-
tected, h(senc)i−1 denotes the previous hidden state of GRU,
wsv , wsh, and bs are the learnable parameters and the σ(·)
denotes a sigmoid function. As the scene detector is a step
function, which is a discrete operation, we employ the tech-
nique of straight-through estimator (Bengio, Léonard, and
Courville 2013) to back-propagate error signals.

Based on the results of scene detector, GRU updates its
previous hidden state h(senc)i−1 as follow:

h
(senc)
i−1 = (1− ki) ∗ h(senc)i−1 . (3)

Therefore, if the scene detector regards the current input vi
as the starting point of a new scene, the flag ki will be set
to 1 and h(senc)i−1 will be collected as the final representation
of the previous scene. Moreover, as a new scene begins, the
hidden state h(senc)i−1 will be cleared as 0 and the encoding for
a new scene begins. If the scene detector does not detect a
new scene, the flag ki will be 0, and no scene representation
needs to be generated.1 The hidden state updating rules are
the same as in vanilla GRU.

The scene encoder will generate a sequence of scene rep-
resentations X = {x1, x2, . . . , xu} for each album, with xi
denoting the hidden state of the GRU when the flag ki is
equal to 1 and u is the number of scenes detected.

Decoder
The obtained photo and scene representations, i.e. V and X,
capture the hierarchical semantic information of the album,
which contribute differently to the final story generation. We
combine V and X to form a new matrix R = [V,X], and
employ attention mechanism to dynamically and attentively
summarize the photo and scene representations. We denote
the l-th column of R as rl and denote the sequence of gener-
ated summarization as Z = {z1, z2, . . . , zn}. The procedure
of computing zj is expressed as:

h
(attn)
j = GRU

(
αj−1, h

(attn)
j−1

)
,

α̃j = Wα ∗ tanh
(
Wαhh

(attn)
j 1T +WαrR + bα

)
,

αj = softmax
(
α̃j
)
,

zj = Rαj ,
(4)

where 1 is a vector of all ones, and Wα, Wαh, Wαr and bα
are learnable parameters.

1Actually, we have to keep the total number of photo and scene
representations in the code implementation. So when ki = 0, we
take 0 as a false scene representation and collect it. We also intro-
duced a mask to mark the false and true scene representations.

It can be observed that the attention process on photo
and scene representations is relied on GUR. The benefits
of such attention strategy lie in two-fold. First, employing
attention on both photo and scene representations simulta-
neously bridges the semantic gaps between each photo and
each scene. Second, as the summarizing for current content
is affected by the previous attention state, it further enhances
the sentence coherence for storytelling.

Based on the generated n album representations
{z1, z2, . . . , zn}, n sentences are sequentially generated,
composing the final story. For each album representation zj ,
we use another GRU to decode its related sentence, which
is the same as the decoder in image and video captioning.
Specifically, GRU takes the album representation zj , the pre-
vious word sjt−1, and the hidden state at previous step h(dec)t−1
as inputs:

h
(dec)
t = GRU

([
E(sjt ), zj

]
, h

(dec)
t−1

)
,

djt = MLP
([
h
(dec)
t , zj

])
,

P
(
sjt | s

j
<t,A

)
= softmax

(
djt

)
,

(5)

where E(·) is a word embedding function that turns a word
into a learnable vector. The output state h(dec)t is concate-
nated with the album representation zj , which generates the
word distribution with another MLP and softmax function.
P denotes the word probability for word sjt of j-th sentence
at time step t when the generated partial caption sj<t (i.e.{
sj1, s

j
2, . . . , s

j
t−1

}
) is known.

Reconstructor
On top of the decoder, we build a GRU-based reconstructor
to reconstruct the generated album representations Z based
on the decoder hidden states. As such, the information from
the sentences to the album can be further exploited, which is
believed to benefit the album storytelling.

