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Abstract

The recent success of deep network in visual trackers learn-
ing largely relies on human labeled data, which are however
expensive to annotate. Recently, some unsupervised methods
have been proposed to explore the learning of visual track-
ers without labeled data, while their performance lags far
behind the supervised methods. We identify the main bot-
tleneck of these methods as inconsistent objectives between
off-line training and online tracking stages. To address this
problem, we propose a novel unsupervised learning pipeline
which is based on the discriminative correlation filter net-
work. Our method iteratively updates the tracker by alter-
nating between target localization and network optimization.
In particular, we propose to learn the network from a sin-
gle movie, which could be easily obtained other than collect-
ing thousands of video clips or millions of images. Extensive
experiments demonstrate that our approach is insensitive to
the employed movies, and the trained visual tracker achieves
leading performance among existing unsupervised learning
approaches. Even compared with the same network trained
with human labeled bounding boxes, our tracker achieves
similar results on many tracking benchmarks. Code is avail-
able at: https://github.com/ZjjConan/UL-Tracker-AAAI2019.

Introduction
Generic object tracking has attracted considerable attention
in computer vision since it has been successfully applied
into many domains, including human-computer interaction,
video surveillance, and unmanned aerial vehicle, to name
a few. This paper focuses on the problem of single object
tracking, whose goal is to automatically estimate a trajectory
of a single target over a video. The target is often annotated
as a rectangle in the first frame.

Recent advances in object tracking are driven by the
development of Discriminative Correlation Filters (DCFs)
(Bolme et al. 2010; Henriques et al. 2015; Danelljan et al.
2015; Fan and Xiang 2017). DCF based methods begin by
learning a template of target object and then apply the tem-
plate to detect target location in subsequent frames. The tem-
plate is usually updated over time to adapt the appearance
changes of the tracked object. DCFs are very suitable for
fast tracking because they only need to solve a ridge regres-
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sion problem, whose solution can be efficiently obtained in
the Fourier domain with a few element-wise operations.

Early DCF trackers often use hand-crafted descriptors
to describe the tracked target. Inspired by the great suc-
cess of deep neural networks (Krizhevsky, Sutskever, and
Hinton 2012; Chatfield et al. 2014; Simonyan and Zisser-
man 2014) in many vision tasks, hand-crafted descriptors
have been replaced by pre-trained deep features to improve
the tracking performance of DCFs (Danelljan et al. 2017).
More recently, some works (Valmadre et al. 2017; Wang et
al. 2017) reformulated DCFs as a particular layer in deep
networks, resulting in an end-to-end learning framework.
Highly competitive tracking results have been reported on
tracking datasets such as OTB (Wu, Lim, and Yang 2013;
2015) and VOT (Kristan, Matas, and Leonardis 2015).

The pre-trained network plays the key role for achieving
robust and accurate tracking performance. A well trained
network is expected to mitigate the overfitting issue in visual
tracking, for which only a single labeled data is available.
However, this often requires a significant amount of human
labeled data for training, which are expensive to collect. For
example, the widely utilized networks, VGG-M (Chatfield
et al. 2014) and VGG-16 (Simonyan and Zisserman 2014),
are both pre-trained on large scale static image database, i.e.,
ImageNet (Deng et al. 2009), with human annotated object
labels, while the Siamese networks (Bertinetto et al. 2016;
Wang et al. 2017; Valmadre et al. 2017; Li et al. 2018)
are pre-trained on ILSVRC2015 videos (Russakovsky et al.
2015) with given object bounding boxes.

It is interesting to investigate whether we can train a good
visual tracking network without using human annotations. In
recent years, some unsupervised learning approaches (Wang
and Yeung 2013; Ma et al. 2015b; Wang et al. 2012) have
been reported to achieve this goal. These trackers, however,
do not exhibit comparable performance with those trackers
trained by supervised methods. The main problem is that
these trackers are optimized from an auxiliary task, in which
the main objective is not the same as that in the online track-
ing process. More specifically, all these methods learn to re-
construct input signals, and then transfer the learned network
to visual tracking as either a binary classification (Wang and
Yeung 2013; Wang et al. 2012) task or a target localization
(Ma et al. 2015b) task. Clearly, those trackers trained from
different tasks are suboptimal for the visual tracking task.
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In this paper, we explore the question that whether a ro-
bust visual tracker can be pre-trained in an unsupervised
manner using an objective similar to online tracking pro-
cess with data that can be easily accessed? We propose
to off-line learn a visual tracker using a self-tracking strat-
egy from a single movie. Our method is based on discrim-
inative correlation filter network (Wang et al. 2017) and
starts with extracting object-like region proposals (Uijlings
et al. 2013) from each frame. Secondly, we automatically
segmented frames into shot clips by detecting scene cuts
over a movie. The detection is based on cross correlation
score between two consecutive frames. Thirdly, we incre-
mentally optimize the network by repeatedly alternating be-
tween tracking and learning, leading to a stable and accurate
off-line learned network. We train our tracker from a single
movie because movies contain many static and motion cues
which are very helpful for visual understanding. In addition,
a movie could be easily obtained compared with preparing
thousands of videos (Russakovsky et al. 2015) or millions of
images (Deng et al. 2009). The learnt network can be easily
transferred for online tracking as standard DCF trackers.

