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Abstract

Although adversarial samples of deep neural networks
(DNNs) have been intensively studied on static images, their
extensions in videos are never explored. Compared with im-
ages, attacking a video needs to consider not only spatial cues
but also temporal cues. Moreover, to improve the impercep-
tibility as well as reduce the computation cost, perturbations
should be added on as few frames as possible, i.e., adversarial
perturbations are temporally sparse. This further motivates
the propagation of perturbations, which denotes that pertur-
bations added on the current frame can transfer to the next
frames via their temporal interactions. Thus, no (or few) ex-
tra perturbations are needed for these frames to misclassify
them. To this end, we propose the first white-box video at-
tack method, which utilizes an l2,1-norm based optimization
algorithm to compute the sparse adversarial perturbations for
videos. We choose the action recognition as the targeted task,
and networks with a CNN+RNN architecture as threat mod-
els to verify our method. Thanks to the propagation, we can
compute perturbations on a shortened version video, and then
adapt them to the long version video to fool DNNs. Experi-
mental results on the UCF101 dataset demonstrate that even
only one frame in a video is perturbed, the fooling rate can
still reach 59.7%.

Introduction
In the past decade, Deep Neural Networks (DNNs) have
shown great superiority in computer vision tasks, like im-
age recognition (He et al. 2016), image restoration (Dong
et al. 2014) and visual tracking (Wang and Yeung 2013).
Although DNNs obtain the state-of-the-art performance in
these tasks, they are known to be vulnerable to adversarial
samples (Szegedy et al. 2013), i.e., the images with visually
imperceptible perturbations that can mislead the network to
produce wrong predictions. The adversarial samples are usu-
ally calculated by the Fast Gradient Sign Method (FGSM)
(Goodfellow, Shlens, and Szegedy 2014) and optimization-
based methods (Moosavi-Dezfooli et al. 2016). One reason
for adversarial samples is that they are fell on some ar-
eas in the high-dimensional feature space which are not ex-
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plored during training. Thus, investigating adversarial sam-
ples not only helps understand the working mechanism of
deep networks, but also provides opportunities to improve
the networks’ robustness (Xie et al. 2017; Dong et al. 2018;
Ma, Xu, and Cao 2019).

Up to now, many studies about adversarial samples have
been investigated, such as adversarial perturbations for a sin-
gle image (Moosavi-Dezfooli, Fawzi, and Frossard 2016),
universal adversarial perturbations (Moosavi-Dezfooli et al.
2016) and adversarial samples for object detection and seg-
mentation (Xie et al. 2017). However, these studies are all
based on images, while leaving videos unexplored. Inves-
tigating adversarial samples on videos is of both theoreti-
cal and practical values, as deep neural networks have been
widely applied in video analysis tasks (Donahue et al. 2017;
Nguyen, Yosinski, and Clune 2015; Wang et al. 2016).

Technically, the main difference between videos and im-
ages lies in the temporal structure contained in videos.
Therefore, a properly designed attacking method should ex-
plore the temporal information to achieve efficiency and ef-
fectiveness. We expect that the perturbations added on one
frame can propagate to other frames via temporal interac-
tions, which will be called the propagation of perturba-
tions. Besides, a video have many frames, computing per-
turbations for each frame is time-consuming, and actually
not necessary. Whether it is possible that perturbations are
added on only few frames, and then are propagated to other
frames to misclassify the whole video. In this way, the gen-
erated adversarial videos also have high imperceptibility and
are hard to be detected. Because perturbations are added on
sparse frames rather than the whole video, we call it the
sparsity of perturbations. Actually, the propagation and
sparsity interact with each other, propagation helps boost
the sparsity, meanwhile the sparsity constraint will lead
to better propagation.