As shown in Fig. 2, the logits Dj =
{
dj1, d

j
2, . . . , d

j
n

}
for the j-th sentence contains the sentence semantic in-
formation. The reconstructor first performs the mean pool-
ing on Dj to obtain the global sentence information d̄j =
1
n

∑n
i=1 d

j
i . Then at each time step, GRU is used to recon-

struct the corresponding album representation:

cjt = GRU
([
djt , d̄

j
]
, cjt−1

)
, (6)

where cjt is reconstructor hidden state of the j-th sentence.
Here we use Cj =

{
cj1, c

j
2, . . . , c

j
n

}
to represent the hid-

den states of the reconstructor. Finally, we obtain the recon-
structed album representation by averaging Cj to obtain z̃j ,
which will be used to compare with zj to obtain reconstruc-
tion loss.

The reconstructor we design in this paper is different from
(Wang et al. 2018a) on twofold. First, we reproduce one al-
bum representation with all hidden states from the decoder
after a sentence is generated, while the model in (Wang et al.
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2018a) needs to reconstruct the feature of each frame. This
is mainly attributed to the differences between storytelling
and captioning tasks. Second, what we reconstruct is the at-
tentively summarized album representations, which contains
the photo and scene information as well as their temporal
relationships. In contrast, only video frame features are con-
sidered to be reconstructed in (Wang et al. 2018a).

Loss Function and Training Strategy
In this subsection, we present the loss function used at each
step and introduce the training strategy.

Given the albums, we aim at minimizing the negative log
probability of the story sentences in the decoder step:

Ldec(θ) =

N∑
y=1

n∑
j=1

− logP
(
Syj | A

y
)
, (7)

whereN denotes the total number of albums and the number
n is the number of sentences in the story for an album. The
sentences Sj are generated word by word, with the proba-
bility defined as:

P (Sj | A) =

T∏
t=1

P
(
sjt | s

j
<t,A

)
, (8)

where T denotes the length of sentence.
In order to capture the temporal coherence in an album,

we follow Yu et al. (Yu, Bansal, and Berg 2017) to employ
the order-preserving constraint, and the loss function is ex-
pressed as:
Lrank(θ) =
N∑
y=1

n∑
j=1

max
(
0, 1− logP

(
S′
y
j | Ay

)
+ logP

(
Syj | A

y
))

.

(9)
Sentences from a story are shuffled to obtain negative in-
stances S′.

For the reconstructor, the Euclidean distance between re-
constructed and original album representations are regarded
as the reconstruction loss:

Lrec(θrec) =

N∑
y=1

n∑
j=1

∥∥z̃yj − zyj ∥∥2 (10)

Considering the encoder, decoder, and reconstructor to-
gether, the complete loss for training our model is defined
as:
L(θ, θrec) = Ldec(θ) + λLrank(θ) + µLrec(θrec), (11)

where λ and µ are the trade-off parameters. To train the
model, we train the encoder and decoder first. Then the pa-
rameters of encoder and the album summarization part of the
decoder are fixed, the reconstructor is trained.

Experiments
In this section, we evaluate the effectiveness of our proposed
model on album storytelling. We first describe the datasets
used for evaluation, followed by a brief description of com-
petitor models. Afterward, the experimental results on al-
bum storytelling are illustrated and discussed.

Datasets
To compare with existing methods, we evaluate the proposed
album storytelling model on the visual storytelling dataset
(VIST) (Huang et al. 2016), which is particularly created for
the task of album storytelling. Specifically, VIST consists
of about 10K albums with about 200K unique photos. Each
album is described with 5 stories, with each story contain-
ing 5 sequential and coherent sentences. Moreover, 5 photos
are selected with order from each album as its correspond-
ing summary. The VIST dataset is split into three parts, i.e.,
8, 031 albums for training, 998 for validation, and 1, 011 for
testing.

Implementation Details
In this section, we describe the detailed configurations and
implementation details of our proposed whole network, in-
cluding the hierarchical photo-scene encoder, decoder, and
reconstructor.

