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Abstract

Diffusion is commonly used as a ranking or re-ranking
method in retrieval tasks to achieve higher retrieval perfor-
mance, and has attracted lots of attention in recent years. A
downside to diffusion is that it performs slowly in comparison
to the naive k-NN search, which causes a non-trivial online
computational cost on large datasets. To overcome this weak-
ness, we propose a novel diffusion technique in this paper. In
our work, instead of applying diffusion to the query, we pre-
compute the diffusion results of each element in the database,
making the online search a simple linear combination on top
of the k-NN search process. Our proposed method becomes
10~ times faster in terms of online search speed. Moreover,
we propose to use late truncation instead of early truncation
in previous works to achieve better retrieval performance.

Introduction

The success of deep neural networks on feature represen-
tation has led it to become a standard technique in im-
age retrieval. Models pre-trained on popular datasets such
as ImageNet (Deng et al. 2009), Landmarks (Babenko et
al. 2014) etc. can be used to extract features of images.
Particularly, convolutional layers have been proved to be
most beneficial at retrieving images (Babenko et al. 2014;
Radenovi¢, Tolias, and Chum 2016; Gordo et al. 2016;
Razavian et al. 2016). Nearest neighbor search is then used
on the feature vectors to find the most similar images to a
query.

Datasets are usually scraped from the internet, resulting
in images with the same object/landmark shown in a vari-
ety of angles, lighting, and other conditions. The diversity
often results in a manifolds in the feature space that are
not conducive to ranking using a distance-based metric. Un-
like the rigid distance metric used in k-NN search, diffu-
sion (Zhou et al. 2004b; 2004a; Donoser and Bischof 2013;
Grady 2006) exploits the intrinsic manifold structure of data
based on a neighborhood graph. Such a graph consists of
nodes and edges, where each node represent a feature vec-
tor from the database, with the edges connect each node
to its neighbors with corresponding weights proportional to
the pairwise affinities between nodes. Using this graph, dif-
fusion performs a restartable random walk given a query
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Figure 1: The efficiency vs. performance comparison be-
tween k-NN, Iscen’s method (Iscen et al. 2017), and our
proposed method on Oxford105k dataset with global image
features. Our proposed method achieves better retrieval per-
formance than diffusion by Iscen et al. with almost the same
search speed (~20ms per query) as k-NN search. We show
the results of varying truncation sizes L.

as the initial state. The final state of random walk can be
viewed as ranking scores showing the similarities of each
image in database to the query. To obtain the convergence of
the final state, there are two main approaches: running itera-
tive random walk or computing the convergence state by the
closed-form theorem proposed in (Zhou et al. 2004b). Dif-
fusion has demonstrated its potential in improving retrieval
performance (Donoser and Bischof 2013; Iscen et al. 2017,
Radenovic et al. 2018), and is also utilized in other fields
such as unsupervised learning (Iscen et al. 2018b). Recently,
other works have attempted to improve the efficiency of dif-
fusion (Iscen et al. 2017), but their speed up is still not suffi-
cient enough to handle the amount of queries found in large-
scale image retrieval datasets.

We notice that the main bottlenecks in speed of online dif-
fusion processes come from the random walk and prepara-
tion steps. Inspired by the closed-form solution of diffusion,
we find that the diffusion for each query can be converted
to a linear combination of the pre-computed diffusion re-
sults of all database elements. Following this observation,
our proposed method completely removes the random walk
from the online stage. As a result, our work is able to im-



prove the efficiency of the diffusion process by a factor of
ten in a large-scale image retrieval setting.

In addition, the previous versions of diffusion utilize an
early truncation that happens before the affinity matrix nor-
malization process. In our proposed process, we propose to
perform a late truncation after normalization, that results in
significantly better performance. Fig. 1 summarizes the ef-
ficiency and performance of the aforementioned methods.
The source code to replicate our experiments is available at
https://github.com/fyang93/diffusion.

Related Works

Although originally developed for ranking on mani-
folds (Page et al. 1999; Zhou et al. 2004b; Donoser and
Bischof 2013), diffusion was soon applied to classifica-
tion (Zhou et al. 2004a), and image segmentation (Grady
2006). In the field of image retrieval, it is most frequently
used as a re-ranking method (Iscen et al. 2017; Radenovic et
al. 2018).

