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Abstract

The image captioning is to describe an image with natural
language as human, which has benefited from the advances
in deep neural network and achieved substantial progress in
performance. However, the perspective of human description
to scene has not been fully considered in this task recently.
Actually, the human description to scene is tightly related to
the endogenous knowledge and the exogenous salient objects
simultaneously, which implies that the content in the descrip-
tion is confined to the known salient objects. Inspired by this
observation, this paper proposes a novel framework, which
explicitly applies the known salient objects in image cap-
tioning. Under this framework, the known salient objects are
served as the themes to guide the description generation. Ac-
cording to the property of the known salient object, a theme is
composed of two components: its endogenous concept (what)
and the exogenous spatial attention feature (where). Specifi-
cally, the prediction of each word is dominated by the concept
and spatial attention feature of the corresponding theme in the
process of caption prediction. Moreover, we introduce a novel
learning method of Distinctive Learning (DL) to get more
specificity of generated captions like human descriptions. It
formulates two constraints in the theme learning process to
encourage distinctiveness between different images. Particu-
larly, reinforcement learning is introduced into the framework
to address the exposure bias problem between the training and
the testing modes. Extensive experiments on the COCO and
Flickr30K datasets achieve superior results when compared
with the state-of-the-art methods.

Introduction
The technique of image description is to simulate human
description of a scene content. Benefited from the develop-
ment of the deep neural network, the performance of im-
age captioning has achieved considerable progress in re-
cent years (Vinyals et al. 2015; Xu et al. 2015; Rennie et
al. 2017). Current structure of image captioning methods
are typically developed by taking the Convolutional Neu-
ral Network (CNN) plus Recurrent Neural Network (RNN)
as the encoding-decoding framework. Based on the frame-
work, various variants have been proposed to achieve the
goal of description with natural language (Lu et al. 2016;
Gan et al. 2016).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The attention mechanism has been widely used in many
image captioning models (Xu et al. 2015; Lu et al. 2016;
Gu et al. 2018). There are two broad categories of visual
attention mechanisms: exogenous objects mainly based on
the visual stimulus and endogenous knowledge determined
by cognitive phenomena. The normal attention operation is
depended on the exogenous objects which focuses on spe-
cific parts of the visual input to compute the adequate re-
sponses. Differently, according to the research in (Borji,
Sihite, and Itti 2013), human visual attention is what you
see as well as what you known which means that it is
decided by the endogenous knowledge and the exogenous
salient objects simultaneously. It indicates that, when hu-
man describes a scene with a sentence, the known salient
objects (including instances, actions, scenes, etc.) are cap-
tured and served as the themes to guide the description gen-
eration. Since the unknown objects might be difficult to in-
terpret in human brain, the attended objects would be al-
ways known about in advance to human. Rather than human
attention in scene description, the recently implemented at-
tention mechanism in image captioning only focus on the
exogenous salient objects that come to the forefront dy-
namically. But what semantics the attended objects refer to
can not be confirmed. Some models (Pedersoli et al. 2016;
Li et al. 2017) utilize the development of object detection
(Ren et al. 2015), and apply the features of the detected re-
gions to image captioning. These regions are known about
in advance, which is approaching to human behavior. But
the annotated of the detected regions are limited and cannot
meet the requirements of all the image captioning.

To human being, the distinctive description to a scene is
specially mentioned when distinguished from others. The
distinctiveness between every two different images is con-
taining. If the image captioning model could capture it,
the diversity of the overall generated captions can improve.
Depending on the distinctiveness contained in image, the
themes in image have distinctiveness as well. Therefore, im-
proving the distinctiveness of the theme learning can affect
the quality of the generated description.

