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Abstract

Although promising results have been achieved in video cap-
tioning, existing models are limited to the fixed inventory of
activities in the training corpus, and do not generalize to open
vocabulary scenarios. Here we introduce a novel task, zero-
shot video captioning, that aims at describing out-of-domain
videos of unseen activities. Videos of different activities usu-
ally require different captioning strategies in many aspects,
i.e. word selection, semantic construction, and style expres-
sion etc, which poses a great challenge to depict novel ac-
tivities without paired training data. But meanwhile, simi-
lar activities share some of those aspects in common. There-
fore, we propose a principled Topic-Aware Mixture of Ex-
perts (TAMoE) model for zero-shot video captioning, which
learns to compose different experts based on different topic
embeddings, implicitly transferring the knowledge learned
from seen activities to unseen ones. Besides, we leverage ex-
ternal topic-related text corpus to construct the topic embed-
ding for each activity, which embodies the most relevant se-
mantic vectors within the topic. Empirical results not only
validate the effectiveness of our method in utilizing seman-
tic knowledge for video captioning, but also show its strong
generalization ability when describing novel activities.

Introduction
Video captioning aims at automatically describing the con-
tent of a video in natural language. It is not only an important
testbed for advances in visual understanding and grounded
natural language generation, but also has many practical ap-
plications such as video search and assisting visually im-
paired people. As a result, it has attracted increasing atten-
tion in recent years in both NLP (Venugopalan et al. 2016;
Wang et al. 2018a) and computer vision communities (Kr-
ishna et al. 2017). Although existing video captioning
methods (e.g., sequence-to-sequence model) have achieved
promising results, they largely rely on paired videos and tex-
tual descriptions for supervision (Xu et al. 2016). In other
words, they are solely trained to caption the activities that
have appeared during training and thus cannot generalize
well to novel activities that have never been seen before.
However, it is prohibitively expensive to collect paired train-
ing data for every possible activity. Therefore, we introduce
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Label

A man is seen speaking 
to the camera. The man 
then puts a shoe on the 
ice.

A man is seen speaking to 
the camera while holding 
up a knife. He then uses a 
tool to sharpen the knife. 

External	Corpus

Existing	Methods Our	Method

Figure 1: Example of zero-shot video captioning. “Sharpen-
ing Knives” is a novel activity unseen in training, and ex-
isting methods fail to generate a pertinent caption because
it is aware of neither the action “sharpening” nor the ob-
ject “knife”. Our method effectively utilizes the knowledge
from the external corpus based on predicted activity label
and generates a more pertinent caption.

a new task of zero-shot video captioning, where a model
is required to accurately describe novel activities in videos
without any explicit paired training data.

An example of zero-shot video captioning is shown in
Figure 1, where an existing method fails to correctly cap-
tion a video about the novel activity “sharpening knives” be-
cause it has learned no knowledge about the activity in train-
ing. Moreover, the description of different activities vary in
word selection, semantic construction, style expression etc,
so videos of different activities usually require different cap-
tioning strategies, which poses a great challenge in the open
vocabulary scenario. Despite the difference, many activities
share similar characteristics, e.g., playing baseball and play-
ing football are both sports activities and a few words can be
used to describe both in common.

Therefore, we propose a novel Topic-Aware Mixture of
Experts (TAMoE) approach to caption videos of unseen ac-
tivities. First, we define a set of primitive experts that are
sharable by all possible activities, each of which has their
own parameters and learns a specialized mapping from la-
tent features to the output vocabulary (the primitive cap-
tioning strategies). Then we introduce a topic-aware gating
function that learns to decide the utilization of those primi-

8965



tive experts and compose a topic-specific captioning model
based on a certain topic. Besides, in order to leverage world
knowledge from external corpora, we derive a topic embed-
ding for each activity from the pretrained semantic embed-
dings of the most relevant words. When captioning a novel
activity, our TAMoE method is capable of inferring the com-
position of the primitive experts conditioned on the topic
embedding, transferring the knowledge learned from seen
activities to unseen ones. Our main contributions are three-
fold:

• We introduce the task of zero-shot video captioning which
aims to accurately describe novel activities in videos with-
out paired training data for the activities.

• We propose a novel Topic-Aware Mixture of Experts ap-
proach for zero-shot video captioning, where a topic-
aware gating function learns to infer the utilization of the
primitive experts for caption generation from the intro-
duced topic embedding, implicitly doing transfer learning
across various topics.