Query expansion, a common technique in image retrieval,
can improve retrieval performance during query time. Aver-
age query expansion (AQE) (Chum et al. 2007; Iscen et al.
2017), a popular type of query expansion because of its sim-
plicity, averages the features of the query’s nearest neigh-
bors to form a new query to run search again. When AQE
is applied iteratively, the recomputation of the query is akin
to traveling along the manifolds of the feature space. Al-
though this traversal is similar to diffusion, AQE only uti-
lizes the relationships between query and database images,
but not between each of the database images with each other.
With prior knowledge of the relationships between all of the
database images, diffusion is thus better able to exploit the
manifolds in the feature space than query expansion can.

In previous works of diffusion, the query is provided
as a part of the database. However, in a real-world set-
ting, queries are unavailable until they are issued by users.
To tackle this issue without introducing any computational
overhead, (Iscen et al. 2017) uses the short list of k-NN
search results to form a sparse initial state vector, instead
of using a one-hot vector as the initial state. As a conse-
quence, queries are not included in the neighborhood graph.
The downside to this is that the graph needs to be stored
and loaded during the search stage for random walk, which
is both memory and computationally inefficient. Since the
previous methods were evaluated on the Oxford (Philbin et
al. 2007) and Paris (Philbin et al. 2008) datasets, smaller
datasets only containing 55 queries, the inefficiency of those
methods did not have much impact on the total computation
time. When these methods are used on large-scale datasets
with many queries, the inefficiency during online search be-
comes magnified and intractable.

To tackle this inefficiency, past efforts have been made to
scale diffusion up to handle larger datasets. (Dong, Moses,
and Li 2011) proposed to accelerate the construction of the
affinity matrix denoting the graph. Iscen et al. reported that
Dong’s method is orders of magnitude faster than exhaustive
search with only limited decreases in performance (Iscen et
al. 2017). Another approach to improve efficency is using
approximate nearest neighbor search (ANN). Compared to
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constructing the graph by exhaustive k-NN search, ANN
search is faster and provides comparable accuracy (Jegou,
Douze, and Schmid 2011; Ge et al. 2014). Most recently,
(Iscen et al. 2018a) approximated the affinity matrix by us-
ing a low-rank spectral decomposition to reduce the online
computational cost. However, this method did not result in
much improvement in terms of retrieval performance.

Preliminaries of Diffusion

There are two main approaches to conducting diffusion:
through iterative updates or solving the closed form directly.
Both Zhou et al. and Donoser et al. describe diffusion as
a mechanism for spreading the query similarities over the
manifolds (Zhou et al. 2004b; Donoser and Bischof 2013),
while Iscen et al. utilizes the closed form theorem in (Zhou
et al. 2004b) and proposed an efficient solution (Iscen et al.
2017). We mainly follow the steps from (Zhou et al. 2004a)
and (Iscen et al. 2017) below.

Problem setup. For image retrieval tasks, we define a
database as Y = {x1,...,%,} C RY, where each x; is a
feature vector. Images can be represented by a global feature
that corresponds to the entire image, or multiple regional
features corresponding to different regions of the image. In
the following equations, x; can stand for either of these rep-
resentations.

For most public datasets in the retrieval field, query and
database images are both available. In our following exam-
ple, queries are unseen to us until provided by users. We de-
note the query as @ = {qi,...,qm} C R% where m = 1
when the query is described by a global feature and m > 1
when it contains regional features.

Graph construction. For simplicity, we consider an ex-
ample where we handle only one query image Q and in-
clude it into the database. The entire set is defined as Y =
{ai,...,9m,X1,...,Xn}, and we denote i-th element in ¥
as ;. In addition, a local constraint is adopted so that the
graph only contains similarities between pairs of elements
that are nearest neighbors to each other according to (Iscen
et al. 2017). The affinity matrix is defined as A = (a;5) €

R(+m)x(n+m) where each element is obtained by

o — { i # j,Xi € NNk(X;), X5 € NN&(X:)
(/.

otherwise
Vi, j € {1,...,n + m}, denoting NNy (x) the k-NNs of
x. Since the similarity metric s is usually symmetric and
positive, A is a symmetric matrix. Eq. (1) allows A to be
sparse, providing memory and computational efficiency.
The degree matrix D is a diagonal matrix and each diag-
onal element is the corresponding row-wise sum of A, i.e.

the element d;; in D is defined as Z;LJrlm a;;. It’s later used

8()21‘7 )?j)

. . ()

to symmetrically normalize A into the stochastic matrix S:

2

S is a variant of the typical transition matrix D' A, and
both have the same eigenvalues and eigenvectors (Donoser
and Bischof 2013).