Reinforcement learning (RL) has become a standard
method for training agents to interact with an environment,
even in fields like sequence learning (Rennie et al. 2017;
Liu et al. 2017). In convention, because of the application of
Maximum Likelihood Estimation (MLE), the log-likelihood
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score of the prediction in training does not correlate well
with the standard evaluation metrics when testing. But RL
agents can optimize their action policies of predicting word
to maximize the expected reward, which is received from the
environment. Moreover, the sentence level evaluation met-
rics can be used as the reward in training with the RL method
of image captioning. In this way, the exposure bias between
the training and the testing sets can be eliminated.

In the perspective of human description, we propose a
novel framework to explicitly apply the known salient ob-
jects as the themes to guide the caption generation. A theme
is composed of two components:

− What: the concept which defines the endogenous knowl-
edge of theme.

− Where: the spatial attention feature which indicates the
exogenous salient object of theme.

Specifically, our proposed method extracts the concept and
spatial feature of the corresponding theme to dominate the
prediction of each word in the process of caption genera-
tion. A Distinctive Learning (DL) is introduced to image
captioning to achieve the specificity like human description.
Moreover, we design a improved RL method from (Rennie
et al. 2017) to train our framework, where the back propa-
gated rewards are added with balance weight. The weight is
depended on the difficulty level of the training samples.

The major contributions in this paper are as follows:

• We design a new framework which contains two modules.
One is attending to the concept of theme and the other is
attending to the correlative dominating region in image.
Moreover, the channel of the visual feature map is de-
fined by the concepts. Each channel is responding to the
corresponding concept of the image themes.

• A novel Distinctive Learning (DL) is introduced to utilize
the distinctiveness of themes between different images.
Technically, denoted the true image-theme pairs as (I, t),
where t is the attended concept of theme. Meanwhile,
the negative image-theme pairs are denoted as (¬I, t) or
(I,¬t), where ¬I and ¬t are the mismatched objects of
the concept of theme t and image I, respectively. The
goals of the distinctive learning is to increase the correla-
tion probability of true pairs and decrease the correlation
probability of negative pairs.

• The introduction of the improved RL by the balance
weight in training can effectively address the exposure
bias problem between the training and the testing sets.
The extensive experiments on the COCO and Flickr30K
datasets demonstrate the effectiveness of our model.

Related Work
Recent public methods based on neural networks in image
captioning achieve great success. Here, we review the most
relevant works of image captioning to our work.

Neural network based methods are inspired by the suc-
cess of RNN to sequence-to-sequence learning, and have
already played a huge role in image captioning. Attention
mechanism is used to determine the spatial map highlighting

regions in image over time according to the textual context.
Xu et al. (Xu et al. 2015) proposed the “soft” and “hard”
variants of attention mechanism and combined visual atten-
tions with the hidden states of LSTM when generating cor-
responding words. Lu et al. (Lu et al. 2016) proposed an
adaptive attention model which can decide the salient fea-
tures to dynamically input to the language model to generate
the next word.

Semantic-based approaches use the high-level image se-
mantic information in the caption generation model to fill the
gaps ahead between vision and language. In Wu et al. (Wu
et al. 2016), a new high-level concepts extracted method to
clear improve the performance of image captioning model
with the injection of the high-level concepts to the state-of-
the-art LSTM-based model. Gan et al. (Gan et al. 2016) at-
tempted to effectively compose the semantic concepts in the
process of image caption generation, and proposed a Seman-
tic Compositional Network (SCN) to combine the semantic
concepts to the decoder LSTM in the decoding process.

Learning methods for image captioning have attracted
more and more attentions recently. Different from a struc-
tural model, The method of learning to model is to define a
set of rules to training the constructed model. To many clas-
sical models, the Maximum Likelihood Estimation (MLE)
is always applied as the learning method to maximize the
conditional log-likelihood of the training samples. But the
defects of MLE including high resemblance and overfitting
are limiting the effect of image captioning models. Yang et
al. (Yang et al. 2016) noticed the distinctive supervision is
beneficial for captioning, except introducing a review net-
work to global modeling the attended inputs, and output a
global properities captured thought vector, imported a dis-
tinctive supervision to improve the performance of descrip-
tion generation. Dai et al. (Dai and Lin 2017) argued the
distinctiveness is significant in natural language descriptions
and proposed a contrastive learning method, which explic-
itly encourages distinctiveness to maintain the quality of the
overall generated captions.