For the sentences, the word that occurs less than 5 times
are eliminated. And each sentence within each story is trun-
cated to 25 words, with each word is embedded as a 512-
dimensional vector.

For album, same as (Yu, Bansal, and Berg 2017), we also
truncate the photo stream, which contains only 40 photos, in-
stead of using only 5 labeled photos for each album. For each
photo, we use the ResNet101 pre-trained on the ILSVRC-
2012-CLS dataset (Russakovsky et al. 2015) as the feature
extractor to generate 2048-dimensional feature. The sizes of
all GRUs in the hierarchical model and linear function in
both photo and scene encoders are set as 512. For decoder,
since the number of scene representations are dynamic, the
dimension of weight vector is decided by the total number of
photo and scene features. The hidden states of GRUs are ini-
tialized to zero, except that the attention GRU is initialized
by the final state of photo encoder.

We use the Adam (Kingma and Ba 2014) as the optimizer,
with the initial learning rate being set as 0.0004 while other
parameters using the recommended parameters. The training
process terminates when the value of CIDEr metric on val-
idation stops growing in 30 validations. Training the whole
network performs in two stages. First, the encode-decoder
is trained until convergence. Afterwards, the reconstructor
is stacked to perform a joint training with the loss function
defined in Eq. (11).

Competitor Models
In this subsection, we mainly compare our method with
the competitor models in (Yu, Bansal, and Berg 2017), as
we aim to generate stories on the whole album, instead of
several manually selected photos as in (Wang et al. 2018c;
Liu et al. 2017).
• enc-dec: a seq2seq model with the encoder and decoder

realized in RNN. The encoder encodes all photos sequen-
tially and the decoder decodes the last hidden state of the
encoder into one story.

• enc-att-dec: an attention model sharing the similar
encoder-decoder architecture with enc-dec. An attention
mechanism performs on all hidden states of the encoder
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Table 1: Performance comparisons with different competitor models on the testing set of the VIST dataset in terms of BLEU (Pa-
pineni et al. 2002), CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015), METEOR (Banerjee and Lavie 2005), and ROUGE-
L (Lin 2004) scores (%). The scores of the competitor baselines, namely enc-dec, enc-attn-dec, h-attn, and h-attn-rank are
directly copied from (Yu, Bansal, and Berg 2017) for fair comparisons. ’-’ indicates the unreported score.

models BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr METEOR ROUGE-L
enc-dec - - 19.58 - 4.65 33.02 29.23

enc-attn-dec - - 19.73 - 4.96 32.98 28.94
h-attn - - 20.53 - 6.84 33.81 29.82

h-attn-rank - - 20.78 - 7.38 33.94 29.82
HP 61.22 37.58 21.31 12.08 7.44 34.16 29.73

HPS 61.79 37.61 21.39 12.10 7.75 34.23 29.91
HPR 61.83 37.72 21.39 12.09 7.61 34.35 29.79

HPSR 61.94 37.82 21.51 12.21 8.03 34.43 31.17

to dynamically summarize a representation for the story
decoding.

• h-attn: a model with hierarchical encoder-selector-
decoder framework, where the selector chooses 5 pho-
tos to summarize the content of album, based on which
decoder generates 5 sequential sentences and aggregates
them as one complete story.

• h-att-rank: this model has the identical hierarchical archi-
tecture with the one in h-attn but considers the ranking
loss defined in Eq. (9).

To reveal the impact of each component, we also provide
the results of our models by removing certain components.
The variants of our method are listed as follows.

• HP: the model only contains the photo encoder and de-
coder, which acts as the base architecture of our proposed
method.

• HPS: based on HP, the model incorporates the scene en-
coder to build the hierarchical photo-scene encoder.

• HPR: based on HP, the reconstructor is stacked on the de-
coder.

• HPSR: the proposed complete model includes the hierar-
chical photo-scene encoder, decoder, and reconstructor.