S=D2AD V2



Random walk. After the graph construction, the random
walk is performed until it reaches a convergence state, re-
sulting in final ranking scores for each of the images in
the gallery. For the t-th step of random walk, the state is

recorded in a vector f! = [ng,féT]T € R™™, where
f! € R™,f] € R™. We set the initial state to be a m-hot
vector where f) = 1,,,,f) = 0,,. The random walk iterates
the following step:

£+ = aSF 4+ (1

—a)f’, ac(0,1). 3)
Essentially, there is a probability « to randomly walk from
the current state f* or 1 — « to restart from the initial state f°.
Given the fact that « € (0, 1) and the abstract eigenvalues of
S is no larger than 1 according to the Perron-Frobenius theo-
rem, this iteration converges to a closed-form solution (Zhou
et al. 2004b):

f* = (1—a)I—aS) O )

After convergence, the values in f* contain the similarities
of each database element to the query, which will be used as
ranking scores for re-ranking.

Decomposition. The above steps incorporate the query
into the graph during the diffusion process. Grady proposed
to decompose queries from the above operations (Grady
2006), and his technique was recently followed by (Iscen
et al. 2017).

Note, the closed-form solution £* € R™*™ contains the
ranking scores on both the query and database elements, but
for the task of image retrieval, we only care about the rank-
ing scores for database elements. This leads to the decompo-
sition of the query and database ranking scores, so that the
matrix S is split into 4 blocks

Sqd
Sad|’

S

S = |Dua
{qu

where S;; € R™*™ S,y € R™*", Sy, € R™™ ™, and

Saq € R™"*™ The decomposed solution then becomes

£ = (1 - a)(I— aSaa) 'Sayfl € R,

&)

6)

where S,;4 can be viewed as the transition matrix for ran-
dom walk on the database side, and Sy, = S;rd consists
of normalized similarities between the query and its near-
est neighbors. Subsequently, we can then obtain the cleaner
form:

£ oc L)y, 7

where L, = I — aSqq € R™™,y = Sg f) € R". and
we can ignore the constant 1 — « since scores are used for
ranking.

Truncation. An optional truncation step is used on large
datasets, where the dataset is truncated to a smaller subset
before normalization and random walk. Iscen et al. conduct
truncation with only global features representing entire im-
ages (Iscen et al. 2017). Given the global feature vector q of
anew query (m = 1,q = q), the indexes Z = NN'P(q)
of features corresponding to the top ranked images is re-
trieved by L-NN search, where L is a limiting constant
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Figure 2: Comparison between our implementation (green)
and previous works’ (blue). Our method truncates late while
previous methods truncate early during diffusion.

that defines the maximum size of the subgraph (truncated
graph) The affinity matrix denoting the subgraph is defined

as A € RE*L | and each element é ;5 in A satisfies

ai]-:{

Vi, j € {L,. L} where Z; is the i-th index in the set Z.

After truncation, A is normalized into a stochastic matrix S
and then random walk is subsequently performed on S. We
refer to the process of normalizing the truncated graph as
subgraph normalization throughout the rest of the paper.

s(xz,yxz;) Ti # Ij, xz, € NNi(xz,), xz; € NNi(x1,)

; . ®)

otherwise

Proposed Method

We propose a remarkably fast diffusion achieving state-of-
the-art retrieval performance. Iscen et al. reported that £
is not sparse like £, making it less efficient to compute than
using L, to solve L,f] o< y online (Iscen et al. 2017).
Our method makes it possible to pre-compute and maintain
a sparsified £ offline to achieve better efficiency. Given
a new query, its diffusion result can be obtained by linear
combination according to Eq. (7). As a result, we achieve a
substantial improvement in the online search speed. More-
over, we argue that the subgraph normalization that takes
place in (Iscen et al. 2017) has negative effects on the re-
trieval performance. After the offline computation to obtain
L, from the entire matrix A, we apply slicing to £,, to fetch
the values on the corresponding rows and columns limited in
the truncation subset.

In the following sections, we compare the time complex-
ity between Iscen’s method and our method to analyze the
efficiency gains of our method.

