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Abstract

In this paper, we address the problem of reconstructing an ob-
ject’s surface from a single image using generative networks.
First, we represent a 3D surface with an aggregation of dense
point clouds from multiple views. Each point cloud is em-
bedded in a regular 2D grid aligned on an image plane of a
viewpoint, making the point cloud convolution-favored and
ordered so as to fit into deep network architectures. The point
clouds can be easily triangulated by exploiting connectivities
of the 2D grids to form mesh-based surfaces. Second, we pro-
pose an encoder-decoder network that generates such kind
of multiple view-dependent point clouds from a single im-
age by regressing their 3D coordinates and visibilities. We
also introduce a novel geometric loss that is able to inter-
pret discrepancy over 3D surfaces as opposed to 2D projec-
tive planes, resorting to the surface discretization on the con-
structed meshes. We demonstrate that the multi-view point
regression network outperforms state-of-the-art methods with
a significant improvement on challenging datasets.

Introduction
3D object reconstruction from a single RGB image is an in-
herently ill-posed problem as many configurations of shape,
texture, lighting, and camera can give rise to the same ob-
served image. Recently, the advanced deep learning mod-
els allow for the rethinking of this task as generating re-
alistic samples from underlying distributions. Regular rep-
resentations are favored by deep convolutional neural net-
works for dense data sampling, weight sharing, etc. Al-
though meshes are the predominant representations for 3D
geometries, their irregular structures are not easy for encod-
ing and decoding. Most extant deep nets (Choy et al. 2016;
Tulsiani et al. 2017; Wu et al. 2016; Zhu et al. 2017;
Girdhar et al. 2016) employ 3D volumetric grids. However,
they suffer from high computational complexity for dense
sampling. A few recent methods (Fan, Su, and Guibas 2017;
Diamanti, Mitliagkas, and Guibas 2017) advocate the un-
ordered point cloud representation. The unordered property
requires additional computation to establish a one-to-one
mapping for point pairs. It often yields sparse results be-
cause of costly mapping algorithms.

∗The work was done when Bo Sun was an intern at MSR.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: (a) A surface is represented by MVPC. Each pixel
in a 1-VPC stores the backprojected surface point (x, y, z)
from this pixel and its visibility v. The stored 3D points are
triangulated according to the 2D grid on the image plane
and their normals are shown to indicate surface orientation.
(b) Given an RGB image, the MVPNet generates a set of
1-VPCs and their union forms the predicted MVPC. The ge-
ometric loss measures discrepancy between predicted and
groundtruth MVPC.

In order to depict dense and detailed surfaces, we in-
troduce an efficient and expressive view-based represen-
tation inspired by recent studies on multi-view projec-
tions (Kalogerakis et al. 2017; Soltani et al. 2017; Shin,
Fowlkes, and Hoiem 2018). In particular, we propose to rep-
resent a surface by dense point clouds visible from multiple
viewpoints. The arrangement of viewpoints are configured
to cover most of the surface. The multi-view point clouds
(MVPC) are illustrated in Fig. 1 (a). Each point cloud is
stored in a 2D grid embedded in a viewpoint’s image plane.
A 1-view point cloud (1-VPC) looks like a depth map, but
each pixel stores the 3D coordinates and visibility informa-
tion rather than the depth of the backprojected surface point
from this pixel. The backprojection transformation offers a
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one-to-one mapping of point sets in 1-VPCs with equal cam-
era parameters. Meanwhile, local connectivities of the 3D
points are introduced from the 2D grids, which facilitate to
form a triangular mesh based on such backprojected points.

Accordingly, the surface reconstruction problem is for-
mulated as the regression of values stored in MVPC. We
employ an encoder-decoder network as a conditional sam-
pler to generate the underlying MVPC, as shown in Fig. 1
(b). The encoder extracts image features and combines them
with different viewpoints’ features respectively. The decoder
consists of multiple weight-shared branches, each of which
generates a view-dependent point cloud. The union of all
1-VPCs forms the final MVPC. We propose a novel geomet-
ric loss that measures discrepancies over real 3D surfaces
as opposed to 2D planes. Unlike previous view-based meth-
ods processing features in 2D projective spaces (i.e., image
planes) and neglecting the information loss through dimen-
sion reduction from 3D to 2D, the proposed MVPC allow
us to discretize integrals of surface variations over the con-
structed triangular mesh. The geometric loss integrating vol-
ume variations, prediction confidences and multi-view con-
sistencies contributes to high reconstruction performance.