Reinforcement learning (RL) has been taken seriously
since the work (Silver et al. 2017) was proposed, and due
to (Ranzato et al. 2015), the methods of RL have been intro-
duced into image captioning. For RL, the prediction of word
can be seen as an “action” when interacting with the “en-
vironment” by the “agent” LSTM. Ranzato et al. (Ranzato
et al. 2015) first proposed a RL based approach to calculate
the sentence-level reward by the Monte-Carlo technique and
reverse propagation the policy gradient in training. A self-
critical sequence learning method was proposed by Rennie
et al. (Rennie et al. 2017) to use a policy network with a nor-
malized reward of metric obtained by the model against the
baseline under the test-time inference algorithm. Chen et al.
(Chen et al. 2018), instead of using the Monte-Carlo tech-
nique, applied a temporal difference method to model the
RL value function to estimate the value of actions at each
time step.

Unlike the existing researches, we base on the human de-
scription to scene and combine the advanced learning meth-
ods, to propose a framework which predetermines the con-
cept and location of theme in image to guide the word gen-
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Figure 1: Model architecture of our method. (a) is an illustration of the concept attention process gt of theme, (b) is presenting
the model of our proposed spatial attention model gc of theme. (c) illustrates the whole proposed image captioning model,
S-LSTM and Decoder are the Sentence-LSTM and decoder LSTM, respectively. The rewards are balanced by the weight rw.

eration at each time step.

Our Approach
The normal operator of the image captioning is named an
encoder-decoder, which encodes an image and decodes it to
a sentence. Through the constructing of network and design-
ing of learning method, we expect to reset the connotation of
conventional structure to simulate the perspective of human
description. In the following sections, we will first present
the outputs of the CNN before introducing the main frame-
work in detail.

CNN feature extractor. We take a widely-used CNN ar-
chitecture as the CNN feature extractor of images. The out-
put of the last fully connected layer is treated as the context
vector vf , and the last convolutional output is indicated to
the context CNN feature map, which is denoted by Vc.

What Dominates the Captioning
In general, a caption word is mainly associated with a theme,
and the theme may lead to the formation of several related
words in a sentence. Therefore, considering what dominates
the process of captioning at each step of word generation
may lead to sub-optimal results.

Before theme is confirmed, we first build a theme vocabu-
lary. A group of words which contain rich semantic cues are
chosen to construct the vocabulary of theme. The vocabulary
contains most of the visual concepts of an image set, includ-

ing various parts of speech like nouns, verbs, adjectives and
so on. To reduce the sensitivity of vocabulary, we merge the
words with similar semantic. For instance, “pictures”, “pho-
tos” and “photographs” which have the same semantic are
classified to the same category. This operation decreases the
size of the theme vocabulary and enriches its connotation.

Given this Nt length theme vocabulary, we introduce a
concept attention mechanism to attend what concept of the
theme dominates the final caption generation at each time
step. Before deciding on the theme, we wish to predict the
whole visual concepts of a given image I. Motivated by
(Fang et al. 2015), we follow the operation of Fang et al.
to adopt a weakly supervised approach of Multiple Instance
Learning (MIL) (Viola, Platt, and Zhang 2005) to train a de-
tector of image concepts. Finally, the obtained vector T can
represent the probability distribution over the set of concepts
for the image.