Complexity analysis of online diffusion

In prior works, the entire process of diffusion is performed
during runtime when queries are processed. A combination
of global and regional features are also used, but for simplic-
ity, we choose to analyze Iscen’s online diffusion with only
global features in this section.

Given the global feature q of a new query, the pipeline of
online diffusion can be broken down to the following steps:

1. Truncation: the nearest neighbors NNz (q) C x of q is
obtained by k-NN search for truncation



2. Graph construction: the truncated affinity matrix A de-
noting subgraph is constructed for the subset NN (q)
with a reciprocity check, then subgraph normalization is

applied to form the matrix S and £, are created afterward

3. Initialization: the vector y = quf(? contains the similari-
ties between the query and its nearest neighbors, which is

subsequently truncated to fit the size of La

4. Random walk: the convergence state is solved by Eq. (7)
to obtain the result of diffusion by conjugate gradient

The above steps include k-NN search, which is responsi-
ble for most of the time needed to process those steps. Re-
cent k-NN search strategies are sufficiently efficient (Je-
gou, Douze, and Schmid 2011; Malkov and Yashunin 2016;
Johnson, Douze, and Jégou 2017), so we do not discuss the
complexity which is beyond the scope of this work. Con-
structing the affinity matrix denoting the subgraph also re-
quires k-NN search, and the subgraph normalization accord-
ing to Eq. (2) costs O(Lk) time. Here, Lk is the number
of non-zero entries in the truncated affinity matrix, and k is
the parameter for the number of nearest neighbors in £-NN
search. In the random walk step, the result is approximated
by the early-terminated conjugate gradient (CG) (Nocedal
and Wright 2006; Iscen et al. 2017). Suppose we iterate CG
for 7 steps, its time complexity is O(LkT).

From the above analysis, we can see that the cost to pro-
cess each query is non-trivial and the most time-consuming
steps are the subgraph construction and random walk. This
motivates us to solve these inefficiencies.

From online to offline

We propose a new form of diffusion that moves the online
steps, processing the heavy computation steps during run-
time, to offline, pre-computing those steps beforehand.

The right side of Eq. (7) can be considered as a linear
combination of column vectors in £ with weights in vec-
tor y. In other words, the results of any new query is merely
the linear combination of the columns of £! with corre-
sponding weights in y. Unfortunately, the inverse of a large
sparse matrix is hard to compute even though £, is positive-
definite. Despite this difficulty, it is still possible to com-
pute the approximate inverse by either global iteration or
a column-oriented algorithm, two approaches summarized
in (Saad 2003). Global iteration computes the inverse on the
entirety of the matrix, whereas the column-oriented algo-
rithm computes it one column at a time. Between the two,
the column-oriented algorithm is more appealing for paral-
lelism since it computes each column separately. It also al-
lows us to apply truncation in computing each column to
make a sparser structure. Therefore, we choose to adopt the
column-oriented strategy in our proposed method.

To compute each column of E;l, we first define a set of
vectors {bq,...,b,} to be the column vectors of an iden-
tity matrix I € R™*™, Then, according to the closed-form
solution in Eq. (7) we solve:

Eaci = bz 5 (9)

with conjugate gradient (CG) (Nocedal and Wright 2006),
we obtain c;, the approximate i-th column vector in £!.
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Figure 3: The data structure of sparsified matrix £, where
the values in i-th column compose the column vector ¢; and
NN'P(x;) records the row indexes of each value in &;.

Essentially, c; can be viewed as the diffusion result of ¢-th
database element b;. After the database-side diffusion, given
a new query, the pipeline becomes

1. Initialization: prepare the initial state vector y for
the query, where the indexes of non-zero entries are
{i1,...,in}, and their values are {vy,...,v}

Linear combination: combine the corresponding
columns {c;,, ..., c;, } from £, ! with the values in step
1 to obtain the diffusion result: f] o ; UiCi;

Note that the inverse matrix £, obtained from the above
procedure is a dense matrix, which is less memory efficient.
We propose the sparsified version (Fig. 3) of inverse matrix
L to provide better memory efficiency in the next section.

Database-side truncation

As we discussed, truncation is crucial for scaling up to large
datasets. The time complexity of diffusion is deeply related
to L, the size of subgraph after truncation. Thus, the pro-
cess of random walk can be accelerated if the database is
truncated to a smaller size. Despite increases in speed, Iscen
et al. observed that truncation has a negative effect on the
retrieval performance (Iscen et al. 2017).