Related Work
Mesh-based methods. Mesh representation has been ex-
tensively used to improve and manipulate surface interfaces.
In particular, surface reconstruction is usually posed to de-
form an initial mesh to minimize a variational energy func-
tional in the spirit of data fidelity. (Delaunoy and Prados
2011; Pons, Keriven, and Faugeras 2007; Wang et al. ;
Liu et al. 2015) are the pioneers of reconstructing mesh-
based surface from multi-views. These deformable mesh
methods calculate the integral over the whole surface and
thus capture complete properties on the surface. However,
irregular connectivities of mesh representation make it diffi-
cult to leverage the advance of convolutional architectures.
Recent methods (Pontes et al. 2017) use linear combinations
of a dictionary of CAD models and learn the parameters of
the combination to represent the models, which are limited
to the capacity of the constructed dictionary. We are inspired
by variational methods that have geometric interpretations
for optimization formulation. Important geometric clues are
integrated into the loss function, which contributes a supe-
rior performance significantly.

Voxel-based methods. When learning methods dominate
the recognition tasks, volumetric representation (Girdhar et
al. 2016; Wu et al. 2016; Choy et al. 2016; Wu et al. 2017;
Tulsiani et al. 2017) is more favored because of its regu-
lar grid-like structure that suites convolutional operations.
Tulsiani and Zhou (Tulsiani et al. 2017) formulate a differ-
entiable ray consistency term to enforce view consistency
on the voxels with the supervision of multi-view observa-
tion. 3D-R2N2 (Choy et al. 2016) learns to aggregate voxel
occupancy from sequential input images and can obtain ro-
bust results. Voxel-based methods are limited by the cubic
growth rate of both memory and computation time, leading
to low-resolution of grids.

View-based methods. As the drawbacks of voxel-based
CNNs are obvious, some methods adopt view-based rep-
resentations. They project surfaces on image planes with
regular 2D grids that allows planar convolution. A few
methods (Park et al. 2017; Zhou et al. 2016) achieve im-
pressive results in synthesizing novel views from a single
view. Tatarchenko et al (Tatarchenko, Dosovitskiy, and Brox
2016) utilize CNNs to infer images and depth maps of ar-
bitrary views given an RGB image, and then fuse the depth
maps to yield a 3D surface. Soltani et al (Soltani et al. 2017)
synthesize multi-view depth maps from a single or multiple
depth maps. Since depth maps inherently contain geomet-
ric information, our task, which takes a single RGB image
as an input is much more challenging. Lin et al (Lin, Kong,
and Lucey 2018) also generate points of multiple views with
a generative network. These methods all focus on predicting
the intermediate information in 2D projective planar spaces
yet ignore real 3D spatial correlation and multi-view con-
sistency. Our method incorporates the spatial correlation of
surface points and further enforces multi-view consistency
to achieve more accurate and robust reconstructions.

Point-based methods. Some methods generate an un-
ordered point cloud from an image by deep learning. Su et
al (Fan, Su, and Guibas 2017) are the first to study the prob-
lem. The unordered property of a point cloud enjoys high
flexibility (Qi et al. 2017), but it increases computational
complexity due to lack of correspondences. This makes such
methods not scalable, resulting in sparse points.

Approach
In this section, we first formally introduce the MVPC rep-
resentation for depicting 3D surfaces efficiently and expres-
sively. Then, we detail the MVPNet architecture and the geo-
metric loss for generating the underlying MVPC conditioned
on an input image.

MVPC Representation
An object’s surface S is considered as an aggregation of par-
tial surfaces

⋃N
i=1 Si visible from a set of predefined view-

points {ci|i = 1, ..., N}. Each partial surfaces Si is dis-
cretized and parameterized by the aligned 2D grid on the
image plane of ci, as shown in Fig. 1 (a). Each pixel xk on
the grid stores the 3D point xk = (xk, yk, zk) backprojected
from xk onto S and the visibility vik of xk from ci. vik is
set to 1 if xk is visible from ci, otherwise 0. The visible
3D points are triangulated by connecting them with the 2D
grid’s horizontal, vertical, and one of the diagonal edges to
form a mesh-based surface. Such multiple view-dependent
parameterized surfaces are named multi-view point clouds,
MVPC in short,M =

⋃N
i=0Mi, whereMi denotes a 1-view

point cloud, 1-VPC in short. Let X = {xk} denote all the
3D points inM.

MVPC inherit the advantage of efficiency from general
view-based representations. Unlike volumetric representa-
tion using costly 3D convolution, 2D convolution is per-
formed on the 2D grids, which encourages higher reso-
lutions for denser surface sampling. Meanwhile, MVPC
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Figure 2: MVPNet architecture. Given an input image I ,
MVPNet consisting of an encoder and a decoder regresses
the N 1-VPCs {Mi} for {ci}, i = 1, .., N respectively. N
concatenated features (z, ci) are fed into N branches of the
decoder, of which the branches share weights.

encode one-to-one mapping of predicted points X and
groudtruth points X̃ explicitly. Induced by the same view-
point ci, pixels with the same 2D coordinates xk are de-
fined to store the same surface point xk. In other words,
the groundtruth and predicted 1-VPC of the same viewpoint
store the points in the same order. Compared to unordered
point cloud representations that require additional computa-
tion to construct point-wise mapping, MVPC have superior
performance in computation.