The concept attention model gt(T ,htt) which can be seen
in Fig. 1 (a), is proposed to compute the concept of the theme
att. T = [t1, t2, . . . , tNa ] is the global concept vector, htt is
the hidden state of LSTM at time t. The updating procedure
of htt is defined as follows:

hst = LSTM s(West,h
s
t−1),

htt = LSTM t(T ,vf ,h
s
t ,h

t
t−1), (1)

where st denotes the one-hot vector of the t-th word in the
caption, We ∈ RNs×V is the word embedding matrice and
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V is the vocabulary size; LSTM s means Sentence-LSTM
unit which is used to encode the sentence inputs; LSTM t

is to extract the discriminative information of the theme con-
cept for current word. Formally, for the t time step, the con-
cept attention model gt can be defined as follows:

ztt = tanh((WtT + bt)⊕Whthtt),

αtt = softmax(Wαtztt + bαt),

at = f(T ,αtt), (2)
where Wt ∈ Rk×Nt , Wht ∈ Rk×Ns , Wαt ∈ Rk×k are
the transformation matrices that map the concept vector and
hidden state to a same dimension; bt ∈ Rk and bαt ∈ Rk
are the model biases; we denote ⊕ as a sum module; f(·)
is an element-wise multiplication to the global concept vec-
tor and its corresponding position attention weights and the
dimensions of αt is the same with T , i.e., k = Nt.

Where Dominates the Captioning
According to the work in (Xu et al. 2015), the region at-
tention mechanism attending to the irrelevant regions of the
global image may lead to the sub-optimal results in the cap-
tion generation. But most region attention models are not
taking the pattern of different channels into consideration.
Inspired by the research in (Chen et al. 2017), the filters of
different channels can be seen as the semantic filters, and
each channel is a response activation of the corresponding
semantic. Moreover, we associate the channel of the global
image feature map with the concept vector. Therefore, se-
mantic informantion of the concept vector can be attached
to the feature map in channel.

The context CNN feature Vc is reshaped to Vc =
[vc1, vc2, . . . , vcm] by flattening the width and height of the
original Vc, where vci ∈ RNt equals to the T in dimen-
sion. To confirm the theme dominates the captioning at t
time step, as in Fig. 1 (b), the corresponding spatial atten-
tion process gc(Vc,T ,h

c
t) is introduced. hct is generated by

LSTM c to encode the distinctive information of the irrel-
evant regions. Below is the updating procedure of hct :

hct = LSTM c(T ,vf ,h
s
t ,h

c
t−1). (3)

Formally, for the t time step, we define the attention part
of the model gc as follows:

zct = tanh((WcVc + bc)⊕Whchct),

αct = softmax(Wαczct + bαc), (4)
where Wc ∈ Rl×Nt , Whc ∈ Rl×Ns , Wαc ∈ Rl are the
transformation matrices that map the CNN feature and hid-
den state to a same dimension; bt ∈ Rl and bαt ∈ R1 are
the model biases. Based on the attention distribution, the ex-
plicit representation act can be extracted through:

act =

m∑
i=1

αctivci, (5)

where the context vector act can be filtered by the global
concept vector to select the semantic informantion. The
element-wise multiplicating function is ct = f c(T ,act).

Distinctive Learning
The sentences produced by many recent methods lack in
variability in general. The problem is perhaps due to the
rules which object is to maximize only the probabilities of
the given captions. The rules may lead to high resemblance
of the generations. In essence, the models neglect some sub-
tle but significant aspects in training. And these aspects are
always distinctive. From (Fang et al. 2015), the distinctive
supervision has shown to be useful and common. According
to Jas et al. (Jas and Parikh 2015), the specificity is univer-
sal in human descriptions, which implies that the distinctive
aspects should be reflected in the scene descriptions.

In this paper, the distinctive learning is introduced into
our model in a novel way. The themes between two sam-
ples are always different. It means that the learned themes
contain distinctiveness of the image. To learn and rein-
force this distinctiveness, two sets of data are required:
(1) the positive set R, which is the right theme pairs
to ground-truth image ((att,T ), (at2,T ), . . . , (atTr ,T )); (2)
the negative set F , which is the noisy theme pairs
((at−t ,T−), (at−2 ,T−), . . . , (at−Tf ,T

−)). And the pairs are

generated by randomly sampling from T− ∈ T {, where T {

is sampled from the complementary set of the concept vec-
tor T . The length of positive or negative pairs is up to the
length of the sample caption.