Contrary to Iscen’s findings, we find that truncation by it-
self is not a detrimental practice. Rather, the order in which
it is applied in relation to normalization is the important fac-
tor. We find that applying normalization after truncation is
the reason for the decrease in retrieval performance. The
subgraph after truncation contains incomplete manifolds and
the later normalization raises the probabilities to transition to
the nodes on such manifolds. This causes the random walk
to be more likely to visit misleading nodes.

To tackle this issue, we normalize the complete matrix
A to build £,, and then apply late truncation (slicing) to
L, directly, as shown in Fig. 2. Denoting the indexes of the
nearest neighbors of a query as Z = NN%) (q), the truncation
is applied by

lij =lr,z,, Yi,je{l,...,L}, (10



Algorithm 1 Online search

1: Input Q = {qy,...,qm} < anew query

2: Output £ < a new array of n zeros

3: for ¢ < 1 tom do

4 obtain NN$™ (q;), NN?(q;) by k-NN search
5 for j < 1tok do

6: col_id + NNP®(q,)[j]

7

8

weight < NNY™(q;)[j]
: row_ids < NN'P(x..) 14) from sparsified £
9: £} [row_ids] < f][row_ids] + weight * €co1 ia
10: Aggregate scores in £ to image level if needed

where [;; is the element in £, while Zij stands for the ele-

ment in ﬁa after truncation. From our experiments, such a
truncation can provide a significant performance boost.

In previous works, diffusion cannot be performed with-
out the query because truncation process is applied under
the guide of queries with a subsequent random walk. This
forces diffusion in those works to be computed online. Our
proposed method differs by instead using the elements in the
database themselves as queries, thus moving the entire diffu-
sion process offline. In addition, truncation is applied to the
database elements as previous works applied it on queries.

As an example, we take a database element x; and con-
duct L-NN search in x to get the indexes J = NN'P(x;)
of the short list. Since £, can be computed and cached be-
forehand, we slice £, with J to avoid subgraph normal-
ization. The one-hot vector b; is also sliced to lA)i with the
indexes 7. Usually the indexes NN'P(x;) are sorted by the
similarities in a descending order. Thus, the index ¢ of x; is
always at the top of NN'P(x;) since it is always most similar
to itself. As a result, the truncated one-hot inital state vector
b; = [1,0,0,...]" € {0, 1}* is fixed regardless of i. There-
fore, we use the same initial state vector for all database-side
random walk.After the truncation on £, and bj, we obtain
the truncated i-th column vector in £;! by £,&; = b;,
where ¢; € RL. This sparsifies the matrix £ 1. Fig. 3 shows
the structure of the sparsified £, . It costs O(Ln) memory
to store the pre-computed £, which is more than O(L?),
the memory usage of Iscen’s method.

To summarize, the late truncation directly applied on £,
removes the negative effects of early truncation, and is com-
pletely pre-computed offline. In addition, the truncated ini-
tial state vector is fixed, meaning there is no extra overhead
cost to build it.

Online search

Once the sparsified inverse matrix is obtained, the online
search results can be calculated by using Algorithm 1. We
denote NN?™ (q;) as the similarities between the query fea-
ture q; and its nearest neighbors in y. The online search thus
becomes very fast because it only includes the £-NN search
and linear combination. Moreover, since we only need k
columns in £ ! for each query, our approach can merely
cost O(Lk) RAM during runtime.
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Experiments

This section presents the experimental setup and investigates
the computational efficiency as well as retrieval performance
of our methods for image retrieval. For the efficiency evalu-
ation, we use a single core of Intel Xeon 2.80GHz CPU.

Experimental setup

Datasets. We use the Oxford Buildings (Philbin et al.
2007) and Paris (Philbin et al. 2008) datasets in our experi-
ments. The datasets are referred to as OxfordSk and Paris6k
respectively in correspondence with the size of each dataset.
Another set of 100k random images from Flicker (Philbin
et al. 2008) are commonly used as distractors to enlarge
the above datasets to Oxford105k and Paris106k. We mea-
sure the online computational time on the 55 queries of the
datasets for Iscen’s method (Iscen et al. 2017) and our pro-
posed method. For evaluation, we adopt the standard mean
average precision (mAP) as a performance measurement.

