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Abstract

Despite recent success of deep neural networks, it remains
challenging to efficiently learn new visual concepts from lim-
ited training data. To address this problem, a prevailing strat-
egy is to build a meta-learner that learns prior knowledge
on learning from a small set of annotated data. However,
most of existing meta-learning approaches rely on a global
representation of images and a meta-learner with complex
model structures, which are sensitive to background clutter
and difficult to interpret. We propose a novel meta-learning
method for few-shot classification based on two simple at-
tention mechanisms: one is a spatial attention to localize
relevant object regions and the other is a task attention to
select similar training data for label prediction. We imple-
ment our method via a dual-attention network and design a
semantic-aware meta-learning loss to train the meta-learner
network in an end-to-end manner. We validate our model on
three few-shot image classification datasets with extensive
ablative study, and our approach shows competitive perfor-
mances over these datasets with fewer parameters. For facil-
itating the future research, code and data split are available:
https://github.com/tonysy/STANet-PyTorch

1 Introduction
A particular intriguing property of human cognition is be-
ing able to learn a new concept from only a few exam-
ples, which, despite recent success of deep learning, remains
a challenging task for machine learning systems (Lake et
al. 2017). Such a few-shot learning problem setting has at-
tracted much attention recently, and in particular, for the
task of classification (Lake, Salakhutdinov, and Tenenbaum
2015; Vinyals et al. 2016; Triantafillou, Zemel, and Urta-
sun 2017). To tackle the issue of data deficiency, a pre-
vailing strategy of few-shot classification is to formulate
it as a meta-learning problem, aiming to learn a prior on
the few-shot classifiers from a set of similar classification
tasks (Vinyals et al. 2016; Mishra et al. 2018). Typically, a
meta-learner learns an embedding that maps the input into
a feature space and a predictor that transfers the label infor-
mation from the training set of each task to its test instance.
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While this learning framework is capable of extracting ef-
fective meta-level prediction strategy, it suffers several lim-
itations in the task of image classification. First, the i.i.d as-
sumption on tasks tends to ignore the semantic relations be-
tween image classes that reflects the intrinsic similarity be-
tween individual tasks. This can lead to inefficient embed-
ding feature learning. Second, most of existing work rely on
an off-the-shelf deep network to compute a holistic feature
of each input image, which is sensitive to nuisance varia-
tions, e.g, background clutter. This makes it challenging to
learn an effective meta-learner, particularly for the methods
based on feature similarity. Moreover, recent attempts typi-
cally resort to learning complex prediction strategies to in-
corporate the context of training set in each task (Santoro et
al. 2016; Mishra et al. 2018), which are difficult to interpret
in terms of the prior knowledge that has been learned.

In this work, we aim to address the aforementioned weak-
nesses by a semantic-aware meta-learning framework, in
which we explicitly incorporates class sharing across tasks
and focuses on only semantically informative parts of input
images in each task. To this end, we make use of attention
mechanisms (Vaswani et al. 2017) to develop a novel mod-
ularized deep network for the problem of few-shot classi-
fication. Our deep network consists of two main modules:
an embedding network that computes a semantic-aware fea-
ture map for each image, and an meta-learning network that
learns a similarity-based classification strategy to transfer
the training label cues to a test example.

Specifically, given a few-shot classification task, our em-
bedding network first generates a convolutional feature map
for each image. Taking as input all these feature maps, the
meta-learning network then extracts a task-specific repre-
sentation of input data with a dual-attention mechanism,
which is used for few-shot class prediction. To achieve this,
the meta-learning network first infers a spatial attention map
for each image to capture relevant regions on the feature
maps and produces a selectively pooled feature vector for
every image (Xu et al. 2015). Given these image features,
the network employs a second attention module, referred as
task attention, to compute an attention map over the train-
ing set of the task. This attention encodes the relevance of
each training example to the test image class in the task
and is used to calculate a context-aware representation of
the test instance (Vinyals et al. 2016) for its class prediction.
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Figure 1: An illustration of few-shot classification via our attention-based network. See text for more details.

To improve its discriminative power, we can further refine
the context-aware representation by stacking multiple lay-
ers of two attention modules and the resulting deep network
is referred as the Spatial-Task Attention Network (STANet).
Figure 1 shows an overview of few-shot classification via
our dual attention network.