For these reasons, in this paper, we aim to attack the
video action recognition task (Poppe 2010), where the tem-
poral cue is a key component for the predicted label. This is
naturally suitable to explore the temporal adversarial per-
turbations. For the threat model, we choose the networks
with a CNN+RNN architecture, which is widely used in
action recognition, such as Long-term Recurrent Convolu-
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Figure 1: An illustration of our output for a video from
UCF101 dataset with label of BabyCrawling. The com-
puted perturbations successfully fool DNNs to output la-
bel of PlayingBasketball. The Mean Absolute Perturbation
(MAP) of each frame is plotted. From the figure, we see
that MAP values are significantly reduced along with the
varying frames. In the final 20 frames, they fall into al-
most zero, showing the sparsity of perturbations. Note that,
though these frames have no perturbations, they still make
DNNs predict wrong label for each frame (see the top arrow
line). That’s to say, the perturbations from previous frames
propagate here and show their power. Four triples indicate
the results from the 1, 5, 13, 27th frames, respectively. In
each triple, we see the adversarial frame is the same to the
original frame in the appearance. We better visualize the per-
turbations with increasing their amplitudes × 255.

tional Network (LRCN) (Donahue et al. 2017) or network
in (Yue-Hei Ng et al. 2015). To achieve sparsity. we apply
an l2,1-norm regularization on perturbations during the opti-
mization. The l2,1-norm uses the l1 norm across frames, and
thus, enforces to select few key frames to add perturbations.
As for propagation, we find perturbations show good prop-
agation under the l2,1 constraint within the recurrent neural
network (such as Vanilla RNN, LSTM and GRU) because
of the interaction with sparsity. Another advantage of the
propagation is that we can compute perturbations on a short-
ened version video, and then adapt them to the long version
video to fool DNNs, which provides a more efficient method
to attack videos.

It is noteworthy that, we combine the l2,1-norm with RNN
to jointly design the video attack method, rather than the
single l2,1-norm. The l2,1-norm doesn’t directly encode the
temporal structure. Instead, it is the intrinsic motivation for
perturbation propagation within the RNN network (while
propagation under l2-norm is limited, see Fig.4). The illus-
trations of our output and method are given in Fig. 1 and
Fig. 2, respectively.

In summary, this paper has the following contributions:
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Figure 2: The illustration of our method. An l2,1 norm is
used during the optimization, which enforces the sparsity
of computed perturbations. Within the CNN+RNN archi-
tecture (action recognition network), perturbations are en-
coded after the CNN, and then propagate to the next frames
via RNN, finally resulting in the misclassified label for the
whole video. Thanks to the propagation of perturbations,
perturbations added on the final frames fall into zeros.

• To our knowledge, we are the first to explore white-box
adversarial samples in videos, and further, propose the
video attack method. Considering the specific sparsity
and propagation of video adversarial perturbations, we
propose an l2,1-norm regularization based optimization
algorithm. We verify our method and evaluate its trans-
ferability on the UCF101 dataset.

• We give a comprehensive evaluation of the sparsity and
propagation of perturbations, and furthermore, propose
the propagation-based method for adversarial videos, i.e.,
computing perturbations on a shortened version video,
and then adapt them to the long version video. We also
find that LSTM and GRU are easier to be attacked than
Vanilla RNN, because LSTM and GRU can represent long
memory, which is favor to the perturbation propagation
(see experiments).

The rest of this paper is organized as follows. In Section 2,
we briefly review the related work. We present our algorithm
in Section 3. Section 4 reports all experimental results. Fi-
nally, we summarize the conclusions in Section 5.

Related Work
The related work comes from two aspects: action recogni-
tion with deep learning and adversarial attack.

Action Recognition with Deep Learning
Action recognition is a core task in computer vision, where
its goal is to predict a video-level label when given a video
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clip (Poppe 2010). With CNNs achieving state-of-the-art
performance on image recognition, many works have looked
into designing effective deep CNNs for action recognition.
For example, some approaches aim at fusing CNN features
extracted on spatial frames with the temporal interactions
(Karpathy et al. 2014). To integrate temporal information,
CNN+RNN based models, which use a CNN to extract
frame features and a RNN to integrate features over time,
are presented to recognize activities (Donahue et al. 2017;
Nguyen, Yosinski, and Clune 2015). Optical flow is also use-
ful to encode the temporal cue. For that, two stream CNNs
with one stream for static images and the other stream for
optical flows are proposed to combine the information of ob-
ject appearance and temporal motions (Simonyan and Zis-
serman 2014). Temporal Segment Networks (TSN) choose
frames and optical flow on different time segments to ex-
tract information (Wang et al. 2016). In our paper, to better
explore how the perturbations change along with the time,
we choose the networks with a CNN+RNN architecture as
the threat model.

