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Abstract
Two-stream architecture have shown strong performance in
video classification task. The key idea is to learn spatio-
temporal features by fusing convolutional networks spatially
and temporally. However, there are some problems within
such architecture. First, it relies on optical flow to model tem-
poral information, which are often expensive to compute and
store. Second, it has limited ability to capture details and lo-
cal context information for video data. Third, it lacks explicit
semantic guidance that greatly decrease the classification per-
formance. In this paper, we proposed a new two-stream based
deep framework for video classification to discover spatial
and temporal information only from RGB frames, moreover,
the multi-scale pyramid attention (MPA) layer and the seman-
tic adversarial learning (SAL) module is introduced and inte-
grated in our framework. The MPA enables the network cap-
turing global and local feature to generate a comprehensive
representation for video, and the SAL can make this repre-
sentation gradually approximate to the real video semantics
in an adversarial manner. Experimental results on two pub-
lic benchmarks demonstrate our proposed methods achieves
state-of-the-art results on standard video datasets.

Introduction
Video classification is a fundamental task in computer vision
community, and it serves as an important basis for high-level
tasks, such as video caption (Wang et al. 2018), action de-
tection (René and Hager 2017), and video tracking (Li et al.
2018b). Significant progress on video classification has been
made by deep learning on account of the powerful model-
ing capability of deep convolutional neural networks that
obtain superior performance than those hand-crafted repre-
sentation based methods. However, compared with other vi-
sual tasks (Li et al. 2018a; Fan et al. 2018; Deng et al. 2018;
Yang et al. 2018), video classification should consider not
only static spatial information in each frame but also dy-
namic temporal information between frames. Although deep
convolutional neural networks can model spatial informa-
tion well, it is limited ability to capture temporal information
only from frame sequence. Therefore, how to model spa-
tial and temporal information effectively with deep learning
framework is still a challenging problem.
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Figure 1: Modeling temporal information with images. (a)
input frames; (b) The optical flows between these frames,
(c) The differential images between multiple video frames.

Video classification methods based on deep learning can
be divided into three different categories. The first category
relies on a combination of multiple input modalities, which
models spatial and temporal information, respectively. The
two-stream CNN (Simonyan and Zisserman 2014) is a
groundbreaking work of this category, which captures static
spatial information and dynamic temporal information with
different streams from multi-modality input, usually RGB
images and optical flow. Due to its prominent performance,
many state-of-the-art methods can be considered as variants
and improvements of this paradigm. However, this method
suffers from the heavy reliance on optical flow to model
temporal information, which are often expensive to compute
and store. To overcome this limitation, the second category
takes 2D CNN with temporal models on top such as LSTM
(Donahue et al. 2015), temporal convolution (Yue-Hei Ng
et al. 2015) and sparse sampling and aggregation (Wang
et al. 2016). This category usually extracts features from
different frames with 2DCNN, then captures the relation-
ship between these features using temporal models. Such
type of method more intuitive but lacks capacity to obtain
local dynamic information and global context information.
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The third category is based on 3DCNN (Tran et al. 2015;
Ji et al. 2013), which employs 3D convolutions and 3D
pooling operations to directly learn spatio-temporal features
from stacked RGB volumes. Such methods seem to having
ability solve the problem of spatio-temporal modeling but
the performance is still worse than two-steam CNN based
methods. Meanwhile, 3DCNN based methods also suffer
from a large number of parameters and huge computation
burden. More important, all three categories methods ignore
utilizing the semantic information embodied in video, which
leads to limited generalization performance. In fact, RGB
frames contain abundant of semantic information, which can
greatly improve classification performance. In addition, In-
spired by prior work (Wang et al. 2016), we find the RGB
differential image between multiple video frames have suf-
ficient ability to model temporal information, which is less
computational cost than optical flows. As shown in Figure 1,
the RGB differential images are sensitive to the part of the
motion in the video, which means that the details of RGB
differential images have ability to model the temporal infor-
mation.