• We empirically demonstrate the effectiveness of our
method on a popular video captioning dataset and show
its strong generalization capability on captioning novel
activities.

Related Work
Video Captioning Since S2VT (Venugopalan et al.
2015)’s first sequence-to-sequence model for video caption-
ing, numerous improvements have been introduced, such
as attention (Yao et al. 2015), hierarchical recurrent neu-
ral network (Yu et al. 2016; Pan et al. 2016), multi-modal
fusion(Gan et al. 2017; Shen et al. 2017; Wang, Wang,
and Wang 2018), multi-task learning (Pasunuru and Bansal
2017), etc. Meanwhile, a few large-scale datasets are intro-
duced for video captioning, either for single-sentence gener-
ation (Xu et al. 2016) or paragraph generation (Rohrbach
et al. 2014). Recently, (Krishna et al. 2017) propose the
dense video captioning task, which aims at detecting mul-
tiple events that occur in a video and describing each of
them. However, existing methods mainly focus on learn-
ing from paired training data and testing on similar videos.
Though some work has attempted to utilize linguistic knowl-
edge to assist video captioning (Thomason et al. 2014;
Venugopalan et al. 2016), none of them has formally consid-
ered zero-shot video captioning to describe videos of novel
activities, which is the focus of this study.

Novel Object Captioning in Images Recent studies on
novel object captioning (Anne Hendricks et al. 2016; Venu-
gopalan et al. 2017) attempt to describe novel objects not ap-
pearing during training. Zero-shot video captioning shares a
similar spirit in the sense that it also generates captions with-
out paired data. But zero-shot video captioning is a more
challenging task: images are static scenes, and methods
based on noun word replacement can perform well on novel
object captioning (Anderson et al. 2017; Wu et al. 2018;
Lu et al. 2018); While describing novel activities in videos
requires both temporal understanding of videos and deeper

understanding of the social or human knowledge of activ-
ities beyond the object level. Different activities need dif-
ferent captioning strategies, as well as share some common
characteristics. Motivated by this, our method learns the un-
derlying mapping experts from the latent representations to
the vocabulary, with a topic-aware gating mechanism im-
plicitly transferring the utilization, which is orthogonal to
these methods for novel object captioning in images.

Zero-Shot Activity Recognition In prior work, zero-shot
learning has been studied on the task of activity recog-
nition (Fabian Caba Heilbron and Niebles 2015; Zhang
et al. 2018), to predict a previously unseen activity. Un-
like zero-shot activity recognition (Gan et al. 2015; 2016;
Zellers and Choi 2017), zero-shot video captioning focuses
on the language generation part—learning to describe out-
of-domain videos of a novel activity without paired captions
but with the knowledge of the activity. This technique is
valuable because caption annotations for videos are much
more expensive to get compared with activity labels.

Mixture of Experts Mixture of Experts (MoE) is orig-
inally formulated by Jacobs et al., which learns to com-
pose multiple expert networks with each to handle a sub-
set of the training cases. Then MoE has been applied
to various machine learning algorithms (Jordan and Ja-
cobs 1994; Collobert, Bengio, and Bengio 2003), such as
SVMs (Collobert, Bengio, and Bengio 2002), Gaussian Pro-
cesses (Tresp 2001), and deep networks (Ahmed, Baig, and
Torresani 2016; Gu et al. 2018). Recently, Shazeer et al.
proposes a sparsely-gated mixture-of-experts layer for lan-
guage modeling, which benefits from conditional computa-
tion. Yang et al. extends it to Mixture of Softmax to break the
softmax bottleneck and thus increase the capacity of the lan-
guage model. In this work, we exploit the nature of MoE for
transfer learning by training a topic-aware gating function to
compose primitive experts and adapt to various topics.

Describing Novel Activities in Videos
Task Definition
Here we first introduce the general video captioning
task, whose input is a sequence of video frames ν =
{v1, v2, . . . , vn} where n is the number of frames in tem-
poral order. The output is a sequence of words W =
{w1, w2, . . . , wT }, where T is the length of the generated
word sequence. At each time step t, a model chooses a word
wt from a vocabulary V that is built from the paired training
corpus. Normally, the vocabulary V can cover the possible
output tokens if tested on the same activities as in training.
But for zero-shot video captioning, the testing videos are
about novel activities that have never been seen during train-
ing and require many out-of-vocabulary words to describe.
So zero-shot video captioning is an open vocabulary learn-
ing scenario, whose objective is to produce a word sequence
W with wt ∈ V ∗, where V ∗ is beyond the training corpus
and ideally would consist of all the possible tokens from the
world knowledge. But in practice, we narrow it down to the
vocabulary related to all the activities in the dataset.