MVPC express not a simple combination of multi-view
projections but a discrete approximation to a real 3D surface.
On the one hand, A triangular mesh is constructed for each
1-VPC, and thus we can formulate losses based on geome-
tries on 3D surfaces rather than on 2D projections. Note that
the edges inherited from 2D grids are not all real in 3D, e.g.,
edges connecting points on depth discontinuities are fake.
We deal with the fake edges by penalizing them largely in
the loss formulation. On the other hand, we carefully select
relatively few yet evenly distributed viewpoints on a viewing
sphere that can cover most of the targeting surface. Different
numbers of viewpoints are discussed in the experiment sec-
tion. We also consider multi-view consistency constraints in
overlap regions to improve the expressiveness of MVPC.

MVPNet Architecture
We exploit an encoder-decoder generative network architec-
ture and incorporate camera parameters into the network to
generate view-dependent point clouds. The network archi-
tecture is illustrated in Fig. 2. The encoder learns to map
an image I to an embedding space to obtain a latent feature
z. Each camera matrix ci is first transformed to a higher-
dimensional hidden representation ci, serving as a view in-
dicator, and then is concatenated with z to get (z, ci). The
decoder that converts (z, ci) to a 1-VPC Mi indicated ci
learns the projective transformation and space completion.
The decoder shares weights among N branches. The output

MVPCM =
⋃N

i=1Mi is of shape N ×H ×W × 4, where
H and W denote the height and width of a 1-VPC. The last
channel corresponds to a 3D coordinate xk = (xk, yk, zk)
and visibility vik of a point xk.

The encoder is a composition of convolution and leaky
ReLU layers. The camera parameters are encoded with
fully connected layers. The decoder contains a sequence
of transposed-convolution and leaky ReLU layers. The last
layer is activated with the tanh functions, responsible for
regressing 3D coordinates and visibilities of points. Imple-
mentation details are described in the experiment section.

Geometric Loss
While most point generation methods (Fan, Su, and Guibas
2017; Lin, Kong, and Lucey 2018; Soltani et al. 2017) adopt
point-wise distance metrics, they disregard geometric char-
acteristics of surfaces. These networks attempt to predict
“mean” shapes (Fan, Su, and Guibas 2017), failing to pre-
serve fine details.

We propose a geometric loss (GeoLoss) that is able to
capture variances over 3D surfaces rather than over sparse
point sets or 2D projective planes. We expand the GeoLoss
to be differentiable for neuron networks and also to be ro-
bust against noise and incompletion. The GeoLoss is made
up of three components:

LGeo = Lptd + αLvol + βLmv (1)

where Lptd is the sum of distances between corresponding
point pairs, Lvol denotes the quasi-volume term measuring
discrepancy of local volumes, and Lmv is the multi-view
consistency term. Coefficients α and β are the weights bal-
ancing different losses.

Point-wise distance term. The points in groundtruth and
predicted 1-VPC have a one-to-one mapping according to
the definition of MVPC, illustrated in Fig. 3 (a). 2D pix-
els with equal 2D coordinates are defined to store the same
surface point induced by the same viewpoint. Therefore, the
sum of point-wise distances for groundtruth and predicted
1-VPC is the L2 loss. The total sum of point-wise distances
of MVPC is given by:

Lptd =

N∑

i

∑

x∈Mi

||Mi(x)− M̃i(x)||2 (2)

where x is a 2D pixel, Mi(x) and M̃i(x) denotes the 3D
coordinates stored in predicted 1-VPC Mi and groundtruth
1-VPC M̃i at x. Here we take the visibility into account by
setting M̃i(x) to an infinite point F3 (a point at the far clip-
ping plane practically).

Neural networks tend to predict a mean shape averaging
out the space of uncertainty using L2 or L1 loss. Point-wise
distances neglecting local interactions do not fully express
geometric discrepancy between surfaces. Moreover, this
metric may give rise to erroneous reconstructions around
occluding contours, because minor errors on 2D projective
planes lead to large 3D deviations at depth continuities.
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Figure 3: Loss functions. (a) Point-wise distances for 1-VPC. Induced by the same viewpoint, groundtruth and predicted points
(x̃k and xk) stored in xk indicate the same surface point. (b) Quasi-volume discrepancy for typical examples. The local volume
discrepancies of points around depth discontinuities, e.g., x2 and x4, are largely penalized by keeping fake connectivities (red
dashed lines). (c) Õij

i is the projection on view i of the overlap region visible from view i and j. Õij
j is the projected overlap

region on view j. Considering the overlap region, the multi-view consistency term minimizes the sum of distances between 3D
points stored in pixels x ∈Mi and its reprojected pixel Πj ◦Mi(x) ∈ M̃j , and verse visa.