For training our STANet, we design a multi-task loss to in-
corporate the shared class semantics of all tasks and to learn
a meta-level classification strategy. To this end, we introduce
a semantic branch and integrate a semantic prediction loss
for the embedding network with a meta-classification loss
for the overall network.

We evaluate our STANet extensively on three challeng-
ing few-shot image classification benchmarks, including the
Omniglot dataset, MiniImageNet and a new dataset based
on the CIFAR-100. The empirical results and ablative study
demonstrate the superior or comparable performance of our
method over the prior state-of-the-art approaches. The main
contributions of our work are two-fold:

• We develop an efficient attention-based deep network for
one-shot prediction, which is also easy to interpret in
terms of learned knowledge for task-level generalization.
Our network achieves the state-of-the-art accuracies with
much fewer parameters and simpler network structure.

• We propose to learn a semantic-aware representation for
few-shot classification, which exploits the label correla-
tion across tasks and location of objects. Moreover, we
build a new benchmark of few-shot classification based
on CIFAR-100 to study the impact of task similarity and
benefits of shared representations.

2 Related Work
Few-shot learning: Inspired by data-efficient learning in
human cognition (Lake et al. 2011), few-shot learning aims
to learn a new concept representation from only a few train-
ing examples. Such a learning paradigm has attracted much
attention in the literature (Fei-Fei, Fergus, and Perona 2006;
Vinyals et al. 2016; Ravi and Larochelle 2017) as the tra-
ditional data-driven deep learning approaches, despite their
recent success, have difficulty in handling new classes with

limited data annotation (LeCun, Bengio, and Hinton 2015).
Existing few-shot learning approaches can be largely cat-
egorized into three main groups: Bayesian learning based,
metric learning based and meta-learner based methods.

Early works on few-shot learning aim to build a Bayesian
prior model that can be transferred to new classes. Fei-Fei
et al. (2003; 2006) utilized a hierarchical Bayesian model
to represent the prior knowledge on visual classes for one-
shot image classification. More recently, Lake et al. (2015)
proposed a hierarchical Bayesian program learning (HBPL)
to effectively learn the prior knowledge on object categories.

A second strategy in few-shot learning learns to predict
class-agnostic similarity between data instances. In particu-
lar, deep siamese network (Koch, Zemel, and Salakhutdinov
2015) trains a convolutional network to embed data samples
so that samples in the same class are close while samples in
different classes are far away. Recent works (Vinyals et al.
2016; Shyam, Gupta, and Dukkipati 2017; Snell, Swersky,
and Zemel 2017; Triantafillou, Zemel, and Urtasun 2017) re-
fine this idea by introducing recurrent network structure, at-
tention mechanisms, or novel learning objective to improve
the similarity learning. Sung et al. (2018) propose to use
relation networks to compare the images within episodes.
However, these methods typically rely on a global feature
representation of images and thus lack the capacity to choose
relevant regions when embedding the images. In contrast,
our approach employs dual attention mechanism to focus on
object features in images.

Meta-learning, or learning-to-learn strategies (Naik and
Mammone 1992; Thrun and Pratt 1998; Schmidhuber 1987),
have been applied to few-shot learning and made sig-
nificant progresses recently (Andrychowicz et al. 2016;
Ravi and Larochelle 2017; Finn, Abbeel, and Levine 2017;
Munkhdalai and Yu 2017; Li et al. 2017). Ravi and
Larochelle (2017) proposed an LSTM meta-learner to learn
the exact optimization algorithm used to train the neural
network classifier in the few-shot regime. MAML (Finn,
Abbeel, and Levine 2017) learns an update step that a
learner can take to successfully adapt to a new task. Other
work (Cheng et al. 2017) combines metric learning and
meta-learning to learn task-specific learners.
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In addition to the meta-optimizers, other complex deep
network models have been adopted as meta-learners for
few-shot learning, such as memory augmented neural net-
works (Santoro et al. 2016), graph neural networks (Sator-
ras and Estrach 2018) and Meta networks (Munkhdalai and
Yu 2017), which encode a meta-level inductive biases across
tasks. Temporal convolution network (Mishra et al. 2018)
models each classification task as a sequence prediction
problem. Recently, (Qiao et al. 2018) propose to generate
the parameters of the last network layer from the activations
of a pre-trained feature embedding. (Gidaris and Komodakis
2018) use an attention kernel to produce a mixing of pre-
trained linear weights for novel categories. In contrast to
these models, our method is based on a simple attention-
based neural network that has a compact structure and is
easy to interpret in terms of learned prior knowledge.