In this paper, we propose a new two-stream based archi-
tecture to address all mentioned problems. Specially, we de-
sign a Spatial Network to model spatial information which
takes RGB frames as input and a Temporal Network to
model temporal information which exploits differential im-
ages as input. In order to obtain more discriminative repre-
sentation, we design a multi-scale pyramid attention (MPA)
layer to capture multi-scale features from different stage of
Spatial Network and Temporal Network, and then combine
these multi-scale information into new representation. In ad-
dition, we devise semantic adversarial learning (SAL) mod-
ule aiming to guide Spatial Network and Temporal Network
to learn more discriminative and semantic video representa-
tion. Overall, the main contribution of the proposed method
can be summarized as follows:

• We propose a new deep architecture for video classifica-
tion, which contains Spatial Network and Temporal Net-
work only taking RGB frames as input, which signifi-
cantly reduced computational complexity without sacri-
ficed.

• We devise a multi-scale pyramid attention (MPA) layer
that conducts attention-driven multi-scale features extrac-
tion and it is pluggable that can be easily embedded to
other CNNs based architecture.

• We introduce a semantic adversarial learning (SAL) mod-
ule, which can make fully use of video semantic informa-
tion and guide video representation learning in adversarial
manner.

• Experimental results on two public benchmarks for action
recognition, HMDB51 and UCF101, highlight the advan-
tages of our method and obtain improved performance
compared to state-of-the-art methods.

Related Work
Video classification has received sustained attention in re-
cent years, and has spawned lots of excellent works(Yang et

al. 2017a; 2017b; 2016). Traditional methods rely on hand-
craft visual features such as Motion Boundary Histogram
(MBH) (Dalal, Triggs, and Schmid 2006) and improved
Dense Trajectory (iDT) (Wang and Schmid 2013) which
lack the discriminative capacity to classify complex videos.
Deeply learned features is proved more powerful than hand-
craft features which can achieve superior performance.

There are many works have been trying to design effec-
tive deep architecture for video classification. For exam-
ple, Karpathy et al. (Karpathy et al. 2014) showed the first
large-scale experiment on training deep convolutional neu-
ral networks from a large video dataset, Sports-1M. Two-
Stream (Simonyan and Zisserman 2014), as a significant
breakthrough method, containing spatial and temporal nets
to model appearance and motion information respectively.
Wang et al. (Wang et al. 2016) designed temporal segment
network to perform sparse sampling and temporal fusion,
which aims to learn from the entire video. Wang et al. (Wang
et al. 2017) further improved this architecture by integrat-
ing appearance information, short-term and long-term mo-
tion information, which achieve outstanding classification
performance. However, these methods used optical flows to
caption motion which is time consuming. In order to cap-
ture the motion information directly from RGB frames, a
set of methods have been proposed to use 3DCNN (Tran et
al. 2015), containing 3D convolution filters and 3D pooling
layers, to model spatial and temporal information simulta-
neously. Although it is intuitive, but in fact, spatial informa-
tion and temporal information may interfere with each other
during the modeling process. So, it is still unclear whether
this pattern could efficiently model spatial and temporal re-
lation. To explicitly modeling spatial and temporal informa-
tion, CNN-LSTM (Shi et al. 2017) based methods is pro-
posed to model spatial and temporal information in different
stage. They use CNN to extract Spatial features firstly and
then model temporal information by using Long Shot-Term
Memory(LSTM) as an encoder to encode the relationship
between the sequence-illustrating spatial features. The main
problem of these methods is the neglecting of local temporal
relationship.

As a solution to the above problems, our method uses only
RGB frames as input and can obtain hybrid features from
different level through the multi-scale pyramid attention
layer. Moreover, our proposed semantic adversarial learn-
ing module can take fully use the video semantic informa-
tion. which can guide the whole framework to learn more
discriminative and semantic video representations.

Proposed Method
In this section, we give detailed description about our
method for video classification. Specifically, we first intro-
duce the structure of our method as a whole. Then, we study
the multi-scale pyramid attention layer for multiple level
features fusion. Finally, we present the semantic adversar-
ial learning module in detail.