As we known, each att is extracted from the T . For the
pair (att,T ), we wish that the similarity between att and T
is greater than any other pairs like (at−t ,T ), (att,T

−) and
so on. Following this intuition, the distinctive learning is to
differentiate the positive set with the negative set, which is
defined as follows:

D(R,F ) = β − (p(match)− p(mismatch)), (6)

where β is the margin cross-validated, and the Distinctive
Learning Loss function can be set as:

Ld =
1

N

N∑
n=1

min(Tr,Tf )∑
t=1

max(0, β − (

Nt∑
l=1

attT −
Nt∑
l=1

at−t T ))

+
1

N

N∑
n=1

min(Tr,Tf )∑
t=1

max(0, β − (

Nt∑
l=1

attT −
Nt∑
l=1

attT
−)),

(7)

where N is the number of the training samples, which
is used as a normalizer. Except for the positive pair, the
negative set is matched with the positive set in two types
(at−t ,T ) and (att,T

−).

Model Training via RL
The Decoder is applied the decoder LSTM to decode the en-
coding information mentioned above to generate the target
caption. In convention, the learning method of the language
model is applied the MLE. The learning objective is to learn
parameters through minimizing the negative log-likelihood
of the target sentence of the ground-truth. But because of the
limitations of the MLE in the gradient vanishing and over-
fitting, the discrepancy exists between training and testing.
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Table 1: Performance comparisons on COCO with variable variants of our model under the optimization of MLE and RL.

Model MLE RL
B-3 B-4 Meteor CIDEr B-3 B-4 Meteor CIDEr

LSTM-ATT 44.4 33.9 26.5 106.5 46.8 34.8 26.9 113.3
LSTM+TATT 44.4 34.1 26.5 106.7 47.5 35.4 27.0 114.5
LSTM+RATT 45.2 34.7 26.9 108.6 47.6 35.5 27.2 115.5
WWT 45.5 34.9 27.0 109.0 48.3 36.1 27.3 116.4
WWT+D 45.9 35.4 27.2 110.9 48.2 36.1 27.4 117.0
WWT+DW 46.2 35.7 27.3 111.4 48.4 36.3 27.4 117.5

Table 2: Performance comparisons with state-of-the-art methods on Flickr30K and COCO datatsets.

Model Flickr30K COCO
B-3 B-4 Meteor CIDEr B-3 B-4 Meteor Rouge-L CIDEr

SCN (Gan et al. 2016) 40.3 28.8 22.3 − 44.4 34.1 26.1 − 104.1
Adaptive (Lu et al. 2016) 35.4 25.1 20.4 53.1 43.9 33.2 26.6 − 108.5
SCST (Rennie et al. 2017) − − − − − 33.3 26.3 55.3 111.4
CL (Dai and Lin 2017) − − − − 43.7 33.4 26.2 55.9 105.9
TD (Chen et al. 2018) − − − − 45.6 34.0 26.3 55.5 111.6
Stack-Cap (Gu et al. 2018) − − − − 47.9 36.1 27.4 56.9 120.4
Up-Down (Anderson et al. 2018) − − − − − 36.3 27.7 56.9 120.1
WWT(MLE) 40.8 29.7 22.3 73.5 46.5 35.9 27.3 56.2 112.1
WWT(RL) 42.5 32.2 22.8 88.2 49.4 37.4 27.7 57.5 118.8