8966



Input	Video

Sharpening	Knives

Label
DocumentExternal	Corpus

...	 TFIDF-based	
Topic	Embedding

LSTM

MoE Layer

Reverse	Embedding

SoftmaxHe Uses

tool

knife

3D	CNN

Gating	
Function

LSTMLSTM LSTM

LSTM LSTM LSTM

!"

#$ %$&'()(+)

!-

.$/"

Gating	Function	0

Embedding

Reverse	Embedding

Softmax

+

!1

ℎ$

✖
✖

✖

MoE Layer

d

{45}

Video	
Encoding	
Module

TAMoE Captioning	Module

Attention

(a) Overview of the TAMoE method (b) TAMoE Captioning Module at time step t

Video	Encoder

Figure 2: (a) Overview of our TAMoE method; (b) The detailed version of the TAMoE caption module at time step t.

Method Overview
We show in Figure 2(a) the overall pipeline of our Topic-
Aware Mixture of Experts (TAMoE) approach, which
mainly consists of the video encoding module, the TFIDF-
based topic embedding, and the TAMoE captioning mod-
ule. The video encoding module encodes video-level fea-
tures and predicts the activity label. Then, the topic-related
documents can be fetched from the external corpus and used
to calculate the TFIDF-based topic embedding, which rep-
resents the semantic meaning of the activity. In the decoding
stage, the TAMoE captioning module takes both the video
features and the topic embedding as input and generates the
caption by dynamically composing specialized experts. In
the following sections, we discuss each module in details.

Video Encoding Module
Given the input video ν = {v1, v2, . . . , vn}, we employ the
pretrained 3D convolutional neural networks to extract the
segment-level features {fj} where j = 1, 2, . . . ,m � n.
We use I3D features (Carreira and Zisserman 2017) in our
experiments. The I3D features include short-range temporal
dynamics while keeping advanced spatial representations.
Then our model sends the segment-level features {fj} to
the video encoder, which is a bidirectional LSTM, to model
long-range temporal contexts. It outputs the hidden repre-
sentations {hej} with e denoting the video encoder, which
encodes the video-level features.

TFIDF-based Topic Embedding
To learn the knowledge of the activities without paired cap-
tions, we fetch topic-related documents from various data
sources, e.g., Wikipedia and WikiHow. We also employ the
pretrained fasttext embeddings (Mikolov et al. 2018) to cal-
culate the representations of the topics (though we use fast-
text embeddings here, our method is not limited to a particu-
lar word embeddings). Given an activity label y (y ∈ Y ) and

the related documents Dy , we need to compute the topic-
specific knowledge representations.

The documents contain many high-frequency but irrele-
vant words, e.g., the, to, a, so average embedding is too
noisy to effectively represent the knowledge of the topic.
Term Frequency-Inverse Document Frequency (TF-IDF) is
an efficient statistical method to reflect the importance of a
word to a document. Here we propose a topic-aware TF-IDF
weighting gk(y) to calculate the relevance of each unigram
xk to the topic-related documents Dy:

gk(y) =
zk(y)∑

xl∈Dy
zl(y)

log(
|Y |∑

y′∈Y min(1, zk(y′))
) (1)

where zk(y) is the number of times the unigram xk occurs
in the documents Dy related to label y. The first term is the
term frequency of the unigram xk, which places a higher
weight on words that frequently occur in the topic-related
documents Dy . The second term measures the rarity of xk
with inverse document frequency, reducing the weight if xk
commonly exists across all the topics. Then our TF-IDF em-
bedding is

Wtfidf (y) =
∑

xk∈Dy

gk(y)Wfasttext(xk) (2)

whereWfasttext denotes the pretrained fasttext embeddings.
As shown in Figure 2(a), the TF-IDF embedding is concate-
nated with the average embedding of the activity label and
eventually taken as the topic embedding Wtopic(y).