Overall Architecture
We design a unified convolutional network that can be di-
vided into three components, Spatial Network, Temporal
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Figure 2: Our proposed framework. It can be divided into three components. The top branch is Spatial Network, which can
model spatial information. The middle branch is Semantic encoder, which provides video semantic features. The bottom branch
is Temporal Network, which can model temporal information. The multi-scale pyramid attention and semantic adversarial
learning is introduced in our framework to learn discriminative and semantically rich representation from videos.

Network and semantic autoencoder. Figure 2 shows the
overall architecture of our method. Specifically, we divide a
deep convolutional neural network into four stages. The out-
put of each stage represents multi-scale features of different
visual levels. Then we insert multi-scale pyramid attention
(MPA) layer at each stage in order to obtain refined multi-
scale features. Given a video clip in the form of n frames
sequence {θ1, θ2, . . . , θn}, we can obtain four different lev-
els of features {V i1 , V i2 , . . . , V in}, i ∈ {1, 2, 3, 4}, after MPA
layer of each stage. V ij can be rewritten as:

V ij = Attn(θj : Wi), (1)

where Attn(θj : Wi) is a function representing MPA layer
after the i-th stage with its parameters Wi operating on the
frame θj . The multi-scale features can be formulated as:

V̄ =

4∑
i=1

αi·G(V i1 , V
i
2 , . . . , V

i
n), (2)

where G is the frames consensus function, which is able to
combine the features from multiple frames to obtain a con-
sensus of representations among them. The αi is a weight
parameter about of i-th level, which can be learned automat-
ically. In order to obtain video semantics, we design seman-
tic autoencoder, taking video labels as input. Then semantic
adversarial learning module is adopted to guide the architec-
ture to learn semantic representations. We can formulize the
adversarial loss as:

Ladv(S, V̄ ) = Adv(V̄ , S), (3)
where S is video semantic extracted from semantic autoen-
coder. After that, the proposed framework can thus gener-
ate semantically rich representation Ṽ . We note that Ṽk is

the representation of the k-th video, and the class score Ck
is the output of classification layer with Ṽk as input. Com-
bining with standard categorical cross-entropy loss, the final
loss function is formed as:

Lcls(y, C) = −
K∑
i=1

yi(Ci − log

K∑
j=1

expCj), (4)

where K is the number of video classes and yi is the
groundtruth label concerning class i. Finally, by combining
Eq. 3 and Eq. 4, we can get the final loss function as:

L = Lcls(y, C) + Ladv(S, V̄ ). (5)

By minimizing L, the objective of video classification can
be achieved. Next, we will illustrate the proposed multi-
scale pyramid attention layer and semantic adversarial learn-
ing module in detail.

Multi-Scale Pyramid Attention
The deep convolutional neural network extraction feature is
a process from low-level visual features to high-level se-
mantic features. Although the higher network layer is able
to extract the global information , it will inevitably lose the
details. Therefore, we intend to collect different levels fea-
tures from a unified convolutional neural network. Specif-
ically, we divide a network (such as ResNet101) into four
stages, making each halve the resolution of the previous.
Each stage contains multiple convolutional layers operating
on feature maps of the same resolution. Then we can obtain
four sets of features containing high-level semantic infor-
mation and low level detailed information. However, these
multi-scale features are too redundant for the classification
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Figure 3: Multi-scale pyramid attention unit. We first put feature maps to multi-scale sampling branch to obtain multi-scale
information. Then we concatenate them and feed them into a 1 × 1 convolutional layer to merge the information as well as
generate the attention weights of feature maps. Finally we obtain the refined video representation.

task and may degrade the performance. So it is necessary to
refine them for classification, and meanwhile, maintaining
the multi-scale properties. Motivated by recent progress on
residual learning, we introduce a novel multi-scale pyramid
attention (MPA) layer that enables the network to consider
the importance of each stage feature maps comprehensively
with the informations of different receptive fields, so as to
obtain reasonable attention weights. The structure of MPA
is shown in Figure 3. It is a pluggable architecture and we
put it to the end of each stage, as the Figure 2 shows.