To solve this problem, the reinforcement learning which
applies the evaluation metrics as the optimizing objects is
taken into consideration. In (Sutton and Barto 1998), the re-
inforcement learning is interacting with the “environment”
(here contains the image features, theme concepts, hidden
states, and previous words) by an “agent” (e.g. LSTM). The
“agent” takes an action according to the policy pθ of the
parameters θ of the network to select an “action”, which
is to predict the next word in our case. After each action,
the agent updates its internal state (cells and hidden states
of the LSTM). After generating a complete sentence, the
agent observes a sentence-level reward. The reward can be
any of the evaluation metrics to the “agent”. As the Fig.
1 (c) illustrating, following the implemention in (Rennie
et al. 2017), the objective in learning is to minimize the
negative expected rewards of the complete sampled caption
Ws = {ws1, . . . , wsT }:

Lθ = −λθ
N

N∑
n=1

EWs∼pθ [r(Ws)], (8)

where λθ is used to balance the weight of the loss functions;
the Ws is calculated by comparing sampled caption with
the reference caption in the specified evaluation metric. We
calculate the expected gradient by applying a single Monte-
Carlo sample:

∇θLθ ≈ −
λθ
N

N∑
n=1

∆r(Ws)∇θ log[pθ(Ws)], (9)

where ∆r(Ws) is the relative reward, which is computed
by relating to a baseline reward r(Ŵ), r(Ŵ) is obtained by

performing greedy decoding:

r(Ŵ) = arg max p(wt|hdt ),

∇θLθ ≈−
λθ
N

N∑
n=1

(r(Ws)− r(Ŵ))∇θ log[pθ(Ws)].
(10)

If the dominating theme is the appropriate choice, the sum
of products between att and T could be plus one. And the
inappropriate choice indicates the corresponding sample is
a hard learning sample. Inspired by the study in (Lin et al.
2018), to improve the learning efficiency, we add a dynamic
reward weight rw into the learning process:

rw =
‖
∑T
t=1 a

t
t‖‖T ‖

(
∑T
t=1 a

t
t) · T

,

∇θLθ ≈−
λθ
N

N∑
n=1

rw(r(Ws)− r(Ŵ))∇θ log[pθ(Ws)].

(11)

The above formulas indicates that the sample needs a
large weight to training when the rw is high.

Experiments
Implementation Details
We evaluate our method on two widely used datasets. The
first one is Flickr30K (Young et al. 2014), which contains
31,783 images. In the dataset, each image is paired with five
sentences. Following the publicly splits1, we divide 29,014,
1,000 and 1,000 images for training, validation and testing,
respectively. The other more challenging dataset COCO (Lin
et al. 2014), which is consisting of 123,287 images, where
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Figure 2: Visualization of the generated captions, the probabilities of the concept and corresponding spatial attention map of
each dominating theme.

Table 3: Leaderboard on the online COCO testing server of the published state-of-the-art image captioning models.

Model B-1 B-2 B-3 B-4 Meteor Rouge-L CIDEr
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCN (Gan et al. 2016) 74.0 91.7 57.5 83.9 43.6 73.9 33.1 63.1 25.7 34.8 54.3 69.6 100.3 101.3
Adaptive (Lu et al. 2016) 74.6 91.8 58.2 84.2 44.3 74.0 33.5 63.3 26.4 35.9 55.0 70.6 103.7 105.1
CL (Dai and Lin 2017) 74.2 91.0 57.7 83.1 43.6 72.8 32.6 61.7 26.0 35.0 54.4 69.5 101.0 102.9
SCST (Rennie et al. 2017) 78.1 93.1 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.8 116.7
TD (Chen et al. 2018) 75.7 91.3 59.1 83.6 44.1 72.6 32.4 60.9 25.9 34.2 54.7 68.9 105.9 109.0
Stack-Cap (Gu et al. 2018) 77.8 93.2 61.6 86.1 46.8 76.0 34.9 64.6 27.0 35.6 56.2 70.6 114.8 118.3
WWT(RL) 80.2 94.3 63.2 87.5 48.1 77.7 35.9 66.5 27.2 36.1 56.9 71.9 113.2 115.9

each image has at least five reference captions. According
to the setting of1: 5,000 images are for testing and 5,000
images for offline testing, which are all splited from the val-
idation, the rest images are used for training. In addition, we
further test 40,775 images of the official COCO test set for
online testing to against the state-of-the-art methods.