Attention-based representation: Attention mechanism
enables a deep network to attend relevant parts of input data,
which is important for learning an object representation ro-
bust toward cluttered background. Additive attention (Bah-
danau, Cho, and Bengio 2015; Xu et al. 2015) and multi-
plicative attention (Vaswani et al. 2017; Sukhbaatar et al.
2015) are the two most commonly used attention mecha-
nism. We exploit the self-attention (Vaswani et al. 2017)
to capture the data similarity in our method. The Matching
Network (Vinyals et al. 2016) also uses an attention mecha-
nism over a learned embedding of training examples to pre-
dict classes for the test data. By contrast, our dual attention
network further incorporates the spatial attention (Xu et al.
2015) to learn a better representation of input images.

3 Problem Setting and Overview
We aim to learn an image classification model that can pre-
dict object classes using only a few annotated images per
class as training data. To this end, we formulate the few-shot
image classification as a meta-learning problem (Vinyals et
al. 2016). Formally, we consider each instance of few-shot
classification as a task T (also called an episode) sampled
from a task distribution T . Each task T is defined by a class
label set LT , a task-train set Dtr

T (also called support set)
consisting of N annotated images, and a task-test example
xts
T with its groundtruth class label ytsT ∈ LT . The task-train

set Dtr
T = {(x(1)

T , y
(1)
T ), · · · , (x(N)

T , y
(N)
T )}, where x

(i)
T de-

notes the i-th input image in task T , and y(i)T ∈ LT is its
class labels, 1 ≤ i ≤ N .

The problem of meta-learning is to build a meta-learner
M, or a mapping from the task-train set Dtr

T and the task-
test data xts

T to the task-test label ytsT . Its learning framework
typically consists of two phases: meta-training and meta-
test. In the meta-training phase, we train the meta-learner
M on a set of tasks {T = (LT ,D

tr
T ,x

ts
T , y

ts
T )} sampled

from T , denoted as Smeta
tr . The entire label set used in meta-

training is denoted by Ltr = ∪T∈Smeta
tr

LT . In the meta-test
phase, we evaluate the meta-learner by testing it on a sepa-
rate set of task Smeta

ts with new classes only. In other words,
let the label set in the meta-test be Lts = ∪T∈Smeta

ts
LT , and

we have Ltr ∩Lts = ∅. We use the one-shot learning setting
throughout the model sections for notation clarity.

In this work, we address the meta-learning problem in the
context of image classification by explicitly incorporating
spatial and semantic cues of object categories and develop
an easy-to-interpret deep network architecture for few-shot
classification. Our approach is motivated by three key ob-
servations: 1) Object categories are mostly localized in the
images and using only relevant features allows us to learn an
object representation robust toward background clutters; 2)
A simple attention mechanism can be used to find semanti-
cally similar images and encode the context of task-train set
Dtr

T for label prediction; and 3) A good image representa-
tion is critical for building an effective meta-learner and can
be learned by incorporating the semantic class information
across the individual tasks (i.e., Ltr) in the meta-learning
setting. We instantiate these ideas by designing a deep dual-
attention neural network for the few-shot image classifica-
tion problem, which is detailed in the following section.

4 Model Architecture
We now introduce our deep neural network based meta-
learner, which learns a class-relevant feature representation
of images based on a spatial attention and a context-aware
representation of test instances using a task attention. To ef-
fectively train the dual-attention network, we also propose a
meta-learning loss with novel semantic regularization.

Specifically, our deep network consists of two main net-
work modules: an embedding network module that com-
putes convolutional feature maps for all the images in the
input (Dtr

T ,x
ts
T ) and a meta-learning network that uses a

dual spatial-task attention mechanism to predict the task-
test label ytsT . To facilitate the network learning, we also in-
troduce an auxiliary semantic branch in the meta-training
stage. We refer to our deep meta-learner as the Spatial-Task
Attention Network (STANet). An overview of our entire
model pipeline with two attention layers is shown in Figure
1 and we will describe each module in details below.