TAMoE Captioning Module
Attention-based Decoder LSTM The backbone of the
captioning model is an attention-based LSTM. At each time
step t in the decoding stage, the decoder LSTM produces its
output hdt (d denoting the decoder) by considering the word
at previous step wt−1, the visual context vector ct, the topic
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embedding Wtopic(y) and its internal hidden state hdt−1. In
formula,

hdt = LSTM([wt−1, ct,Wtopic(y)], h
d
t−1) (3)

where the context vector ct is a weighted sum of the encoded
video features {hej}

ct =
∑

αt,jh
e
j (4)

These attention weights {αt,j} act as an alignment mecha-
nism by giving higher weights to certain features that allow
better prediction. They are learned by the attention mecha-
nism proposed in (Bahdanau, Cho, and Bengio 2015).

Mixture-of-Expert Layer and Topic-Aware Gating Func-
tion Following Equation 3, the output of the decoder
LSTM hdt is then fed into the Mixture-of-Experts (MoE)
layer (see Figure 2(b)). Here each expert is an underlying
mapping function from the latent representation hdt to the
vocabulary, which learns the captioning primitives that are
shareable to all topics. All the experts in the same MoE
layer have the same architecture, which is parameterized by
a fully-connected layer and a nonlinear ReLU activation. Let
S denote the number of experts and Es be the s-th expert,
then output of the MoE layer is

ot =

S∑
s=1

βsEs(h
d
t ) (5)

where βs is the gating weight of the expert Es, representing
the utilization of the expert Es. And it is determined by the
topic-aware gating function G:

βs =
exp(G(Wtopic(y))s/τ)∑S
i=1 exp(G(Wtopic(y))i/τ)

(6)

where G is a multilayer perceptron in our model. The tem-
perature τ determines the diversity of the gating weights.
The topic-aware gating function G is conditioned on the
topic embedding Wtopic(y) and learns to combine the ex-
pertise of those primitive experts for a certain topic. Intu-
itively, G learns topic-aware language dynamics and com-
poses different expert utilization for different topics based
on the topic embeddings, which can implicitly transfer the
utilization across topics.

Embedding and Reverse Embedding Layers In addi-
tion, we also employ semantic word embeddings in our cap-
tioning model to help generate descriptions of unseen activ-
ities. Incorporating pretrained embeddings assigns semantic
meanings to those out-of-domain words and thus can facili-
tate the open vocabulary learning (Venugopalan et al. 2017).
Particularly, we load the fasttext embeddings into both the
embedding layer and the reverse embedding layer (see Fig-
ure 2(b)), and freeze their weights during training. So the
embedding layer represents the input word (one-hot vector)
into semantically meaningful dense vectors, while the re-
verse embedding layer is placed before the softmax layer
to reverse the mapping from the feature vectors into the vo-
cabulary space.

Learning
Cross Entropy Loss We adopt the cross entropy loss to
train our models. Let θ denote the model parameters and
w∗1:T be the ground-truth word sequence, then the training
loss is defined as

L(θ) = −
T∑

t=1

log p(w∗t |w∗1:t−1, θ) (7)

where is where p(wt|w1:t−1, θ) is the probability distribu-
tion of the next word.

Variational Dropout In order to regularize our MoE
layer and promote expert diversity, we adopt the variational
dropout (Gal and Ghahramani 2016; Merity, Keskar, and
Socher 2018) when training the TAMoE module. Different
from the standard dropout, variational dropout samples a bi-
nary dropout mask only once upon the first call and then
repeatedly uses that locked dropout mask within samples. In
addition, the variational dropout helps stabilize the training
of the topic-aware gating mechanism by making the expert
behaviors consistent within samples.