Quasi-volume term. The limitation of point-wise dis-
tance metrics motivates us to formulate discrepancies over
surfaces. Inspired by the volume-preserving constraints used
in variational surface deformation (Eckstein et al. 2007),
we propose a quasi-volume discrepancy metric to better de-
scribe the surface discrepancy. This term is able to charac-
terize fine details and deal with occluding contours.

Let us first define the volume discrepancy between pre-
dicted and groundtruth continuous surfaces:

Lvol(S, S̃) =

∫

S
(x− x̃) · ndx (3)

where x and x̃ are 3D points on predicted surface S and
groundtruth surface S̃, dx is an area element of a surface
and n is the outward normal to the surface at point x, (·)
denotes the inner product operator.

The discrete volume discrepancy of the MVPC represen-
tation can be deduced as:

Lvol =
N∑

i

∑

x∈Mi

Ṽi(x)(Mi(x)− M̃i(x)) · Ñi(x) (4)

where Ṽi is the groundtruth visibility map and Ñi is the
groundtruth area-weighted normal map of view i. Formally,
for each pixel x with its backprojected surface point x, the
normal map of view i is Ni(x) =

∑
∆∈Ω(x) |∆|n(x), where

∆ denotes a mesh triangle, Ω(x) contains the 1-ring trian-
gles around point x, n(x) is the outward normal at point x.
A detailed proof is presented in the supplemental material.
Note that we use the groundtruth visibility Ṽi(·), and thus
add a cross entropy loss accounting for the visibilities.

Equation 4 formulates the volume discrepancy for visible
parts. We complement it with invisible parts, and name it
as quasi-volume discrepancy, as illustrated in Fig. 3 (b). We
assign the background pixels with a terminate point F3 at
far clipping plane. Thus, the points at boundaries of Mi will
achieve a large discrepancy gain, which means they are of
high weights in the loss function, e.g., x4 in Fig. 3 (b). Sim-
ilarly, points at occluding contours experience large volume

loss, e.g., x2 in Fig. 3 (b). The quasi-volume term implicitly
handles the challenges introduced by occluding contours.

Multi-view consistency term. Partial surfaces of an ob-
ject visible from different viewpoints may have overlap,
which can be reached by letting points from different views
attract one another. The consistency serves as links between
groundtruth and predicted 3D points stored in a pair of cor-
responding pixels from two different views. Fig. 3 (c) shows
an example for two views. Note that the consistency only ex-
ists at overlap regions. We first compute the projected over-
lap region Õij

i on view i by rendering groundtruth 1-VPC
M̃j on view i, and get Õij

j by rendering M̃i on view j. We
minimize the sum of two distances between the stored 3D
points in two corresponding pixels and their reprojected pix-
els in the other view. For each pixel x in Õij

i , the predicted
3D coordinate is Mi(x). The reprojected pixel on view j is
Πj ◦Mi(x), where Πj denotes the projection matrix of view
j. Similarly, the pixel x′ at groundtruth 1-VPC M̃j corre-
sponds to the pixel Πi ◦ M̃j(x

′) in the predicted 1-VPC Mi.
Therefore, the multi-view consistency term takes the form:

Lmv =
∑

i,j

(
∑

x∈Õij
i

||Mi(x)− M̃j(Πj ◦Mi(x))||2

+
∑

x∈Õij
j

||M̃j(x)−Mi(Πi ◦ M̃j(x))||2) (5)

The multi-view consistency term does not directly mini-
mize distances between two predicted 1-VPCs but leverages
the correspondences between predictions and groundtruths.
This is because erroneous 3D coordinates in predictions will
introduce false correspondences, resulting in divergence or
falling into a trivial solution.

Experiment
Implementation
We show the architecture of MVPNet in Fig. 2. The input
RGB image is of size 128 × 128. The output surface coor-

Figure 3: Loss functions. (a) Point-wise distances for 1-VPC. Induced by the same viewpoint, groundtruth and predicted points
(x̃k and xk) stored in xk indicate the same surface point. (b) Quasi-volume discrepancy for typical examples. The local volume
discrepancies of points around depth discontinuities, e.g., x2 and x4, are largely penalized by keeping fake connectivities (red
dashed lines). (c) Õij

i is the projection on view i of the overlap region visible from view i and j. Õij
j is the projected overlap

region on view j. Considering the overlap region, the multi-view consistency term minimizes the sum of distances between 3D
points stored in pixels x ∈Mi and its reprojected pixel Πj ◦Mi(x) ∈ M̃j , and verse visa.