4.1 Embedding network
Given a task (or episode), the first stage of our STANet is
an embedding network module that extracts convolutional
feature maps of every training and test image in this task.
The embedding module consists of a series of convolution
layers with residual connections and multiple strides (He et
al. 2016). Unlike prior work, we do not collapse the image
feature maps into a feature vector with full-connected layers.
By maintaining the spatial structure of the feature maps, we
are able to select regions relevant to the image categories,
and ignore the background clutters in the next stage.

Formally, denoting the embedding network as F and a
task T = (L,Dtr,xts, yts), we compute the feature maps
of images in T as,

Ctr
i = F(x(i)), x(i) ∈ Dtr, 1 ≤ i ≤ N, (1)

Cts = F(xts) (2)

where Ctr
i and Cts are feature representations of task-train

and task-test images respectively. Here we omit the task in-
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Figure 2: Spatial attention module of meta-learning branch,
which generates object-aware representations of images.

dex T for clarity. Let (Hf ,Wf ) be the height and width of
the feature maps. We represent the features as a matrix in
Rnch×nloc , where nch is the number of feature channels and
nloc = Hf ×Wf .

4.2 Meta-learning network
Taking as input the conv features and task-train labels
(Dtr,xts), the second component of the STANet is a meta-
learning network that builds a classifier to predict the class
label yts. To achieve this, we introduce a dual-attention
mechanism to locate the relevant image regions and produce
a context-aware representation of task-test image for trans-
ferring task-train labels.

We implement the dual-attention mechanism as a spatial-
task attention (STA) layer, composed of a spatial attention
and a task attention module. The STA layer takes the im-
age features and task-train labels in T to produce a context-
aware representation of the test example xts, which also al-
lows us to stack multiple STA layers to generate a set of
refined task-test image features for classification. Below we
will introduce those two attention modules and an one-layer
STA network first, followed by the multi-layer STA network.

Spatial attention module To focus on the regions related
to their semantic class, we introduce a spatial attention mod-
ule to generate object-centric representations of images in a
task by exploiting spatial information in the conv features.
Specifically, we derive a spatial attention map as for each
conv feature map C ∈ {Ctr

i }Ni=1∪{Cts} based on the task-
test feature, which will be detailed below. Here the attention
as ∈ ∆nloc ,∆nloc = {as ∈ Rnloc ,as � 0,1ᵀas = 1},
indicating the relevance of each spatial site w.r.t. the tar-
get class yts. Given the attention map as, we can take a
weighted average of the feature map to obtain an object-
centric representation z = aᵀsC, where z ∈ Rnch .

To compute the attention maps, we first estimate a task-
test representation hts ∈ Rdh that captures distinctive fea-
tures of the test class of the task. We initialize hts by taking
an average pooling of the test feature map Cts, which typ-
ically generates a global semantic feature descriptor for the
test image. We use the task-test representation hts as a query
and search for the relevant spatial sites on the conv feature
maps. Formally, we adopt the attention mechanism proposed
in (Vaswani et al. 2017), which maps the query feature (hts)
and the conv features ({Ctr

i }Ni=1 ∪ {Cts}) into a key space,
and measures the key similarities based on their inner prod-
uct. To this end, we apply an 1× 1 convolution to each conv

Figure 3: Task attention module produces context-aware rep-
resentations for few-shot classification via task attention.

feature map C to compute its key representation Ks, and a
linear transform to the query hts to compute its key qs:

qs = Wqs
hts, Ks = WKs

C (3)

where Wqs
∈ Rdks×dh , WKs

∈ Rdks×nch , and the di-
mensions of the resulting keys are qs ∈ Rdks and Ks ∈
Rdks×n

loc

. The spatial attention map on C is then derived
by a weighted inner product between the query and the conv
feature keys, followed by a softmax function:

as = softmax

(
qsKs√
dks

)
(4)

Such an attention map will have larger weights on the loca-
tions sharing similar features as the task-test representation.

For each task, the spatial attention module generates an at-
tention map for every task-train and task-test image, and we
denote them as {a(i)s }Ni=1 and atss respectively. Given those
attention maps, we compute an object-aware feature repre-
sentation for each image as follows:

zts = atsᵀs Cts, ztri = a(i)ᵀs Ctr
i , 1 ≤ i ≤ N, (5)

where zts, ztri ’s ∈ Rnch . Figure 2 shows the structure of the
spatial attention module.