Experimental Setup
Held-out ActivityNet-Captions Dataset
ActivityNet (Fabian Caba Heilbron and Niebles 2015) is a
well-known benchmark for video classification and detec-
tion, which covers 200 classes of activities. Recently, (Kr-
ishna et al. 2017) have collected the corresponding natu-
ral language description for the videos in the ActivityNet
dataset, leading to the ActivityNet-Captions dataset. We set
up the zero-shot learning scenario based on the ActivityNet-
Captions dataset. We re-split the videos of the 200 activi-
ties into the the training set (170 activities), the validation
set (15 activities), and the unseen test set (15 activities).
Each activity is unique and only exists in one split above.
We hold out the novel 15 activities for testing that appear
during neither training nor validation. The held-out 15 ac-
tivities are: “making a lemonade”, “armwrestling”, “long-
boarding”, “playing badminton”, “shuffleboard”, “slack-
lining”, “hula hoop”, “playing drums”, “braiding hair”,
“gargling mouthwash”, “installing carpet”, “sharpening
knives”, “grooming dog”, “assembling bicycle”, “painting
fence”. In order to compare with the model’s performance
on the supervised split, we then further split an additional
seen test set that shares the same activities with the training
set but has different video samples. The external text corpus
is crawled from Wikipedia, WikiHow, and some related doc-
uments in the first Google Search page. On average there are
2.72 related documents per activity (the max is 10).

Evaluation Metrics
We use four popular and diverse metrics for language gen-
eration, CIDEr, BLEU, METEOR, and ROUGE-L. Among
these metrics, only CIDEr weighs the topic relevance of n-
grams and thus can better reflect a model’s capability on
captioning novel activities. Therefore, we use CIDEr as the
major metric. In addition to the average CIDEr score of the
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Seen Test Set Unseen Test Set
Model Embedding CIDEr B-1 B-2 B-3 B-4 M R CIDEr B-1 B-2 B-3 B-4 M R

Base task-specific 29.67 23.57 12.06 7.02 4.42 9.77 21.45 21.59 22.34 10.57 5.76 3.45 9.01 20.06
Base fasttext 31.48 23.88 12.20 7.11 4.39 10.16 21.69 22.51 22.50 11.01 6.02 3.58 9.43 20.70

Topic task-specific 33.06 24.48 12.64 7.27 4.32 10.49 22.24 23.06 22.06 10.34 6.05 3.62 9.40 20.60
Topic fasttext 33.72 24.53 12.56 7.20 4.44 10.24 22.11 24.06 22.97 11.09 5.98 3.51 9.70 20.98

TAMoE task-specific 34.38 25.79 13.29 7.44 4.46 10.69 23.03 24.39 23.36 11.19 6.05 3.59 9.28 21.46
TAMoE fasttext 35.53 25.51 13.93 7.39 4.61 10.83 22.51 28.23 24.34 11.18 6.14 3.68 9.96 21.17

Table 1: Comparison with the baseline methods on the held-out ActivityNet-Captions dataset. We report the results of our
TAMoE model and the other baseline models in terms of CIDEr, BLEU (B), METEOR (M), and ROUGE-L (R) scores.

n-grams (n = 1, 2, 3, 4), we also report individual CIDEr-1,
CIDEr-2, CIDEr-3, and CIDEr-4 scores.

Implementation Details
To preprocess the videos, we sample each video at 20fps
and extract the I3D features (Carreira and Zisserman 2017)
from these sampled frames. Note that the I3D model is pre-
trained on the Kinects dataset (Kay et al. 2017) and used
here without fine-tuning. The activity labels feeding to our
model are predicted by a pretrained 3D CNN model (Wang
et al. 2016) for activity classification. The vocabulary is built
based on the training corpus and the unpaired external cor-
pus. We use 300-dimensional pretrained fasttext embedding
for words. All the hyper-parameters are tuned on the vali-
dation set. The maximum number of video features is 200
and the maximum caption length is 32. The video encoder
is a biLSTM of size 512, and the decoder LSTM is of size
1024. We initialize all the parameters from a uniform dis-
tribution on [−0.1, 0.1]. Adadelta optimizer (Zeiler 2012) is
used with batch size 64. Learning rate starts at 1 and is then
halved when the current CIDEr score does not surpass the
previous best in 4 epochs. The maximum number of epochs
is 100, and we shuffle the training data at each epoch. Sched-
ule sampling (Bengio et al. 2015) is also employed to train
the models. Beam search of size 5 is used at test time. It
takes around 6 hours to fully train a model on a TITAN X.

Experiments and Analysis
We compare three models on the Held-out ActivityNet-
Captions dataset.
Base: we first implement the state-of-the-art attention-based
sequence-to-sequence model used in (Wang et al. 2018b) as
our baseline (Base). Simply put, the Base model is the model
in Figure 2 without the topic embedding module and the gat-
ing function. Everything else is exactly the same.
Topic: the Topic model has a very similar architecture with
the Base model, except that its decoder takes the proposed
topic embedding as an additional input.
TAMoE: the proposed TAMoE model is illustrated in Fig-
ure 2, which consists of the video encoding module, the
topic embedding, the topic-ware gating function, and the
Mixture-of-Experts layer.