Quasi-volume term. The limitation of point-wise dis-
tance metrics motivates us to formulate discrepancies over
surfaces. Inspired by the volume-preserving constraints used
in variational surface deformation (Eckstein et al. 2007),
we propose a quasi-volume discrepancy metric to better de-
scribe the surface discrepancy. This term is able to charac-
terize fine details and deal with occluding contours.

Let us first define the volume discrepancy between pre-
dicted and groundtruth continuous surfaces:

Lvol(S, S̃) =

∫

S
(x− x̃) · ndx (3)

where x and x̃ are 3D points on predicted surface S and
groundtruth surface S̃, dx is an area element of a surface
and n is the outward normal to the surface at point x, (·)
denotes the inner product operator.

The discrete volume discrepancy of the MVPC represen-
tation can be deduced as:

Lvol =

N∑

i

∑

x∈Mi

Ṽi(x)(Mi(x)− M̃i(x)) · Ñi(x) (4)

where Ṽi is the groundtruth visibility map and Ñi is the
groundtruth area-weighted normal map of view i. Formally,
for each pixel x with its backprojected surface point x, the
normal map of view i is Ni(x) =

∑
∆∈Ω(x) |∆|n(x), where

∆ denotes a mesh triangle, Ω(x) contains the 1-ring trian-
gles around point x, n(x) is the outward normal at point x.
A detailed proof is presented in the supplemental material.
Note that we use the groundtruth visibility Ṽi(·), and thus
add a cross entropy loss accounting for the visibilities.

Equation 4 formulates the volume discrepancy for visible
parts. We complement it with invisible parts, and name it
as quasi-volume discrepancy, as illustrated in Fig. 3 (b). We
assign the background pixels with a terminate point F3 at
far clipping plane. Thus, the points at boundaries of Mi will
achieve a large discrepancy gain, which means they are of
high weights in the loss function, e.g., x4 in Fig. 3 (b). Sim-
ilarly, points at occluding contours experience large volume

loss, e.g., x2 in Fig. 3 (b). The quasi-volume term implicitly
handles the challenges introduced by occluding contours.

Multi-view consistency term. Partial surfaces of an ob-
ject visible from different viewpoints may have overlap,
which can be reached by letting points from different views
attract one another. The consistency serves as links between
groundtruth and predicted 3D points stored in a pair of cor-
responding pixels from two different views. Fig. 3 (c) shows
an example for two views. Note that the consistency only ex-
ists at overlap regions. We first compute the projected over-
lap region Õij

i on view i by rendering groundtruth 1-VPC
M̃j on view i, and get Õij

j by rendering M̃i on view j. We
minimize the sum of two distances between the stored 3D
points in two corresponding pixels and their reprojected pix-
els in the other view. For each pixel x in Õij

i , the predicted
3D coordinate is Mi(x). The reprojected pixel on view j is
Πj ◦Mi(x), where Πj denotes the projection matrix of view
j. Similarly, the pixel x′ at groundtruth 1-VPC M̃j corre-
sponds to the pixel Πi ◦ M̃j(x

′) in the predicted 1-VPC Mi.
Therefore, the multi-view consistency term takes the form:

Lmv =
∑

i,j

(
∑

x∈Õij
i

||Mi(x)− M̃j(Πj ◦Mi(x))||2

+
∑

x∈Õij
j

||M̃j(x)−Mi(Πi ◦ M̃j(x))||2) (5)

The multi-view consistency term does not directly mini-
mize distances between two predicted 1-VPCs but leverages
the correspondences between predictions and groundtruths.
This is because erroneous 3D coordinates in predictions will
introduce false correspondences, resulting in divergence or
falling into a trivial solution.

Experiment
Implementation
We show the architecture of MVPNet in Fig. 2. The input
RGB image is of size 128 × 128. The output surface coor-
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Table 1: Quantitative comparison to the state-of-the-arts with per-category voxel IoU.

plane bench cabinet car chair display lamp speaker firearm couch table phone vessel mean
vo

xe
l

R2N2(Choy et al. 2016)(1 view) 0.513 0.421 0.716 0.798 0.466 0.468 0.381 0.662 0.544 0.628 0.513 0.661 0.513 0.56
R2N2(Choy et al. 2016)(5 views) 0.561 0.527 0.772 0.836 0.550 0.565 0.421 0.717 0.600 0.706 0.580 0.754 0.610 0.630