Adversarial Attack

Generating adversarial examples for image classification has
been extensively studied recently. Szegedy et al. [2013] first
find that adversarial examples can make CNNs predict a
wrong label with high confidence while the adding pertur-
bations to the original images are visually imperceptible,
Goodfellow, Shlens, and Szegedy [2014] propose a simple
Fast Gradient Sign Method (FGSM) to generate adversar-
ial examples based on the linear nature of CNNs. Moosavi-
Dezfooli et al. [2016a] first show the existence of uni-
versal adversarial perturbations. Moosavi-Dezfooli, Fawzi,
and Frossard [2016b] present a simple algorithm to com-
pute the minimal adversarial perturbation by assuming that
the loss function can be linearized around the current data
point. Liu et al. [2016] study the transferability of both non-
targeted and targeted adversarial examples, and propose an
ensemble-based approaches to generate adversarial exam-
ples with stronger transferability. Baluja and Fischer [2017]
train a network to generate adversarial examples for a partic-
ular threat model. Kurakin, Goodfellow, and Bengio [2016]
show that the adversarial examples also exist in the physical-
world machine learning system. The above papers are all
based on images, while we focus on video adversarial sam-
ples, which bring new challenges.

Hosseini, Xiao, and Poovendran [2017] exploit a simple
inserted mechanism to fool the Google’s Cloud Video Intel-
ligence API, which is an experimental manner to perform
attack, and cannot give a detailed explanation about how it
works. Our paper gives a detailed study of the CNN+RNN
architecture widely used in action recognition, and then
use an l2,1-norm based optimization method to accomplish
the sparsity and propagation of video perturbations, which
is more interpretable. Moreover, our paper gives more ex-
periments about the transferability across the network and
videos, which is more comprehensive.

Methodology
In this section, we introduce the proposed l2,1-norm based
algorithm for video adversarial samples. Our method is an
optimization-based approach.

Let X ∈ RT×W×H×C denote a clean video, and X̂ de-
note its adversarial video, where T is the number of frames,
W,H,C are the width, height, and channel for a specific
frame, respectively. E = X̂ − X is the adversarial pertur-
bations. To generate non-targeted adversarial examples, we
approximate the solution to the following objective function:

arg min
E
λ||E||2,1 − `(1y, Jθ(X̂)), (1)

where `(·, ·) is the loss function to measure the difference
between the prediction and the ground truth label. In this
paper, we choose the widely used cross-entropy function
`(u, v) = log(1−u ·v), which is shown to be effective (Car-
lini and Wagner 2017). Jθ(·) is the threat model with param-
eters θ. 1y is the one-hot encoding of the ground truth label
y. ||E||2,1 is the `2,1 norm of E, which is a metric to quantify
the magnitude of the perturbation. λ is a constant to balance
the two terms in the objective.

To obtain a universal adversarial perturbation across
videos, we solve the following problem:

arg min
E
λ||E||2,1 −

1

N

N∑
i=1

`(1yi , Jθ(X̂i)), (2)

where N is total number of training videos, and X̂i is the
i-th adversarial video.