Moreover, we test the impact of pretrained word em-
beddings by comparing two word embedding initialization

Model CIDEr BLEU-4 METEOR ROUGE-L

Base 47.2 40.9 28.8 60.9
TAMoE 48.9 42.2 29.4 62.0

Table 2: Results on the MSR-VTT dataset.

strategies: (1) task-specific, that randomly initializes the em-
beddings and learns them during training, and (2) fasttext,
that uses pretrained fasttext embeddings (fixed in training).

Experimental Results

Seen and Unseen Test Sets of the Held-out ActivityNet
Captions Table 1 shows the results on both the seen and
the unseen test sets. First, it can be noted that incorporat-
ing pretrained fasttext embeddings brings a consistent im-
provement across models on both test sets, especially for the
zero-shot learning scenario on the unseen test set. Second,
by comparing the Base model and the Topic model it can be
observed that solely adding the proposed topic embedding
can bring some improvement. These validate the hypothesis
that the pretrained embeddings can bring useful prior knowl-
edge to assist caption generation, and it facilitates the gener-
ation of out-of-domain words that do not appear in the train-
ing data. More importantly, our TAMoE model significantly
improves the scores over the baseline models. For instance,
our full TAMoE model outperforms the Base model on both
the seen and the unseen test sets by a large margin, with
respectively 19.75% and 30.75% relative improvement on
CIDEr. The remarkable improvement on the unseen test set
clearly demonstrates the superior capability of the proposed
model on captioning novel activities.

Because CIDEr is the only metric that considers the infor-
mativeness of the generated captions by penalizing uninfor-
mative n-grams that frequently occur across the dataset, it is
expected that model performance will present a larger gap
on CIDEr between the seen and the unseen test sets. This
is confirmed by our results, which reinforces that CIDEr is a
better metric for the task of novel activity captioning because
it makes a more clear distinction between common n-grams
that occur across all activities and activity-specific n-grams.
Therefore, we will use CIDEr hereafter.
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Model Embedding C-1 C-2 C-3 C-4

Base task-specific 52.13 20.41 8.92 4.18
Base fasttext 55.17 21.40 8.81 4.64

Topic task-specific 55.79 20.94 9.47 4.68
Topic fasttext 58.84 23.33 9.32 4.75

TAMoE task-specific 58.81 22.98 10.42 6.00
TAMoE fasttext 67.48 25.89 12.09 7.47

Table 3: Individual CIDEr scores of unigrams (C-1), bigrams
(C-2), trigrams (C-3), and fourgrams (C-4) on the unseen
test set, which are all novel activities.

I3D Video Features X X X X
Average Label Embedding X X X

TFIDF Embedding X X X

CIDEr 22.51 25.96 26.61 15.77 28.23

Table 4: Impact of different features on the TAMoE model.
I3D Video Features are the extracted video features using
the pretrained I3D model; Average Label Embedding is the
average embedding of the words in the predicted activity la-
bel; TFIDF Embedding is the weighted embedding of the
external topic-related documents (see Equation 2).

MSR-VTT To prove the effectiveness of our method on
generic video captioning, we further test it on the widely-
used MSR-VTT dataset (Xu et al. 2016). As shown in Ta-
ble 2, the TAMoE approach outperforms the Base model on
all the metrics by a large margin. Note that for simplicity,
we utilize the pretrained visual and audio features as used in
(Wang, Wang, and Wang 2018) as well as the ground-truth
category labels on this dataset.

Ablation Study
Evaluation on Different N-grams In order to take a
closer look at the transfer influence of our TAMoE model
on individual n-grams, we calculate the CIDEr score of uni-
grams, bigrams, trigrams, and fourgrams on the unseen test
set separately. As seen in Table 3, our TAMoE model per-
forms the best on all n-grams, but the CIDEr score of 4-
grams is still not very satisfactory. A general limitation of
current captioning systems is that the focus is still on learn-
ing word-level embeddings and generating a caption word
by word. Incorporating phrase-level embeddings may alle-
viate this issue. We leave it for future study.