The yielding sizes of vocabulary are 9,487 and 7,000 for
COCO and Flickr30k, respectively. In evaluation, we re-
port the following metrics: B-N (N=1,2,3,4) (Papineni et
al. 2002), Meteor (Banerjee and Lavie 2005), Rouge-L (Lin
2004), CIDEr (Vedantam, Zitnick, and Parikh 2015).

Parameter Settings and Training We adopt the ResNet-
152 model (He et al. 2016), which is pretrained on the Im-
ageNet dataset (Deng et al. 2009), as the CNN model to
extract the visual feature of image. The dimensions of the

1http://cs.stanford.edu/people/karpathy/deepimagesent/

visual feature channel and all the LSTM hidden states are
set to the same length as the concept vector. And the length
of the theme vector is determined by the complexity of the
dataset, which is set to 1,000, 200 for COCO and Flickr30k,
respectively. The proposed RL-based method is applied to
optimize the just MLE trained model with the CIDEr metric,
and λθ is set to 2. At each epoch, the validation set is used to
evaluate the model, and the model with the best CIDEr score
is selected for testing. All the experiments are implemented
with Pytorch (Paszke et al. 2017).

Variant Models for Comparison To gain insight into the
effectiveness of our proposed approach, the variable vari-
ants of our model are described as follows: LSTM-ATT:
We implement the 3 layers LSTM-based model which is
not adding any attention operations. LSTM+TATT: We im-
plement the 3 layers LSTM-based model which is adding
the concept attention, “TATT” means the concept attention
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LSTM-ATT: A kitchen with a 
refrigerator and a refrigerator.
WWT: A kitchen with a refrigerator 
and a refrigerator.
WWT+DW: A white refrigerator 
freezer sitting inside of a kitchen.

LSTM-ATT: A herd of sheep grazing 
on a beach.
WWT: A herd of sheep grazing on a 
lush green field.
WWT+DW: A herd of cattle standing 
on top of a grass covered field.

LSTM-ATT: A display of various 
types of different colors.
WWT: A display case with a variety 
of pastries.
WWT+DW: A display case filled
with different types of pastries.

LSTM-ATT: A man wearing a tie 
and tie holding a camera.
WWT: A man with glasses is holding 
a blue and white tie.
WWT+DW: A man wearing glasses 
and a tie in front of a brick wall.

LSTM-ATT: A large jet sitting on top 
of an airport runway.
WWT: A large airplane sitting on top 
of a runway.
WWT+DW: An airplane is parked on 
the runway with its door open.

LSTM-ATT: Two children are 
playing tennis in a park.
WWT: Two young boys are playing 
with a tennis racket.
WWT+DW: Two young boys 
holding tennis rackets in their hands.

LSTM-ATT: A plate of food with a 
cup of coffee.
WWT: A white plate with a sandwich 
on it.
WWT+DW: A white plate topped 
with a pastry next to a cup of coffee.

LSTM-ATT: A traffic light hanging 
from a street light.
WWT: A city street with traffic lights 
and a building.
WWT+DW: A traffic light hanging 
from the side of a building.

Figure 3: This figure illustrates several images with captions generated by different variants of our model. Compared with
LSTM-ATT and WWT, WWT+DW generates more distinctive captions in these samples.

mechanism. LSTM+RATT: The region attention is applied
into the LSTM-ATT. “RATT” denotes the region attention
mechanism. WWT: The full structure of our model does not
involve the Distinctive Learning. WWT+D: We add the dis-
tinctive Learning learning in the training process for our full
model, “D” represents the learning module. WWT+DW: To
balance the training of the hard samples with the easy sam-
ples, we add the “W”, which is a dynamic reward weight, to
the loss function of caption generation.