To better control the sparsity and study the perturbation
propagation across frames, we add a temporal mask on the
video to enforce some frames having no perturbations. The
problem is modified as follows:

arg min
E
λ||M ·E||2,1 −

1

N

N∑
i=1

`(1yi , Jθ(Xi + M ·E)),

(3)
where M ∈ {0,1}T×W×H×C is the temporal mask. We let
Θ = {1, 2, ..., T} be the set of frame indices, Φ is a subset
with K elements within Θ, and Ψ = Θ−Φ. If t ∈ Φ, we set
Mt = 0, and if t ∈ Ψ,Mt = 1, where Mt ∈ {0,1}W×H×C

is the t-th frame in M. In this way, we enforce the computed
perturbations to be added only on the selected video frames.
We here regard S = K

T as the sparsity.
If the goal is to generate targeted adversarial examples

(i.e., the misclassified label is set to the pre-fixed label,
which is called target label), the problem can be modified
as follows:

arg min
E
λ||M ·E||2,1 +

1

N

N∑
i=1

`(1y∗i , Jθ(Xi + M ·E)),

(4)
where y∗i is the targeted label. Eq.(4) outputs the perturba-
tions to make Jθ(·) predict y∗i with a high probability.

Problem (3,4) are the final objective function proposed by
us to solve the video attack task. Some detailed information
of Eq.(3,4) is described as follows:
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Perturbation Regularization The l2,1-norm in prob-
lem (3,4) is a metric to quantify the magnitude of the per-
turbation. As mentioned before, we hope that the pertur-
bations are added on as fewer frames as possible. There-
fore, we choose l2,1 norm to meet this goal, where is
widely used in sparse coding methods (Wright et al. 2009;
Yang et al. 2010). ||E||2,1 =

∑T
t ||Et||2, where Et ∈

RW×H×C is the t-th frame in E. l2,1 norm apply the l1 norm
across the frames, and thus, can ensure the sparsity of gen-
erated perturbations. In the experiment, we also show the
results using l2 norm, as the comparison with the l2,1 norm.

Threat Model In action recognition, the current state-of-
the-art approach is the two-stream model (Donahue et al.
2017), i.e., one stream is to capture the RGB frames, and
another stream is to capture the optical flow images (mo-
tion information) between two adjacent RGB frames. The
outputs from these two streams are fused to predict the fi-
nal label with various kinds of fusion methods. These two
streams usually have the same network architecture, where
one choice is CNN+Pooling, and another is CNN+RNN ar-
chitecture. Compared with CNN+Pooling, CNN+RNN can
encode the temporal information. In our paper, we regard
the networks with CNN+RNN architecture as the threat
model Jθ(·). The results of attacking CNN+Pooling also
are reported for comparisons. We give the illustration of the
CNN+RNN model in Fig. 2, where video frames are firstly
input to CNN, and then, fed to RNN. The final label is pre-
dicted via an average pooling. Note that, the CNN and RNN
in the figure are the general terms for the spatial and tempo-
ral networks, respectively. CNN can be specified as ResNet,
Inception V3, etc, and RNN as LSTM, GRU, etc.

Training Problems (3,4) are easy to solve. Any Stochastic
Gradient Descent (SGD) algorithm can solve them. Here,
we use the Adam (Kingma and Ba 2014) algorithm to get
the results. Because l2,1 norm is used, initializing the per-
turbations with zeros will lead to NaN values. We instead
initialize them using a small value. In the experiments, we
use 0.0001. After some iterations, the perturbations will con-
verge to a sparse result. λ in problem (3,4) is set to a con-
stant, which is tuned in the training set.

Temporal Mask Although l2,1 norm ensures the sparsity
of perturbations, the specific number of polluted frames is
totally decided by the optimization algorithm, and cannot
be designated in advance by users. However, this is usu-
ally useful in practice. By adding the temporal mask in op-
timization process, we can simply sample some preferring
frames to align perturbations according to different settings
(For example, temporal mask M can be predefined accord-
ing to the needed sparsity), and observe their results still un-
der l2,1 norm constraint. Actually, Eq.2 is a special case of
Eq.3, where M equals to all ones. The temporal mask makes
our framework more flexible. We investigate some candidate
choices of M, and give the corresponding discussions about
its impact to the proposed method (see experiments).

Experiments
In this section, we give the experiments from three aspects.