Task attention module Given the object-centric image
features zts, {ztri }Ni=1 of a task, the second module of the
meta-learning network aims to produce a context-aware test
feature for predicting the test class yts. Our goal is to find the
task-train instances that are semantically similar to the test
one for label transfer. To this end, we implement a task atten-
tion mechanism inspired by (Mishra et al. 2018) to compute
the context-aware test feature.

Concretely, we use the task-test image feature zts as a
query and produce a task attention vector at ∈ ∆N (here
∆ denotes a simplex). Each element of the task attention
vector encodes the similarity between the task-test feature
and the corresponding training feature. We adopt a similar
strategy as in the spatial attention module: First, we com-
pute the key representations as qt = Wqtzts, Kt =
WKt

[
ztr1 , z

tr
2 , · · · , ztrN

]
, where Wqt ∈ Rdkt×nch , WKt ∈

Rdkt×nch , and the dimensions of the resulting keys are qt ∈
Rdkt and Kt ∈ Rdkt×N . The task attention on the task-train

set is then calculated by at = softmax
(

qtKt√
dkt

)
.
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Given the task attention, we compute a context-aware rep-
resentation to encode the task-train examples that are simi-
lar to the test instance, which is then used to predict the test
label. Specifically, we compute a linear embedding of the
training features and labels, and take the weighted average
of the embedded features based on the task attention at :

Vt = Wvt

[ (
ztr1
y1

)
,

(
ztr2
y2

)
,· · · ,

(
ztrN
yN

) ]
(6)

og = aᵀtVt, (7)

where yi are the one-hot encoding of label y(i) for a
given task, and y(i) ∈ {1, . . . , |L|}. The embedding ma-
trix Wvt

∈ Rdvt×(nch+|L|), the embedded feature Vt ∈
Rdvt×N , and the context-aware representation og ∈ Rdvt .
Here og can be viewed as a summary of the task-train infor-
mation relevant for predicting the test class in the task. The
computation flow of this module is illustrated in Figure 3.

Based on the context-aware feature, we predict the label
of the task-test instance by a fully connected layer followed
by a softmax function as follows,

Pmeta = softmax(Woog) (8)

where Pmeta ∈ ∆|L| is the probability vector over the label
space of the task, Wo ∈ R|L|×dvt is the weight for the fully
connected layer, and ŷtsmeta = argmaxl∈{1,...,|L|} Pmeta(l)
is the predicted label.

Multi-layer STA Net Our one-layer STA network relies
on an estimated task-test representation hts to initialize the
first spatial attention module and hence the efficacy of our
dual attention mechanism depends on the quality of hts .
While the average pooling provides a good initial estimate,
our task context feature og can be further improved given a
better task-test representation. Specifically, we re-estimate
the task-test representation hts at the end of the task at-
tention module based on the features zts and an attention-
weighted average of {ztri }Ni=1:

os = aᵀt
[
ztr1 , z

tr
2 , . . . , z

tr
N

]
, hts = [zts

ᵀ
,oᵀ

s ]ᵀ (9)

where os ∈ Rnch encodes the task context and is used to
enrich the test feature zts.

Using the new hts, we stack a second STA-layer into the
meta-learning module and generate a new task context pre-
sentation og . Such process can be repeated and produce M
outputs {o(0)

g ,o
(1)
g , · · · ,o(M−1)

g }with anM -layer STA net-
work. We concatenate o(m)

g s from all the STA layers to form
a multi-level task-context representation, which is then pass
through a logistic regressor to predict the final label.

4.3 Meta-training with semantic regularization
To estimate the model parameters, we train our STANet
in the meta-learning framework. Specifically, we assume a
meta-train dataset Smeta

tr = {T = (LT ,D
tr
T ,x

ts
T , y

ts
T )} is

provided in the meta-train stage, which is sampled from the
task distribution T . Our goal is to minimize the expected
task loss by learning an image representation through the
embedding network and a spatial-task attention mechanism

through the meta-learning network. To this end, we propose
a novel meta-learning loss that consists of the empirical task
loss on the meta-train dataset and a semantic loss that ex-
ploits the class correlation between different tasks.