Features. We use the 512 and 1,024 dimensional global
R-MAC descriptors (Tolias, Sicre, and Jégou 2015; Gordo
et al. 2016) provided by Iscen et al. for fair comparison. We
experiment on both global and regional features provided.
For the Oxford and Paris datasets, there are 21 regional fea-
tures per image on average.

K-NN search. We conduct k-NN search by using the effi-
cient FAISS toolkit !, containing a CPU version and a faster
GPU version (Johnson, Douze, and Jégou 2017), which al-
lows us to deal with the larger Oxford105k and Paris106k
datasets, especially for offline pre-computation.

Implementation details. We use the same graph construc-
tion parameters as in the previous work (Iscen et al. 2017).
In particular, the parameter « to build £, is set to 0.99. For
global features, 50 nearest neighbors of each database ele-
ment are used for graph construction, and the initial state
vector contains the similarities between the query and its
10 nearest neighbors. While for regional features, the cor-
responding numbers of nearest neighbors are set to 200, 200
respectively. Through our experiments, deviating from these
parameters consistently resulted in worse performance.

Runtime computational efficiency

We evaluate the computational efficiency on each query for
k-NN search, Iscen’s method and our proposed method.
Each method is run 10 times and the average computational
time is used for comparison. The results on Oxford5k and
Oxford105k datasets are shown in Fig. 4. Since most of the
computation in our proposed method is already done offline
on database side, we observe that our method can be remark-
ably fast during online search, close to the speed of k-NN
search. Fig. 4 shows that the average search time per query
of our method with global features are ~2ms and ~10ms on
Oxford5k and Oxford105k datasets respectively, and its ex-
tra computation over k-NN search is negligible. In contrast,
Iscen’s method is rather time-consuming since it has a lot
of runtime processes. The search time per query for online

"https://github.com/facebookresearch/faiss
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Figure 4: Online search time per query measured for £-NN
search, Iscen’s method and our proposed method respec-
tively, using global features.

diffusion without truncation is slower: ~20ms on Oxford5k
and ~0.2s on Oxford105k. When truncation is applied dur-
ing the offline diffusion process, the overhead to construct
the graph during runtime causes it to be slow. We also ob-
served a decrease in efficiency as the size of truncated graph
grows as shown in Fig. 4.

Pre-computational efficiency

Now that we have shown the online search of our proposed
approach is very efficient, we investigate the offline com-
putational cost. The offline process mainly consists of two
parts: the database vs. database k-NN search for truncation
and random walk processes on each of the database ele-
ment. Since exhaustive k-NN search on a large scale dataset
is time-consuming, we utilize approximate nearest neighbor
(ANN) search. Figure 5 shows the speed/accuracy trade-off
when using ANN search for either truncation or graph con-
struction. We adopt IVFADC (Jegou, Douze, and Schmid
2011) for ANN search using Faiss library (Johnson, Douze,
and Jégou 2017), where the codebook size of coarse quan-
tizer \/n = 316, the number of subvectors M = 128 is used
and the number of clusters to scan is varied. When compared
to the exhaustive k-NN search, ANN is generally good at
approximating the top results of the search but its ranking
and scores can be out of order and imprecise. This makes
it applicable to truncation which only requires a coarse set
of the top results. Graph construction, however, would be
negatively affected by even small differences in the scores
of the search results. We therefore use ANN search only for
truncation and use exhaustive k-NN search for graph con-
struction.
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Figure 5: Speed/accuracy trade-off by using approximate
nearest neighbor (ANN) search in truncation and graph con-
struction.

Since the k in k-NN search for graph construction is small
compared to truncation, it can be efficiently processed even
without using approximate search, especially by using Faiss
on a GPU. As a result, the entire process of truncation and
graph construction takes ~1ms using a single GPU per im-
age. Diffusion processes take ~6 minutes to process the
whole Oxford105k dataset using global features and a trun-
cation size of 5,000 (3.4 ms per image). We measured using
a single core of CPU, but these processes can be easily par-
allelized. Compared to the offline processing in (Iscen et al.
2018a) which takes a few hours, our method is much faster.

Influence of subgraph normalization

In (Iscen et al. 2017), truncation enables diffusion on large
scale datasets but is described to be detrimental to retrieval
performance. The authors claim that retrieval performance
of diffusion grows as the percentage of the whole graph used
grows, with a complete graph without any truncation having
the best performance. However, we argue that the retrieval
performance is mainly influenced by the early truncation
leading to subgraph normalization. In order to avoid sub-
graph normalization, we first obtain the complete graph and
apply late truncation (slicing) on the complete matrix £, in
the process of diffusion. For comparison, we implement Is-
cen’s method with and without subgraph normalization. We
vary the truncation size L to observe the influence of sub-
graph normalization on the retrieval performance.