Datasets and Metrics
Datasets: We choose the widely used dataset in action
recognition: UCF101 (Soomro, Zamir, and Shah 2012). It
contains 13,320 videos with 101 action classes covering a
broad set of activities such as sports, musical instruments,
body-motion, human-human interaction, human-object in-
teraction. The dataset splits more than 8000 videos in the
training set, and more than 3000 videos in the testing set.
Because there are no other existing methods for video adver-
sarial samples, we can only compare with the methods based
on images, i.e., computing perturbations for each frame
(Moosavi-Dezfooli, Fawzi, and Frossard 2016) in a video.
This setting is coincident with the outputs using Eq.(1) with
l2 norm, which are reported as the comparisons.
Metrics: We use three metrics to evaluate various aspects.

Fooling ratio (F): is defined as the percentage of adver-
sarial videos that are successfully misclassified (Moosavi-
Dezfooli et al. 2016).

Perceptibility (P): denotes the perceptibility score of
the adversarial perturbation r. We here use the Mean Ab-
solute Perturbation (MAP): P = 1

N

∑
i |ri|, where N is

the number of pixels, and ri is the intensity vector (3-
dimensional in the RGB color space).

Sparsity (S): denotes the proportion of frames with no
perturbations (clean frames) versus all the frames in a spe-
cific video to fool DNNs. S = K

T , whereK is the number of
clean frames, and T is the total number of frames in a video.

Perturbation Propagation
In this section, we give the experimental results about the
perturbation propagation.

Visualization for Perturbations We firstly give the visu-
alization of perturbations computed using Eq.(2) with l2,1
norm, which are universal perturbations across videos. In
Fig. 3, we see that the adversarial videos are not distorted by
the perturbations, and are imperceptible to human eyes. Fur-
thermore, the perturbations show the sparse property (black
means no perturbations), i.e., they are reduced across frames
along with the time, which is owing to the used l2,1 norm. In
the next section, we will discuss the propagation of pertur-
bations, inspired by these sparse results.

Perturbation Propagation To show the perturbation
propagation, we give four examples outputted by Eq.(1) with
l2,1 norm in Fig. 4 (see the blue line with stars), where we
see the computed perturbations successfully fool the action
recognition networks (for example, in the first case, a clean
video with label of Bench Press is identified as Lunges after
adding perturbations). Correspondingly, the original frame-
level labels (red dotted line) are also misclassified as wrong
labels (black dotted line). By contrast, the Mean Absolute
Perturbation (MAP) value of each frame is reduced signifi-
cantly along with the time. In the last few frames, they fall
into almost zeros. That’s to say, although few perturbations
are added on these frames, the perturbations from the pre-
vious frames propagate here, and help fool the DNNs. As a
comparison, we also list the results of Eq.(1) with l2 norm
in Fig. 4 (see the magenta line with circles). In this figure,
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Figure 3: The computed adversarial videos (top two rows) and their corresponding perturbations (bottom row) using Eq.(2)
with l2,1 norm. We better visualize the perturbations with increasing their amplitudes with × 255. For more discussions, please
see the texts.

the MAP value is also reduced across frames, which further
demonstrates the perturbation propagation. The difference
is, the output of l2,1 norm is sparse, which reveals that the
frames ranking behind the video line actually need few (even
no) perturbations to fool DNNs with the help of propagation.
But l2 norm cannot show this property.

Inspired by the sparsity of l2,1 norm, we directly enforce
perturbations not to be added on the frames ranking behind
the video line. To this end, we add the temporal mask dur-
ing the optimization process using Eq.3. Here we only se-
lect the top 8 frames to compute their perturbations, and let
the other frames be clean. The experimental results on the
same videos are listed in Fig. 5. We find that the frames are
still predicted as wrong labels. Furthermore, the MAP val-
ues of these frames also show a decreasing trend. It further
demonstrates the propagation of perturbations. Otherwise,
these clean frames cannot be predicted as wrong labels. Note
that in the forth case in Fig. 5, the final 4 frames have cor-
rect labels, which shows perturbations will reduce its effect
along with the time, and cannot propagate forever.