Experimental Results and Analysis
In this subsection, we first examine the contributions of the
proposed scene encoder and reconstructor, and then demon-
strate the effectiveness of the whole model. It should be
noted that the weight λ for ranking loss in Eq. (11) is set
as 0.2, same as that in h-attn-rank, which ensures fair com-
parisons. The weight µ for reconstructor is set as 0.8. Exper-
iments about different trade-off parameters will be discussed
in the following.

Compared to the best baseline model h-attn-rank, HP gets
better results on CIDEr, BLEU-3, and METEOR, which
demonstrate that the attention mechanism in HP indeed sum-
marizes the proper album representations for decoder to gen-
erate sentences. By incorporating the photo-scene encoder
and reconstructor, the performances can be consistently im-
proved, yielding superior performances of HPS and HPR
over HP. The improvement can be attributed to the following

two reasons. On one hand, the proposed hierarchical photo-
scene encoder in HPS effectively captures the temporal in-
formation in photo stream, and exploits the scene semantic
information from albums. Such hierarchical exploited infor-
mation can help to well characterize the album representa-
tions and thereby benefit the story generation. On the other
hand, the reconstructor in HPR exploits dual information
by reconstructing album representations, and thereby further
enhances the performance of storytelling model.

By considering the the hierarchical photo-scene encoder
and the reconstructor together, HPSR sets a new state-of-
the-art performance, demonstrating the best performance in
terms of all metrics. Therefore, the hierarchical photo-scene
encoder and reconstructor can not only improve the perfor-
mance individually but also cooperate together to further im-
prove our proposed storytelling model.

Qualitative Analysis. Some qualitative examples are il-
lustrated in Fig. 4. In the first sample, h-attn-rank expresses
the same meaning within the generated sentences, which is
“the bride and groom are happy”. For our HPSR model, the
sentence indicates that it is a ’wedding’ (in red) in the be-
ginning, and then mentions the cake-cutting (in blue). In the
end, the story expresses praise to the bride and groom, which
is more similar to a story by human. Compared with the
story generated by h-attn-rank, HPSR generates more co-
herent sentences and yields a complete story. In the second
sample, the story generated by HPSR tells us the property of
museum ’airplane museum’(in red). And HPSR generates
different words for describing the aircrafts, such as ’plane’,
’aircraft’ and ’airplane’ (in blue), although it fails to under-
stand the relationship of them. In contrast, h-attn-rank only
tell us just ’planes’ in ’museum’.

Moreover, we use green box to highlight the detected
scene boundaries in Fig. 4, We can accurately detect the
scene changes from outdoor to indoor and from single to
crowd in the first example, as well as the scene changes
from aircrafts to buildings in the second example. It clearly
demonstrates that the scene encoder can identify the scene
and then utilize and aggregate the scene information for fur-
ther boosting the performances. Actually, detecting scene
changes is affected by huge visual variances between pho-
tos. For example, scene boundaries in the first sample are
clearer than those in the second one, as photos in the first
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h-attn-rank:

We went to the airplane museum. There is a lot of different types of the planes. There was also a lot of aircraft. This 

was very impressed airplane. It is huge and ready to see.

We went to the museum today. The museum was a lot of course. This is a lot of cool planes. This is a lot of fun. This 

is the plane was in the air.

HPSR:

ground-truth:
We went to the aviation museum. We got to see a lot of cool stuff. I saw authentic wwii stuff. As well as a stealth 

plane. I would go back again.

The bride and groom were ready for the wedding. The bride and groom were very happy to be married. The bride and 

groom were very happy. The bride and groom were very happy to be married. The bride and groom were very happy.
h-attn-rank:

It was a beautiful wedding . The bride and groom were so happy to be married. The bride and groom were there. The 

cake was beautiful, they cut the cake. The bride and groom were the best couple.
HPSR:

The bride and groom finally got married. They got together for a group photo. The bride and groom decided to cut the 

cake. The men at the wedding we 're ready to party. The guests were all enjoying themselves.
ground-truth:

Figure 4: Some story examples on the VIST dataset generated by h-attn-rank and HPSR. Due to the page limit, one of the five
ground-truth stories is shown. Words related with story themes are in red and blue. And scene boundaries detected are shown
with green border.

album changes more smoothly than the second album. In fu-
ture, we will focus on how to exploit the scene information
from a deeper semantic level.