PTN-Comb(Yan et al. 2016) 0.584 0.508 0.711 0.738 0.470 0.547 0.422 0.587 0.610 0.653 0.515 0.773 0.551 0.590
CNN-Vol(Yan et al. 2016) 0.575 0.514 0.697 0.735 0.445 0.539 0.386 0.548 0.603 0.647 0.514 0.769 0.5445 0.578

po
in

t Soltani(Soltani et al. 2017) 0.587 0.524 0.698 0.743 0.529 0.679 0.480 0.586 0.635 0.59 0.593 0.789 0.604 0.618
Su(Fan, Su, and Guibas 2017) 0.601 0.55 0.771 0.831 0.544 0.552 0.462 0.737 0.604 0.708 0.606 0.749 0.611 0.640

D
ep

th GeoLoss(N=4) 0.655 0.578 0.664 0.709 0.546 0.653 0.486 0.573 0.676 0.630 0.561 0.783 0.633 0.627
GeoLoss(N=6) 0.624 0.579 0.677 0.719 0.543 0.636 0.498 0.578 0.682 0.636 0.548 0.800 0.643 0.628
GeoLoss(N=8) 0.622 0.576 0.691 0.724 0.540 0.643 0.501 0.590 0.684 0.647 0.534 0.788 0.640 0.629

M
V

PN
et PtLoss(N=6) 0.474 0.459 0.573 0.704 0.436 0.558 0.375 0.496 0.519 0.567 0.432 0.691 0.558 0.526

GeoLoss(N=4) 0.666 0.622 0.693 0.786 0.616 0.653 0.510 0.599 0.696 0.690 0.635 0.811 0.663 0.665
GeoLoss(N=6) 0.678 0.623 0.685 0.788 0.627 0.681 0.523 0.602 0.693 0.701 0.652 0.814 0.659 0.671
GeoLoss(N=8) 0.667 0.610 0.686 0.782 0.609 0.667 0.507 0.596 0.688 0.686 0.641 0.809 0.661 0.662

Table 2: Quantitative comparison to point-based methods using the chamfer distance metric. All numbers are scaled by 0.01.

plane bench cabinet car chair display lamp speaker firearm couch table phone vessel mean
Su(Fan, Su, and Guibas 2017) 1.395 1.899 2.454 1.927 2.121 2.127 2.280 3.000 1.337 2.688 2.052 1.753 2.064 2.084

Lin(Lin, Kong, and Lucey 2018) 1.418 1.622 1.443 1.254 1.964 1.640 3.547 2.039 1.400 1.670 1.655 1.569 1.682 1.761
Soltani(Soltani et al. 2017) 0.167 0.165 0.122 0.026 0.277 0.085 1.814 0.163 0.107 0.138 0.226 0.258 0.102 0.28

MVPNet(N=4) 0.045 0.084 0.063 0.042 0.086 0.065 0.561 0.163 0.104 0.082 0.070 0.046 0.060 0.113
MVPNet(N=6) 0.041 0.079 0.060 0.041 0.085 0.053 0.421 0.152 0.093 0.070 0.069 0.038 0.050 0.096
MVPNet(N=8) 0.044 0.085 0.058 0.040 0.103 0.050 0.494 0.153 0.113 0.083 0.075 0.039 0.059 0.107

dinate maps is of shape N × 128 × 128 × 4. The encoder
consists of five convolution (conv) layers with numbers of
channels {32, 64, 128, 256, 512}, kernel sizes {3, 3, 3, 3,
3}, and strides {2, 2, 2, 2, 2}, and two fully connected (fc)
layers with numbers of neurons {4096, 2048}. The cam-
era matrix c is encoded with two fc layers with numbers
of neurons {64, 512}. The decoder part takes the concate-
nated feature (z, ci) as input and generates a surface coordi-
nate map for each viewpoint. The structure of the decoder is
mirrored to the encoder, consisting of two fc layers and five
transposed-convolution (also known as “deconv”) layers for
up-sampling. We add the last conv layer with the number of
channels 4 and kernel size 1 to generate 4-channel output.
Batch normalization (Ioffe and Szegedy 2015) is not per-
formed because we observe the training process is smooth.
Leaky ReLU activation with a negative slope of 0.2 is ap-
plied after all conv layers except the last one which is fol-
lowed by the tanh layer.

We train the network with Tensorflow (Abadi et al. 2016)
on a Nvidia TitanX GPU with a minibatch of 32. We use
Adam optimizer (Kingma and Ba 2014) with a learning rate
of 0.0001. The training procedure takes 100,000 iterations.
The coefficients α and β of GeoLoss is set to 100 and 1
respectively after 10000 iterations and both to 0 before, be-
cause the initial point clouds are noisy and the computed
volume discrepancy and consistency term are not reliable.