Evaluation and Analysis
In Table 1, it can be seen that the WWT+DW achieves the
best performances in all metrics, which indicates the intro-
duced dynamic reward and the distinctive Learning learning
of our model can significantly improve the performance of
image captioning. Compared to LSTM-ATT, LSTM+TATT
and LSTM+RATT can get the better performance. More-
over, when combining the TATT and the RATT mechanisms
to WWT, the model can significantly improve the perfor-
mance of the results. It demonstrates that the simulation
of human description to scene in our method is effective.
Comparing with the results of MLE-based and RL-based
methods, the RL method can improve the performace of
MLE-based model by significant margins across all metrics.
Specifically, because the RL-based models is training with
CIDEr metric, the improvements on CIDEr are over 3% to
all variants compare to the MLE based models.

From Table 2, on Flickr30K, our method achieves su-

perior performance. Furthermore, on the CIDEr metric,
our method achieves 88.2%, which is the highest known
value and improving over 66% against the performance of
(Lu et al. 2016). On COCO, whether using the MLE or
RL, compared with the state-of-the-art, our method outper-
forms them by obvious margins. Comparing to the MLE-
based 3 ensembled methods, our MLE-based results present
high competitiveness. Moreover, our RL-based 3 ensembled
model obtains significant gains across all metrics. To further
evaluate our model, we upload the results of our RL ensem-
bled model to the online COCO test server. The results in
Table 3 show that the present results of our method achieve
the highest performance with other state-of-the-art methods.

We further visualize how the themes dominate the cap-
tion generation. In Fig. 2, the concept probability and cor-
responding spatial attention map of the dominating theme
for each word are visualized. From these examples, we can
see the generated words are closely linked to their dominat-
ing themes. For example, in the first image, there are four
main themes “room”, “couch”, “table” and “furniture” dom-
inate the caption generation. The result “a living room with
a couch a table and a window” and corresponding spatial at-
tentions perfectly validate the dominating process of themes.
It shows that the captured theme has the ability to predict the
relevant words in caption as human beings.

Some qualitative results are shown in Fig. 3. These cap-
tions are generated by three variants LSTM-ATT, WWT and
WWT+DW, respectively. From these examples, we know
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that the proposed structure of the framework and the de-
signed learning method are significant to obtain better re-
sults. Depending on the way of human description to scene,
the model can capture more significant information. For ex-
ample, in the fourth image, the WWT+DW captures rich
content in the image contains “man”, “glasses”, “tie” and
“wall”, the WWT misses the theme of “wall”. But the per-
former of LSTM-ATT is the worst, which has a grammar
mistake and captures wrong informantion. Depending on
the distinctive Learning method, more distinctive descrip-
tions can be generated. From the third and sixth examples,
compared to the other two variants, the sentences of the
WWT+DW are more distinctive and appropriate.

Conclusion
In this paper, we proposed a framework to explicitly apply
the known salient objects as the themes in image caption-
ing. The concept (what) and spatial attention feature (where)
of the corresponding theme are extracted to dominate the
word prediction at each time step. Moreover, while main-
taining the quality of the generated sentences, a novel learn-
ing method is introduced, Distinctive Learning, to encourage
distinctiveness between captions. Under the improved rein-
forcement learning method, our model achieves comparable
performance with the state-of-the-art approach on two chal-
lenging datasets, namely COCO and Flickr30K.

The vocabulary of the theme is predefined in this frame-
work, which means that the number of the visual concepts
is fixed and the semantic cues are limited. The limitation of
the endogenous knowledge could influence the model’s de-
scription of the exogenous objects in image. Therefore, we
tend to learn a knowledge base of the theme in future, which
contains more visual concepts and richer semantic cues. The
learned endogenous knowledge base can meet the needs of
the description to the more diverse exogenous objects.
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