Impact of Different Features In Table 4, we test the in-
fluence of the I3D video features and various versions of
the topic embedding. Evidently, it performs the best to use
the concatenation of the average label embedding and the
TFIDF embedding from external corpus as the topic embed-
ding. Besides, without videos features, the model is unable
to generate diverse captions for different videos that also
match the video content (the corresponding CIDEr score is
as low as 15.77).

Figure 3: Learning curves of the TAMoE models with dif-
ferent numbers of experts (n) and different expert dimen-
sion (d). For example, n4 d512 denotes the TAMoE model
with 4 experts, each of dimension 512. Note the validation
scores are calculated by greedy decoding, which are lower
than than testing scores by beam search of size 5.

Novel Activity Base TAMoE Top-4 related words
making a lemonnade 28.63 31.66 lemonade, sugar, lemon, juice
arm wrestling 23.72 35.96 wrestling, arm, opponent, strength
longboarding 20.51 28.79 longboard, board, foot, riding
playing badminton 20.18 22.00 shuttle, racket, shuttlecock, court
shuffleboard 14.95 20.85 shuffleboard, disks, discs, puck
slacklining 24.43 21.33 slackline, slacklining, line, balance
hula hoop 17.50 26.29 hoop, hula, hoops, waist
playing drums 31.70 39.44 drum, snare, metronome, hat
braiding hair 21.30 36.80 braid, hair, section, strands
gargling mouthwash 11.09 52.03 mouthwash, mouth, gargling, fluoride
installing carpet 22.40 17.85 carpet, strips, tackless, wall
sharpening knives 24.77 43.63 stone, knife, sharpening, blade
grooming dog 18.33 26.61 dog, clippers, shampoo, fur
assembling bicycle 22.17 28.74 handlebar, bike, stem, seat
painting fence 23.56 23.15 fence, paint, painting, sprayer

Table 5: Topic-wise comparison. We compare the CIDEr
scores of the Base model and our TAMoE model within
each activity. In the right-most column, we list the top words
based on their TF-IDF weights in the external topic-related
documents.

Impact of The Number of Experts An important hyper-
parameter in our TAMoE model is the number of experts
in the Mixture-of-Experts layer. We compare models with
different numbers of experts. For a fair comparison, we ad-
just the dimensionality of each expert to ensure that differ-
ent models have the same capacity (number of parameters).
Note that we set the minimum expert dimensionality as 128
to ensure a lower bound of each expert’s capacity. Their
learning curves on the validation set are shown in Figure 3.
As can be observed, the model with 8 experts of dimension
256 (n8 d256) works the best, and the single-expert model,
which is indeed the Topic model, performs the worst. Be-
sides, simply increasing the number of experts does not im-
ply a gain in performance. For example, the performance of
the model n256 d128 (∼27.2M parameters) is worse than
the best-performing model n8 d256 (∼17.9M parameters).
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Figure 4: Qualitative comparison between our TAMoE model and the Base model on describing novel activities.

Topic-wise Result Comparison To examine the perfor-
mance of our method on each novel activity, we report the
topic-wise comparison with the Base model in Table 5. The
TAMoE model outperforms the Base model on most of the
activities (12 out of 15), of which some activities are im-
proved by a remarkable margin, e.g., arm wresting, braiding
hair, gargling mouthwash, and sharpening knives. Mean-
while, we showcase the top-4 related words from the exter-
nal corpus for each topic according to their TF-IDF weights
to provide a better illustration of our topic embeddings.

Qualitative Comparison Figure 4 showcases two qualita-
tive examples on the unseen test set. In the first video about
“painting fence”, the Base model has no linguistic knowl-
edge of the concept “fence”, while our TAMoE model suc-
cessfully recognizes it and produces a more pertinent de-
scription. In the second example about “grooming dog”, the
Base model fails to recognize the actual action though al-
ready knowing the objects, while our model generates a
more accurate description of the video.

Discussion
In this paper, we formally define the task of zero-shot video
captioning and set up a common setting for evaluation. In
order to accurately describe videos of unseen activities, we
seek solutions based on what and how to utilize and transfer.
Note that one assumption of zero-shot video captioning is
that the activity category can be either provided or predicted.
Even so, it is still valuable because caption annotations for
videos are much more expensive to get compared with activ-
ity labels. But combining zero-shot activity recognition and
zero-shot video captioning is a promising direction towards
more advanced approaches for transfer learning, which we
leave for future study.
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