Dataset
We leverage the ShapeNet (Chang et al. 2015) dataset, which
contains a large volume of clean CAD models for our ex-
periments. We setup two datasets for single-class and multi-
class cases. The chair category (ShapeNet-Chair) is used for
single-class processing since it is ubiquitously evaluated in
previous methods. For the multi-class dataset, we use 13 ma-
jor classes as the 3D-R2N2 (Choy et al. 2016) set, listed in
Table 1, named as ShapeNet-13. The datasets are split into

training and testing sets with the fraction 0.8/0.2.
To obtain input RGB images, we render each 3D model

for 24 viewpoints which are randomly sampled with an ele-
vation ranging from (-20, 20), an azimuth ranging from (0,
360) degrees, and a radius ranging from (0.6, 2.3). Note that
all models are normalized by their bounding spheres’ radius.

Viewpoint arrangement. For the viewpoint arrangement
of the output MVPC, we approximately maximize the cov-
erage of the “mean” shape (the unit sphere) of all objects
with respect to N . The N (4, 6, 8) viewpoints are located at
vertices of a tetrahedron, octahedron, and cube, respectively.
All the viewpoints look at the origin. Orthogonal projection
is used to avoid additional perspective distortion. We calcu-
late the average surface coverage by counting the number
of visible points in groundtruth models, which are 97.2%,
97.7% and 98.0% for N=4, 6, 8 respectively. The perfor-
mances of different viewpoint settings are reported.

Reconstruction Result
Both qualitative and quantitative results of the reconstruc-
tion are presented. We compare our method to two collec-
tions of state-of-the-art methods according to the final result
representations, namely, point clouds and volumetric grids.

Comparison to point generation methods. We compare
our method to the state-of-the-art point generation methods
using both an unordered point cloud representation (Fan, Su,
and Guibas 2017) and view-based representations (Soltani et
al. 2017; Lin, Kong, and Lucey 2018) on the ShapeNet-13
dataset. Note that the methods proposed by Su et al (Fan,
Su, and Guibas 2017), Lin et al (Lin, Kong, and Lucey
2018) and us take a single RGB image as the input, while
Soltani et al (Soltani et al. 2017) use depth maps as in-
put which may contain more geometric information. We use
Intersection-of-Union (IoU) of voxel occupancy for evalu-
ating the reconstruction accuracy as most methods do. The
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Figure 4: Qualitative comparison to point generation method. Compared with Su et al (Fan, Su, and Guibas 2017), our method
preserves more fine details and recovers better concave structures.

Method IoU

DRC 0.52

PTN-Comb 0.56

CNN-Vox 0.45

MarrNet 0.57

Ours 0.67

(a) IoU on ShapeNet-Chair (b) Visual compare to 3D-R2N2 on ShapeNet-13 

Input GT R2N2(V1) R2N2(V5) Ours Input GT R2N2(V1) R2N2(V5) Ours

Figure 5: Comparison to voxel-based methods. (a) Quantitative comparison on ShapeNet-Chair. (b) Qualitative comparison to
3D-R2N2 (Choy et al. 2016) on ShapeNet-13. Our method with a single image generates more detailed results than 3D-R2N2
with 5 input images (V5).

per-class IoU statistics are reported in Table 1. Our results
of different numbers of viewpoints (N=4,6,8) are reported
for discussion. For a fair comparison, we adopt the model
proposed in (Soltani et al. 2017) without class supervision
and post-processing. All the results are generated from the
trained model provided by the authors (Soltani et al. 2017;
Fan, Su, and Guibas 2017).

Our results using GeoLoss outperform the previous meth-
ods on 9 out of 13 classes with 6 and 8 viewpoints. The
results of 6 viewpoints achieve best on 7 classes, which
demonstrates that 6 viewpoints are sufficient to cover most
objects and suppress error propagation in multi-view learn-
ing. Note that our network with the GeoLoss achieves sig-
nificantly better results on classes with a lot of thin and com-
plex structures, such as planes (+17%), chairs(+7%), and
lamps(+6%). This is because our method exacts at captur-
ing fine details by minimizing the GeoLoss which interprets

the variance over 3D surfaces rather than sparse points or
2D projective planes. The importance of GeoLoss is demon-
strated by comparing with the results using only point-wise
distance term (PtLoss). We find that the results from Ge-
oLoss are about 10% higher than the ones from PtLoss
with 6 viewpoints (best in GeoLoss). We use GeoLoss in
the following experiments. Our reconstruction accuracy for
classes with simple structures, e.g., cabinet, car and display,
are slightly lower than Su (Fan, Su, and Guibas 2017) and
Soltani (Soltani et al. 2017), because their net architectures
are more complex (“hourglass” structure in Su (Fan, Su, and
Guibas 2017) and “ResNet blocks” in Soltani (Soltani et al.
2017)) and predict better “mean” shapes.