Effects of Trade-off Parameters. The hyper-parameters
λ and µ in Eq. (11) balance the contributions of the ranking
loss and reconstruction loss. In this subsection, we study the
effects of these two parameters. Experimental results illus-
trate that our model is robust to the trade-off parameters.

First, λ in HPS varies from 0.0 to 0.5 with step of 0.1 to
increase the role of ranking loss with µ being set as 0.0 to ex-
clude the influence of reconstruction loss. Results are shown
in Table 2. Note that the results with λ = 0.2 correspond
to those of HPS in Table 1. It can be observed that scores
obtained with ranking loss are better than those of model
without considering ranking loss (λ = 0 ). It demonstrates
that ranking loss is beneficial to generate plausible stories.
However, paying more attention on ranking loss may not
help. When λ is larger than 0.2, scores on all metrics will
decrease.

Second, in HPSR, we fix λ as 0.2 and increase the trade-
off parameters µ from 0.0 to 1.0 with step of 0.2 to ex-
amine the contributions of reconstruction loss. As shown
in Table 3, performances can be always improved by in-
troducing the reconstruction loss. The dual information can
be more comprehensively exploited by reconstructing atten-
tively summarized album representations from the decoder
hidden states. Thus the visual storytelling performance can
be improved. In this paper, µ is set as 0.8 according to the

Table 2: Performance of HPS when µ = 0 with different
values of λ on the testing set of VIST (%).

λ BLEU-3 CIDEr METEOR ROUGE-L
0.0 20.27 6.99 33.55 29.59
0.1 20.90 7.33 33.78 29.71
0.2 21.39 7.75 34.23 29.91
0.3 21.31 7.71 34.12 29.90
0.4 21.31 7.64 34.06 29.88
0.5 21.24 7.60 34.02 29.84

Table 3: Performance of HPSR when λ = 0.2 with different
values of µ on the testing set of VIST (%).

µ BLEU-3 CIDEr METEOR ROUGE-L
0.0 21.39 7.75 34.23 29.91
0.2 21.40 7.92 34.35 29.72
0.4 21.41 7.84 34.41 30.75
0.6 21.46 7.87 34.36 30.78
0.8 21.52 8.03 34.43 31.17
1.0 21.49 7.91 34.31 30.02

experimental results in Table 3.

Conclusions
In this work, we proposed a novel network with a hierar-
chical photo-scene encoder and a reconstructor for the task
of album storytelling, which exploits the hierarchical visual
and scene semantic information within an album and the
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dual information between the album and story, respectively.
Jointly trained by minimizing the negative log probabilities
of the generated words and maximizing the similarity of the
original and reconstructed album representations, the pro-
posed model archives the state-of-the-art performance on
the VIST dataset, which indicates the superiority of our pro-
posed hierarchical photo-scene encoder and reconstructor on
generating coherent sentence for describing the album.

Acknowledgments
This work was supported by the National Key Research and
Development Plan of China under Grant 2017YFB1300205,
NSFC Grant no. 61573222, Major Research Program of
Shandong Province 2018CXGC1503, and Fundamental Re-
search Funds of Shandong University 2016JC014.

References
Banerjee, S., and Lavie, A. 2005. Meteor: An automatic metric for
mt evaluation with improved correlation with human judgments. In
ACL, volume 29, 65–72.
Baraldi, L.; Grana, C.; and Cucchiara, R. 2016. Hierarchi-
cal boundary-aware neural encoder for video captioning. arXiv
preprint arXiv:1611.09312.
Barzilay, R., and Lapata, M. 2008. Modeling local coherence: An
entity-based approach. Computational Linguistics 34(1):1–34.
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