We also randomly select some frames to align perturba-
tions to perform the video attack (i.e., we randomly set the
elements of M to 1, and other elements as 0). Four experi-
mental results under different sparsities are given in Fig. 6,
where we see that the video attack still succeeds to fool the
DNN, and the perturbations show good propagation under
different sparsities.

Table 1: The results of fooling rates versus different sparsi-
ties.

S 0%(40) 80%(8) 90%(4) 97.5%(1)
F 100% 100% 91.8% 59.7%
P 0.0698 0.6145 1.0504 1.9319

We now gradually enlarge the sparsity S in Eq.(3), and
observe the change of Fooling ratio F in the testing set on
UCF101 dataset. High sparsity S means more clean frames,
and less adversarial frames in the video. We give the quan-
titative results of fooling rates versus different sparsities in
Table. 1. In the table, we list four sparsities (S) and their cor-
responding Fooling rates (F ) as well as perceptibility scores
(P ). Taking 90%(4) as an example, 90% = 1 − 4

40 , where
4 is top four polluted frames, and 40 is the total number of
frames in the video. The results in Table 1 show that even
only one frame is polluted (S = 97.5%), the Fooling rate
can also reach 59.7%. To achieve the 100% fooling rate, the
least number of polluted frames is 8 (S = 80%) on the used
dataset. We also see that the perceptibility score is gradu-
ally increasing with the rise of sparsity score, and reaches
the top in S = 97.5%. This is reasonable because large per-
turbations can spread to more frames. The polluted top one
frames in S = 97.5% and their corresponding clean frames
are illustrated in Fig. 7, where we see that despite the largest
P = 1.9319, the adversarial frames are the same to the clean
frames, which are not perceptible to human eyes.

Adversarial Video based on Propagation Thanks to the
perturbation propagation, we don’t need to compute pertur-
bations based on the whole video. Instead, we can compute
perturbations on a shorten version video, and then adapt
them to the long version video. In this way, the computation
cost is reduced significantly. We report the time of comput-
ing perturbations for various frames in Table 2, where we
see the computing time is linearly reduced with the rise of
sparsity, showing that computing perturbations on a shorten
version video can reduce computation cost.

Specifically, to fool the action recognition network for a
given video, we first choose the top N frames {F1, ..., FN}
from the original video , and then use Eq.(1) (for a single
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Figure 4: Four examples for showing perturbation propagation on UCF101 dataset. The x-axis denotes the frame indices in a
video. The left y-axis denotes the Mean Absolute Perturbation (MAP) value of each frame’s perturbations, and the right y-axis
is the label indices. The blue line with stars is the curve of MAP values with l2,1 norm, and magenta line with circles is the
result with l2 norm. The red dotted line is the predicted frame-level label indices for the clean video, and black dotted line is
the predicted frame-level label indices for the adversarial video, both by the action recognition networks (the video-level labels
are listed in the top of each figure with the same color). In the bottom of each figure, we give the corresponding video frames.
For detailed discussions, please see the texts.
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Figure 5: Four examples of showing perturbation propagation on UCF101 dataset. The difference with Fig. 4 lies in the inte-
gration of temporal mask proposed in Eq.(3). For detailed discussions, please see the texts.

video) or Eq.(2) (for getting universal perturbations) with
l2 norm to compute their adversarial frames {F̂1, ..., F̂N}.
Finally, we replace {F1, ..., FN} with {F̂1, ..., F̂N} in the
original video. This modified video is then input to the ac-
tion recognition networks. Note that, we here don’t use the
l2,1 norm. Because the l2,1 norm will result in the sparse
perturbations during these N frames, which are not good
for further propagation to the rest clean frames. We plot
the comparisons between l2 and l2,1 norm in this setting in
Fig. 8. In this figure, we see the performance of l2 norm is
advantageous to l2,1 norm. In the next section, we will give
the detailed evaluations and discussions of this method. In
default, we set N = 20 and use l2 norm in the following
experiments.