Considering the importance of each stage feature maps
from T scales, the attention weights hi of the i-th stage fea-
ture maps f i can be formulated as:

hi = τ(

T∑
t=1

βtlt(f
i : W t

att)), (6)

where τ is the function corresponding to the 1 × 1 convo-
lutional layer. βt is a weight that can be learned automati-
cally. lt represents the extractor of the t-th scale and W t

att is
its parameters. Therefore, the function of MPA layer can be
rewritten as:

V̄ =
4∑
i=1

αi·G(V i1 , V
i
2 , . . . , V

i
n)

=
4∑
i=1

αi·G(Attn(θ1 : Wi), . . . ,Attn(θn : Wi))

=
4∑
i=1

αi·G(hi1·f i1, . . . , hin·f in).

(7)
Then we can easily obtain the video representation with hy-
brid multi-scale information.

Semantic Adversarial Learning
Although multi-scale features have the ability to model
video information, it still requires the guidance of explicit
semantics. So, it is necessary to explore the exact semantic
of videos. To this end, the semantic autoencoder is intro-
duced in the proposed method. The structure of semantic au-
toencoder contains three fully connected layers supervised
by video labels. After training, we freeze trained encoder

to generate exact semantic information. Specifically, the se-
mantic S of videos can be written as:

S = encoder(y), (8)

where y is the groundtruth label of videos.
In order to eliminate the difference of “real” semantic

S and “fake” semantic V̄ , we design a semantic adversar-
ial learning module because of its excellent ability of per-
fectly model the data distribution (Goodfellow et al. 2014;
Li et al. 2018a). The adversarial loss function is used to en-
courage V̄ close to Si on the manifold to preserves seman-
tics, by ”fooling” a discriminator networkD that outputs the
probabilities to ensure V̄ is as ”real” as S. The adversarial
loss function is formulated as:

Ladv(S, V̄ ) = Adv(V̄ , S)
= ES(logD(S)) + EV̄ (log[1−D(V̄ )]),

(9)
where V̄ can be regarded as a transformation G of frames
sequence θ. So the loss function can be rewritten as:

Ladv(S, V̄ ) = ES(logD(S)) + Eθ(log[1−D(G(θ))]),
(10)

where G tries to minimize Ladv against D that tries
to maximize it, i.e., D∗ = argminGmaxDLadv(S, V̄ )
For better gradient of learning G, we actually mini-
mize Eθ(log[−D(G(θ))]) instead of Eθ(log[1−D(G(θ))]).
Therefore, the final adversarial loss function is defined as:

Ladv(S, V̄ ) = ES(logD(S)) + Eθ(log[−D(G(θ))]), (11)

Combining with Eq. (5), we can obtain the optimization of
our proposed method. For Spatial Network, the whole net-
work can be divided into three parts: semantic generator
G, classification layer C and semantic discriminator D. We
adopt an alternating optimization to train all three parts men-
tioned above to avoid gradient vanishing problem caused by
the minmax loss.

Firstly, semantic discriminator D is trained by minimizing
Eq. (5). Update the parameters of D with G and C fixed:

D∗ = argmin
D
L, (12)
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Algorithm 1 The optimization algorithm of SAL
Input: video dataset V = {(θk, yk), k = 1, . . . ,K}
Output: semantic representation V̄ , class score C
1: Initialized D, G, C; pretrained senmantic encoder
2: repeat
3: Extract S by Eq. 8.
4: Fixing parameters of G and D
5: Update D by minimizing Eq. 5. (S → 1, V̄ → 0)
6: Fixing parameters of G and D
7: Update G, C by minimizing Eq. 5. (V̄ → 1)
8: Extract V̄ and C
9: until convergence

Then, semantic generator G and classification layer C are
trained by minimizing Eq. (5). Update the parameters of G
and C with D fixed:

G∗, C∗ = argmin
G,C
L. (13)

The whole semantic adversarial learning module (SAL) is
summarized in Algorithm 1. The Temporal Network has the
same setting as Spatial Network.