The empirical task loss is the average log-loss of the net-
work predictions on the task-test instances, defined as,

Ltask(Θ) =
∑

T∈Smeta
tr

− logPmeta(ytsT |Dtr
T ,x

ts
T ; Θ)

|Smeta
tr |

(10)

where Θ denotes all the model parameters.
To learn a better embedded feature representation, we fur-

ther introduce a semantic loss defined on a shared class
space across different tasks. To achieve this, we augment
the embedding network with a Semantic Branch that pre-
dicts a label distribution in the global label space Ltr. This
allows us to inject additional supervisory signal into the em-
bedding network training. Specifically, our semantic branch
takes average pooling on each convolutional feature map C
and passes the resulting features through a logistic regres-
sor, which predicts a label distribution Psem ∈ ∆|Ltr|over
the global label set,

Psem = softmax(Wsem1ᵀC) (11)

where Wsem is the weight for the logistic regression. The
semantic loss is defined by the average log-loss of the se-
mantic branch prediction:

Lsem(Θ) =
∑

T∈Smeta
tr

∑
(xT ,yT )

− logPsem(yT |xT ; Θ)

|Smeta
tr |(|Dtr|+ 1)

(12)

where the dataset size equals to the number of task-train data
|Dtr

T | plus the number of task-test examples. And the overall
meta-train loss is defined as,

Lfull = Ltask(Θ) + λLsem(Θ) (13)

where λ is a weight balancing the regularization from the se-
mantic loss. As the semantic loss is closer to the embedding
network and shared across different training tasks, it enables
us to significantly speedup the feature learning, and learn
a better convolutional feature representation for the meta-
learning network.

5 Experiments
We evaluate our STANet method on the task of few-shot
image classification by conducting a set of experiments on
three datasets. In addition to two publicly-available datasets,
MiniImageNet (Krizhevsky, Sutskever, and Hinton 2012)
and Omniglot (Lake, Salakhutdinov, and Tenenbaum 2015),
we propose a new few-shot learning benchmark using real-
world images from CIFAR100 (Krizhevsky and Hinton
2009), which is referred to as Meta-CIFAR100 dataset. In
this section, we introduce the datasets and report detailed
experimental results. We perform different N -way m-shot
experiments on the three datasets, with 95% confidence in-
terval in the meta-test phase1.

1Details of network architecture and experiments configuration
are listed in the supplementary material.
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Table 1: MiniImageNet Performance. STANet-S refers to
shallow embedding network.

Method # Params Feature 5-way Accuracy

Extractor 1-shot 5-shot

Matching Net (Vinyals et al. 2016) 0.1M Conv64 43.56± 0.84% 55.31± 0.73%
Prototypical Net(Snell et al. 2017) 0.1M Conv64 49.42± 0.78% 68.20± 0.66%

MAML (Finn et al. 2017) 0.1M Conv64 48.70± 1.84% 63.11± 0.92%
RelationNet(Sung et al. 2018) 0.23M Conv64 50.44± 0.82% 65.32± 0.70%

(Gidaris et al. 2018) 0.24M Conv64 56.20± 0.86% 72.81± 0.62%
GNN (Satorras et al. 2018) 1.6M Conv64 50.33± 0.36% 66.41± 0.63%

STANet-S(1-Layer) 0.24M Conv64 50.38± 0.65% 65.67± 0.66%
STANet-S(3-Layer) 0.24M Conv64 53.11± 0.60% 67.16± 0.66%

SNAIL (Mishra et al. 2018) 6.1M ResNet-12 55.71± 0.99% 68.88± 0.92%
(Gidaris et al. 2018) 2.6M ResNet-12 55.45± 0.86% 70.13± 0.68%

(Qiao et al. 2018) 40.5M WRN-28 59.60± 0.41% 73.74± 0.19%

STANet(1-Layer) 2.6M ResNet-12 57.25± 0.40% 69.45± 0.50%
STANet(3-Layer) 2.6M ResNet-12 58.35± 0.57% 71.07± 0.39%

Table 2: Ablation study for STANet on MiniImageNet using
3 layers dual-attention. SR-Semantic Regularization, SA-
Spatial Attention, TA-Task Attention.