The experimental results with global features for the Ox-
ford and Paris datasets are presented in Fig. 6. On the Ox-
ford datasets, it is clear that the performance is significantly
improved without subgraph normalization when the trun-
cation size L is small, but its effectiveness on the Paris
datasets is smaller. We observe that merely performing k-
NN search on the Paris datasets already results in a high re-
trieval performance. This could mean that the Paris datasets
have standard-shaped manifolds conducive to comparison
by Euclidean distance, so it limits the benefits gained from
diffusion.

While previous works always encouraged using larger
values of L for performance gains, our method can achieve
state-of-the-art performance with smaller L values found
through validation. As a bonus, a smaller truncation size L
will lead to acceleration of the offline computation.
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Figure 6: Retrieval performance (mAP) vs. the size of truncated graph L using early truncation and late truncation.
Method Feature Global Regional Oxf5k Oxfl05k Par6k Parl06k
) k-NN search v 79.5 72.1 84.5 77.1
2  k-NN + AQE (Chum et al. 2007) v 85.4 79.7 88.4 83.5
8 Tscen’s diffusion (Iscen et al. 2017) ~ "MACKVGG) 857 827 941 925
§ Proposed diffusion v 89.7 86.8 94.7 92.9
g, k-NN search v 83.9 80.8 938 899
£  k-NN + AQE (Chum et al. 2007) v 89.6 88.3 95.3 92.7
S Iscens diffusion (Iscen et al. 2017) N MACResNet) 87.1 874 965 954
Proposed diffusion v 92.6 91.8 97.1 95.6
R-match (Razavian et al. 2016) v 81.5 76.5 86.1 79.9
o R-match + AQE (Chum et al. 2007) v 83.6 78.6 87.0 81.0
5 Iscen’s diffusion (Iscen et al. 2017) R-MAC (VGG) v 93.2 90.3 96.5 92.6
§ Proposed diffusion v 91.8 88.6 93.9 89.2
= Proposed diffusion w/ late fusion v 93.5 91.2 96.1 93.8
=
'c% R-match (Razavian et al. 2016) v 88.1 85.7 94.9 91.3
©  R-match + AQE (Chum et al. 2007) v 91.0 89.6 95.5 92.5
3 Iscen’s diffusion (Iscen et al. 2017)  R-MAC (ResNet) v v 95.8 94.2 96.9 95.3
Proposed diffusion v 95.9 94.8 97.6 95.6
Proposed diffusion w/ late fusion v v 96.2 95.2 97.8 96.2

Table 1: Performance comparison with the state of the art. We used R-MAC features extracted with VGG (Radenovié, Tolias,

and Chum 2016) and ResNet101 (Gordo et al. 2016).

Comparison to other methods

Table 1 compares our method with other competitive meth-
ods that use global and regional features. Testing on all
datasets using global features, we observe up to a 5% in-
crease in mAP performance compared to the previous state-
of-the-art. Similarly, on diffusion with regional features, we
achieve competitive or better performance. We note that Is-
cen et al. used global features to guide the truncation in their
regional diffusion. For each query, they first apply &£-NN
search using the global features to obtain the closest im-
ages to that query. Subsequently, these results are used as
a bounded set to perform regional diffusion. In contrast, we
only use regional features in our regional diffusion for sim-
plicity. To exploit global features, we apply a simple late fu-
sion by computing a weighted mean of scores from regional
and global diffusion, setting the weight for regional diffu-

sion to 0.75. This further increases the performance (pro-
posed diffusion w/ late fusion in Table 1), leading to better
performance than Iscen et al. on all datasets.

Conclusion

In this paper, we propose a novel efficient diffusion to
achieve fast retrieval during runtime with significant im-
provement in retrieval performance. We experimentally
show that our approach has a similar efficiency to k-
NN search, which is 10~ times faster than existing diffu-
sion methods with global features. Moreover, our method
achieves state-of-the-art performance on Oxford and Paris
datasets. In conclusion, our method makes diffusion more
practical for image retrieval on large-scale datasets, and has
the potential to improve retrieval in other fields, such as text
and video.
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