Table 2: Time for computing perturbations in one iteration.
S 0% 50% 75% 87.5% 97.5%

Time 2.853s 1.367s 0.612s 0.346s 0.0947s

Performance and Transferability
In this section, we evaluate the performance and transfer-
ability of the propagation based method.

Transferability across Models We firstly evaluate the
transferability of computed perturbations. Because the trans-
ferability of CNN networks has been studied in many liter-
atures, we here mainly explore the RNN networks, includ-
ing Vanilla RNN, LSTM, and GRU. Besides, the results of
CNN + Average Pooling (removing the RNN layer in Fig. 2)
are also reported. The Fooling rates in different settings are
given in Table 3, where we use the networks in rows to gen-
erate perturbations, and networks in columns evaluate the
transferability. Form the table, we draw the following con-
clusions: 1. The diagonals have largest values. It is reason-
able because they perform the white-box attack in this set-
ting. 2. In the off-diagonals, the values are all above 65%,
which shows perturbations in videos have good transferabil-
ity, especially in the RNN models. 3. In the off-diagonals,
the Pooling column has the poor performance. Pooling
method has no memory like LSTM or GRU, and thus, the
perturbations cannot propagate to other frames, resulting in
the poor performance. 4. By contrast, the GRU and LSTM
columns have better performance than VanillaRNN. As we
known, GRU and LSTM can represent long memory, this
demonstrates long memory is favor to the propagation of
perturbations, and thus GRU and LSTM are easier to be at-
tacked than VanillaRNN.
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Figure 6: Perturbations can be added on any discrete frames with a random margin. These are four adversarial examples under
different sparsities conducted on UCF101 dataset. For detailed discussions, please see the texts.

Figure 7: Four examples of the polluted top one frame in
S = 97.5%. The top row is the original clean frames, and
the bottom row is the adversarial frames.

Table 3: Fooling rates in different settings on UCF101
dataset.

Models VanillaRNN LSTM GRU Pooling
VanillaRNN 95.2% 95.2% 95.2% 71.0%

LSTM 84.1% 100% 97.1% 76.8%
GRU 81.8% 92.4% 100% 66.7%

Pooling 84.1% 96.8% 95.2% 87.3%

Transferability across Videos We also evaluate the trans-
ferability of perturbations across videos. Th universal pertur-
bations are computed using Eq.(2) on training set, and then
are added to the testing videos to evaluate their transferabil-
ity. The visualization of universal perturbations can be found
in Fig. 3. The performance (Fooling rate) is listed in Table
4, where shows the results of our method has good transfer-
ability across videos (achieving the 95.2% fooling rate on
the testing set). In other words, the universal perturbations
can make new videos fool the action recognition networks.

Table 4: Performance of the cross-videos attack.
Metric Training set Testing set

Fooling rate (F) 100% 95.2%

Conclusions
In this paper, we explored the adversarial perturbations for
videos. An l2,1-norm based optimization algorithm was pro-
posed to solve this problem. The l2,1 norm applied the l1

Number of Polluted Frames
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Figure 8: Comparisons between l2 and l2,1 norm versus
Fooling rate on UCF101 dataset. We here report the results
whenN = 1, 5, 10, 20, 40, respectively. The total number of
frames is 40.

norm across frames, and thus, could ensure the sparsity
of perturbations. A serial of experiments conducted on
UCF101 dataset demonstrated that our method had better
transferability across models and videos. More importantly,
our method showed the propagation of perturbations un-
der the l2,1 constraint within the CNN+RNN architecture.
According to this observation, we further presented the ef-
ficient method for adversarial videos based on the perturba-
tion propagation. In the future, we will look into the defense
methods for video attacks. Because adversarial perturbations
may be added on any frame in a video, the greedy algorithm,
that can efficiently deal with all the frames in a video, is a
reasonable and reliable choice for the defense. For that, we
will investigate an efficient denoising method, and put it as
the pre-processing step before video classification networks.
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