Components 5-way(Normal)

SR. SA. TA. 1-shot 5-shot

7 Uniform 3 53.41± 0.61% 64.32± 0.57%
7 Gaussian 3 54.29± 0.66% 65.41± 0.55%

7 3 3 55.52± 0.64% 66.75± 0.62%
3 3 3 58.35± 0.57% 71.07± 0.39%

5.1 MiniImageNet
Dataset. MiniImageNet is a subset of the ILSVRC-12
dataset (Russakovsky et al. 2015), consisting of 84×84 RGB
images from 100 different classes with 600 examples per
class. We adopted the splits proposed by (Vinyals et al. 2016;
Ravi and Larochelle 2017) with 64 classes for training, 16
for validation, 20 for testing in the meta-learning setting.

Quantitative Results. We compare the performance of
our STANet with previous state-of-the-art meta-learning
methods in Table 1. The top section compares our networks
with other methods using the same shallow embedding net-
work, while the bottom section shows comparison results
with deeper embedding networks. In both settings, our 3-
Layer STANet outperforms the previous approaches that use
the same type of embedding networks by a sizable margin.
Moreover, our network achieves comparable accuracies to
(Qiao et al. 2018)’s method but has a much simpler architec-
ture: only 6% of their model in parameter size.

Visualizing Results. To understand the dual attention
mechanism, we visualize the spatial attentions of the 3-
Layer STANet by overlaying them on the images and the
task attentions in Figure 4. We can see that spatial atten-
tion helps the model locate salient region of task-test image
(e.g., the foreground objects), and the matching regions in
the task-train set. Based on the localized features, the task
attention weight for each task-train image indicates how rel-
evant an image is for predicting the label of the task-test im-
age. Moreover, Figure 4 shows that spatial attention gener-
ates sharper focuses on salient regions with increasing num-
ber of layers, while task attention also concentrates more on
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Figure 4: Visualization of attention maps in the 3-Layer
STANet on one-shot classification (MiniImageNet). Green
indicates the correct class for the test image. First row: input
images, classes and predicted scores. Second-Fourth row:
spatial attention-masked images. at denotes the task atten-
tion values.

Figure 5: Validation curves of the STANet with and with-
out the semantic branch. Green curve shows the training of
the full STA-Net and Red curve is for the STA-Net without
semantic branch.

the task-train image in the same class as the task-test ones.

Ablation Study. We conduct a series of ablation studies
to evaluate the importance of each component used in our
STANet model. Table 1 and Table 2 summarize the results
of our ablative experiments, in which we compare our full
model with several partial model settings.

First, we compare the single-layer STANet with the multi-
layer model in Table 1 (last two rows). We can see that
the multi-layer STANet further promotes the accuracies in
both few-shot settings. While the improvement seems mild,
it demonstrates that more STA layers can refine the image
representations to achieve better performance.

Second, in Table 2, we create three baseline models by
removing the semantic branch or the spatial attention. By
comparing with the full model, we show that adding the se-
mantic branch improves the performance of the model from
55.52% to 58.35% with a 3% gain. We also compare our
spatial attention with uniform and Gaussian attention, and
our learned attention achieves favorable performance. We
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Table 3: Classification on CIFAR-100

Method # Params Feature Easy Moderate Hard

Extractor 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML (Finn et al. 2017) 0.1M Conv64 55.17± 1.90% 74.12± 0.86% 46.30± 1.90% 58.49± 0.94% 38.46± 1.83% 52.17± 0.89%

STANet(1-layer) 0.1M Conv64 65.51± 0.44% 78.31± 0.38% 56.62± 0.46% 67.38± 0.51% 42.94± 0.41% 54.91± 0.38%
STANet(3-layer) 0.1M Conv64 66.11± 0.42% 78.54± 0.51% 57.31± 0.39% 68.71± 0.43% 42.98± 0.43% 55.23± 0.42%

note that the MiniImageNet has a strong center-bias, which
may cause the mild improvements.

Finally, we compare the training process of the full
STANet model with the STANet without semantic regular-
ization. We plot the validation performance curves of these
two STANets during training in Figure 5. It is evident that
the semantic branch is able to improve the convergence and
the final performance significantly, which indicates that the
full STANet exploits the semantic information efficiently.