To evaluate the faithfulness of the generated point to
the groundtruth surface, we compute the Chamfer Distance
(CD) (Fan, Su, and Guibas 2017) between the prediction and
the densely sampled points from groundtruth meshes. CD is

8954



a common measure of the distance between two point sets,
which is defined by summing up the distances between each
source point to its nearest point in the target point set. The
groundtruth points of size 100,000 are uniformly sampled
on the surface. The CD evaluation is reported in Table 2.
Our method is superior to the previous methods on most
classes (12/13) by a large margin. Same as in IoU evalu-
ation, 6 viewpoints get the best on 10 classes. The multi-
view point clouds generated by our network possess high
density and the geometric loss enforces local spatial coher-
ence. The unordered point generation method (Fan, Su, and
Guibas 2017) gets sparse point clouds which are limited to
characterizing enough details, leading to large chamfer dis-
tances. The method proposed by Soltani et al (Soltani et al.
2017) also obtains small distances since it generates points
with many more (20) depth maps.

For qualitative comparison, we present several typical ex-
amples in Fig. 4. Our method is able to produce much denser
points (∼15k), while the method proposed by Su (Fan, Su,
and Guibas 2017) limits the point cloud size to 1024. Our
method is superior in recovering fine details (see chair backs,
plane tails and car wheels) and dealing with concave struc-
tures, such as car trunk and two layers of plane wings.
The geometric loss that handles occlusion encourages the
improvement on concave shapes. More results of ours are
shown in supplemental materials.

Comparison to voxel-based methods. We compare the
proposed method to the state-of-the-art voxel-based meth-
ods, i.e., 3D-R2N2 (Choy et al. 2016), DRC (Tulsiani et al.
2017), two models of PTN (Yan et al. 2016) (PTN-Comb,
CNN-Vox), and MarreNet (Wu et al. 2017). These methods
directly use 3D volumetric representation and usually com-
pute the IoU for evaluation. Since our results form dense
point clouds, we convert them to (32 × 32 × 32) grids as
Su et al (Fan, Su, and Guibas 2017) do. For single class
model, our method achieves much higher IoU (0.667) than
the highest IoU (0.57) among the state-of-the-art methods
on the ShapeNet-Chair dataset, shown in Fig. 5 (a). For the
multi-class results, we report per-category IoU in Table 1
on ShapeNet-13 dataset. The qualitative comparison to 3D-
R2N2 is shown in Fig. 5 (b). We show that our method pre-
serves more fine details, such as legs of chairs, wings of
planes, and holders of firearms.

Comparison to depth regression. Here we show our find-
ings that directly regressing 3D coordinates has advantages
over regressing depths. To compare 3D coordinates and
depth regression, we adopt the same network architecture
but the last layer and use the same GeoLoss. The channel
numbers of the last layers are 3 and 1 for regressing co-
ordinates and depths respectively. As reported in Table 1,
the depth regression generates reasonable results, but the ac-
curacy is about 4% lower than coordinate regression. This
is because searching a gradient decent move in 3D space
with an arbitrary direction is more flexible and stable than
searching in one fixed direction considering the loss of the
3D space (rather than 1D depth loss), especially on occlud-
ing contours. With the same 3D volume loss descent, the 3D
point needs a small move in the steepest direction, while the
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Figure 6: Reconstruction results on real word data.
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Figure 7: Reconstructions for linear interpolation of two
learned latent features within and across classes respectively.

depth needs an extremely large move in the fixed direction.
Thus, 3D coordinates are easier to learn than depths. In ad-
dition, the complexity does not grow much because only the
last layer of the decoder is different.

Results on real dataset. We show our model works well
on natural images without additional input. To adjust our
model to real-world images, we synthesize the training data
by augmenting the input images with random crops from
the PASCAL VOC 2012 dataset (Everingham et al. 2011)
as (Tatarchenko, Dosovitskiy, and Brox 2016) do. We show
that the proposed method yields reasonable results in Fig. 6.

Application. We show the generative representation of the
learned features using linear interpolation in Fig. 7. We
can see clear and gradual transitions of the generated point
clouds, indicating the learned feature space to be sufficiently
representative and smooth. More results of discriminative
representations are presented in the supplemental material.

Conclusions
We have presented the MVPNet for regressing dense 3D
point clouds of an object from a single image. The point
regression achieves state-of-the-art performance resorting
to the MVPC representation and the geometric loss. The
MVPC express an object’s surface with view-dependent
point clouds that are embedded in regular 2D grids, which
easily fit into CNN-based architectures. Also, the one-to-
one mapping from 2D pixels to reprojected 3D points makes
these points in 1-VPC ordered, which accelerate the loss
computation. Although the dimension of the data embedding
space is reduced from 3D space to 2D projective planes, we
propose the geometric loss that integrates variances over the
3D surfaces instead of the 2D projective planes. The experi-
ments demonstrate the geometric loss significantly improves
the reconstruction accuracy.
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