Experimental Evaluations
In this section, evaluation datasets and implementation de-
tails used in experiments will be first introduced. Then we
will study different aspects of our proposed modal to ver-
ify the effectiveness, respectively. Finally, we will make a
comparison between our model with other RGB based state-
of-the-art methods and provide a visualization of our exper-
imental results.

Datasets and Implementation Details
Evaluation Datasets. In order to evaluate our proposed
model, we conduct action recognition experiments on two
popular video benchmark datasets: UCF101 (Soomro, Za-
mir, and Shah 2012) and HMDB51 (Kuehne et al. 2011).
The UCF101 dataset are collected from the Internet, con-
taining 13,320 videos which are divided into 101 classes.
While the HMDB51 dataset are collected from the realistic
videos, including movies and web videos, containing 6,766
videos which are divided into 51 action categories. We fol-
low the officially offered scheme which divides dataset into
3 training and testing splits and finally report the average
accuracy over the three splits. For Spatial network, we di-
rectly utilize RGB frames extracted from videos. For Tempo-
ral Network, the difference between adjacent frames is used
to model temporal information of videos.
Implementation details. In generation procedure, we use
stochastic gradient descent algorithm to train our Spatial
Network and Temporal Network. The mini-batch size is set
to 64 and the momentum is set to 0.9. The initial learning
rate is set to 0.001 for Spatial Network and Temporal Net-
work and decreases by 0.1 every 40 epochs.

For adversarial training procedure, we use adaptive mo-
ment estimation algorithm to train D Network and the initial
learning rate is set to 0.0001. The training procedure of Spa-
tial Network and Temporal Network stops after 80 epochs

Table 1: Performance comparison on HMDB51 split 1.
Method Spatial Temporal Combine

TSN 52.0% 57.1% 62.5%
Ours 54.4% 57.8% 63.7%

Table 2: Performance comparison on UCF101 split 1.
Method Spatial Temporal Combine

TSN 84.5% 85.4% 89.9%
Ours 86.1% 86.8% 91.2%

Table 3: Ablation study of our proposed method.
Dataset Method Network Accuracy

HMDB51
Baseline Spatial 52.0%

MPA Spatial 54.0%
MPA + SAL Spatial 54.4%

UCF101
Baseline Spatial 84.5%

MPA Spatial 85.2%
MPA + SAL Spatial 86.1%

and 120 epochs respectively. We use gradient clipping of 20
and 40 for Spatial and Temporal training procedure to avoid
gradient explosion. We train our model with 4 NVIDIA TI-
TAN X GPUs and all the experiments are implemented un-
der the Pytorch.

Results and Ablation Study
In this subsection, we will investigate the performance of our
proposed method. The analysis for the performance of single
and multiple modalities. All the results are trained with the
same network backbone and strategies illustrated in previous
sections for fair comparison.

We first evaluate the effectiveness of our proposed
method. In this section, we compare the performance be-
tween ours and TSN (Wang et al. 2016) with the same
experimental condition. The experiment is performed on
HMDB51 split 1 and UCF101 split 1, the results are sum-
marized in Table 1 and Table 2. As is shown in them, our
method is superior than TSN both in spatial and temporal
branch. In spatial branch, our method has about 2% im-
provement in performance compared to TSN, which proves
the effectiveness of proposed MPA and SAL. but in tempo-
ral branch, it is a limited improvement because differential
image has less visual elements than RGB.

In order to justify the effectiveness of our proposed MPA
and SAL, we conduct an ablation study for them. All exper-
iments in this ablation study are performed on the split 1 of
HMDB51 and UCF101 by Spatial Network. The results are
shown in Table 3. The baseline means the original network
without multi-scale pyramid attention and semantic adver-
sarial learning module. The MPA means add multi-scale
pyramid attention layer to baseline. It has about 1%-2% im-
provement in performance compared to baseline, which can
prove the effectiveness of proposed MPA. The MPA+SAL
means add both multi-scale pyramid attention and semantic
adversarial learning module. It has about 1% improvement
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Table 4: Comparison with state-of-the-art methods on the UCF101 and HMDB51 datasets. The accuracy is reported as average
over three splits. For fair comparison, we consider methods that use only RGB input. It can be seen our method obtains the best
performance.