5.2 Meta-CIFAR100
Dataset. To investigate the impact of task distributions in
the few-shot learning, we design a new few-shot classifi-
cation benchmark, Meta-CIFAR100, based on the CIFAR-
100(Krizhevsky and Hinton 2009) dataset. We use all the
classes from the CIFAR-100 in our dataset, which contains
32× 32 RGB images from 100 classes with 600 images per
class. The label classes of CIFAR100 have a balanced hier-
archical structure: they are included in 20 parent categories
and each parent category comprises 5 base categories. This
allows us to design different types of task distributions when
building training and test splits in the meta-learning setting.

Specifically, we introduce three kinds of dataset splits:
Easy, Moderate and Hard as follows2, which indicates how
related the test tasks are to the training tasks, and how much
semantic knowledge can be transferred.
Easy: We choose one base category from each parent cate-
gory to construct the meta-test set, which represents the case
that at the meta level, the test and train set are from different
categories but share the same parents.
Moderate: We select 2 or 3 base categories from 7 parent
categories to build the meta-test set with 20 base classes,
and use the remaining 80 classes for the meta-train set.
Hard: We choose 4 parent categories randomly, and use
their 20 base categories as the meta-test set. The remaining
16 parent categories and 80 base categories are employed for
the meta-train set.

Experimental Results. Our experiments on the Meta-
CIFAR100 dataset aim to investigate the impact of the task
distribution in the few-shot classification. We include the
MAML method (Finn, Abbeel, and Levine 2017), which has
released its code, for comparison with the state of the art.

From results in Table 3, we can see that our approach
outperforms the baseline method by a large margin in all
three different settings. In addition, as the STANet is able
to exploit the semantic similarity during feature learning,
it achieves the largest performance gain for the Easy case

2We include more split details in the supplementary material.

Table 4: Omniglot Performance

Method # Params Feature 5-way Accuracy

Extractor 1-shot 5-shot

Matching Net (Vinyals et al. 2016) 0.1M Conv64 98.1% 98.9%
Prototypical Net (Snell et al. 2017) 0.1M Conv64 97.4% 99.3%

GNN (Satorras et al. 2018) 0.4M Conv64 99.2% 99.7%
MAML (Finn et al. 2017) 0.1M Conv64 98.7± 0.4% 99.9± 0.3%

SNAIL (Mishra et al. 2018) 2.7M Conv64 98.96± 0.20% 99.75± 0.11%

STANet(1-Layer) 0.1M Conv64 98.10± 0.11% 99.41± 0.09%
STANet(3-Layer) 0.1M Conv64 98.69± 0.22% 99.59± 0.33%

where the meta-train and meta-test sets have the highest sim-
ilarity in semantic features. When the meta-train and test are
less similar, the meta-learning task becomes more difficult
but the performance gap only decreases mildly.

5.3 Omniglot
Dataset. The Omniglot dataset (Lake et al. 2011) consists
of 1623 characters (classes) from multiple alphabet vocabu-
laries. We follow the setting in (Vinyals et al. 2016) to split
the dataset into 1200 classes for training and the remain-
ing 423 for testing, and augment the dataset by rotation pro-
posed by (Santoro et al. 2016).

Experimental Results The Omniglot dataset (Lake et al.
2011) has been widely used for testing few-shot learning
methods and most recent methods achieve strong perfor-
mances. Here we use it as a sanity check to validate our
method. For semantic regularization, we choose the parent
level of the base categories, which include 39 classes, as a
coarse-level supervision in training the embedding network.

The overall comparison results are shown in Table 4. We
can see that our STANet achieves competitive performance
on the Omniglot dataset in comparison with the state-of-the-
art methods. This indicates that our approach performs well
on different types of image data.

6 Conclusion
In this work, we have proposed a simple and yet effective
meta-learning method based on a dual attention deep net-
work. Our approach has several advantages over the prior
works. First, by exploiting the spatial attention and shared
semantics, we are able to learn a robust semantic-aware im-
age representation. In addition, our attention mechanism is
easy to interpret in terms of the prior knowledge learned by
the meta-learner. Furthermore, we demonstrate the efficacy
of our approach by extensive experiments on the MiniIm-
ageNet, Omniglot and a new Meta-CIFAR100 benchmark,
which clearly show that our network has achieved competi-
tive or the state-of-the-art performances.
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