Method Pre-train UCF101 HMDB51
HOG(Wang and Schmid 2013) None 72.4% 40.2%

ConvNet+LSTM(Donahue et al. 2015) ImageNet 68.2% -
Two Stream Spatial Network(Simonyan and Zisserman 2014) ImageNet 73.0% 40.5%

Conv Pooling Spatial Network(Feichtenhofer and Zisserman 2016) ImageNet 82.6% -
Spatial Stream ResNet ImageNet 82.3% 43.4%

Spatial TDD(Wang, Qiao, and Tang 2015) ImageNet 82.8% 50.0%
TSN Spatial Network(Wang et al. 2016) ImageNet 86.4% 53.7%

TSN (RGB+RGB-Diff)(Wang et al. 2016) ImageNet 91.0% -
RGB-I3D(Carreira and Zisserman 2017) ImageNet 84.5% 49.8%

CoViAR(Wu et al. 2018) ImageNet 90.4% 59.1%
DCD(Zhao, Xiong, and Lin 2018) ImageNet 91.8% -

LTC(Varol, Laptev, and Schmid 2018) Sports-1M 82.4% 48.7%
C3D(Tran et al. 2015) Sports-1M 85.8% 54.9%

Pseudo-3D Resnet(Qiu, Yao, and Mei 2017) ImageNet+Sports-1M 88.6% -
C3D(Tran et al. 2015) Kinetics 89.8% 62.1%

Ours ImageNet 92.7% 66.3%
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Figure 4: A comparison of top-5 predictions between TSN and our proposed method on UCF101 split 1. The tags on the top
is the groundtruth labels. The yellow bars indicate correct classifications and the blue stand for incorrect cases. The length of
each bar shows its confidence.

in performance compared to MPA, that can prove the effec-
tiveness of the proposed SAL.

Comparison with the State-of-the-Arts
In this subsection we compare the classification performance
of our approach with other state-of-the-art methods that take
RGB frames as input. The experiment is conducted on two
popular video action recognition benchmarks: UCF101 and
HMDB51. The results are shown in Table 4, where we com-
pare our method with traditional approach HOG and a series
of deep learning based methods such as 3D convolutional

network, trajectory-pooled deep convolutional descriptors,
temporal segment network and compressed video action
recognition. It can be seen that our model achieves best re-
sults than other methods on these benchmark datasets, which
can demonstrates the advantage of our proposed method and
the effectiveness of multi-scale feature semantic modeling.

Visualization
In this subsection, we present a qualitative classification re-
sults. Figure 4 illustrate the comparison of top-5 predictions
between TSN and our proposed method on UCF101 split 1.
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Figure 5: Confusion matrix for HMDB51 dataset.
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Figure 6: Confusion matrix for UCF101 dataset.

The results show that the original two-stream based methods
(such as TSN) are easily fooled by common background. For
instance, it regards BalanceBeam as ParallelBars, since the
similar backgroud of gym and equipments. The reasons is
that those methods fail to capture details and local context
information effectively. The results base on our method can
classify this actions will, which demonstrate the effective-
ness of proposed MPA and SAL module. Figure 5 and Fig-
ure 6 show the confusion matrix for HMDB51 and UCF101,
respectively. All the results can demonstrate the superior
performance of our method.

Conclusion
In this paper, we proposed a new deep network architecture
for video classification. The proposed architecture can only
need RGB frames as input to model spatial information and
temporal information for videos, which greatly reduce the
computational cost compared with those methods using op-
tical flow. In order to obtain more discriminative video repre-
sentation, we design multi-scale pyramid attention (MPA) to

refine and merge different level features. Then we introduce
semantic adversarial learning (SAL) module to guide learn-
ing procedure and to generate more discriminative seman-
tic representation. Comprehensive experiment results on two
popular benchmark datasets show that our method yields
state-of-the-art performance in video classification tasks.
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