Related Work
In this section, we briefly discuss the related work, includ-
ing supervised and unsupervised pre-training for tracking,
as well as using movies for vision applications. For a com-
pleted reviews, we kindly refer readers to the recent surveys
(Smeulders et al. 2014; Wu, Lim, and Yang 2015).
Supervised pre-training. The pre-trained deep networks
such as VGG-M (Chatfield et al. 2014) and VGG-16 (Si-
monyan and Zisserman 2014) have been widely adopted
for visual tracking. Usually, the networks are pre-trained on
some large scale well-labeled datasets (Deng et al. 2009;
Russakovsky et al. 2015) using supervised learning. For ex-
ample, CNN-SVM (Hong et al. 2015) takes output from
the first fully-connected layer of a pre-trained CNN (Gir-
shick et al. 2014) as inputs, and builds a SVM on those fea-
tures to distinguish between target object and background.
Instead of using SVM on top of CNN features for visual
tracking, DCFs (Ma et al. 2015a; Danelljan et al. 2017)
have also been coupled with CNN features, as well as
fully convolutional networks (Wang et al. 2015). Further-
more, many works focus on the end-to-end learning pipeline
to improve tracking accuracy and robustness. Typical ex-
amples include pre-training Siamese networks for object
verification (Tao, Gavves, and Smeulders 2016), target lo-
calization (Bertinetto et al. 2016; Valmadre et al. 2017;
Wang et al. 2017) and axis prediction (Held, Thrun, and
Savarese 2016). Our work differs from these approaches in
that we train the visual tracker without human annotations.
Unsupervised pre-training. Some works explore unsuper-
vised pre-training for visual tracking. For example, The
work (Wang et al. 2012) learns an overcomplete dictionary
to represent visual prior for tracking, while the works (Wang
and Yeung 2013) and (Ma et al. 2015b) learn neural net-
works from natural images (Torralba, Fergus, and Freeman
2008) and movies (Cadieu and Olshausen 2009) respec-
tively. Our work shares a similar philosophy by pre-training
a network without human annotations, but has following two

differences: (1) we formulate the procedure as a tracking and
learning task, ensuring that the learning objective is similar
to that of the online tracking process; (2) we learn the net-
work from a single movie, and obtain state-of-the-art results
compared with previous unsupervised learning methods.
Movies for vision applications. Movies have been utilized
for various vision researches. For example, Cadieu et al.
(Cadieu and Olshausen 2009) demonstrated that the usual
movies can be used to learn visual transformations. Ivan et
al. (Laptev et al. 2008) propose to recognize human action in
natural movies. Besides, several applications for movie un-
derstanding have been proposed, including movie descrip-
tion (Rohrbach et al. 2015) and movie question answering
(Tapaswi et al. 2016). Contrary to these works, we aim at
training a tracker from a single movie.

Discriminative Correlation Filter Network
We base our approach on DCFNet, which has shown to pro-
vide a good balance between accuracy and speed and is pub-
licly available. To be self-contained, we briefly introduce
DCFNet (Wang et al. 2017) as follows.

Standard DCFs learn a group of convolutional filters w
from training samples (xi,yi) by:

argmin
w

ΣN
i=1||yi − ΣD

d=1w
d ? φd(xi)||2 + λΣD

d=1||wd||2

(1)
where φ is a feature function such as a CNN.D is the feature
channels, and ? is circular correlation. Label yi is a Gaussian
shaped matrix, with the true object location corresponding to
the highest value. The solution to Eq. (1) can be efficiently
gained in the Fourier domain with a few Fast Fourier Trans-
form and element-wise operations, as shown below:

wd = F−1(
ŷ∗ � φ̂d(x)

ΣD
d=1φ̂

d(x)� (φ̂d(x))∗ + λ
) (2)

where the hat symbol and ∗ represent the discrete Fourier
transform F and complex conjugate of given variables, re-
spectively.� is the Hadamard product. The learned filtersw
are applied to a new frame to detect a target by:

g = F−1(ΣD
d=1φ̂

d(z)� ŵd∗) (3)
DCFNet optimizes all parameters by the following loss:

L = ||g̃ − g||2 + γ||θ||2 (4)
where g̃ is the same to y. θ groups all parameters in φ. θ can
be trained in an end-to-end manner if the above loss L can
be back propagated to the feature extractor φ. Fortunately,
all components in DCFNet are differentiable. The following
two formulations show the back-propagation processes with
respect to φ(x) and φ(z):

∂L

∂φd(x)
= F−1(

∂L

∂(φ̂d(x))∗
+ (

∂L

∂(φ̂d(x))
)∗) (5)

∂L

∂φd(z)
= F−1(

∂L

∂(φ̂d(z))∗
) (6)
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Figure 1: Examples of (a) two removed frames, (b) two grouped short clips, and (c) some region proposals in two frames.

Unsupervised Learning of DCFNet
Denote D := (xi, zi)

N
i=1 as a series of pair regions to train

DCFNet, where N is the number of pairs. In the case of
supervised learning, the training database D can be easily
obtained by cropping regions from image pairs according to
the human provided bounding boxes. Other labeled infor-
mation such as instance ID or occlusion can also be used to
refine D by removing some low quality region pairs caused
by disappeared or partial occlusion. In the case of unsuper-
vised learning, however, none of above mentioned labeling
information exist. Therefore, the key challenges to learn a
DCFNet in an unsupervised manner are how to generate re-
gion pairs to constructD and how to utilize them to train the
network. In this section, we first present the data preparation
steps and then detail our unsupervised learning scheme.

Data Preparation
Though some well labeled video datasets (Russakovsky et
al. 2015; Real et al. 2017) have been established for vision
research, it is always expensive and time-consuming to ac-
quire large-scale videos as well as human annotated labels.
Our goal is to explore whether a DCFNet can be trained from
a data source which can be easily obtained without human
annotation. To achieve this goal, we propose to off-line train
the network from a single movie.

To validate that the proposed method does not depend on
some specific movies, we select top 5 colored movies from
https://www.imdb.com/chart/top in our experiments. These
movies are The Shawshank Redemption (1994), The God-
father (1972), The Godfather: Part II (1974), The Dark
Knight (2008) and The Lord of the Rings: The Return of the
King (2003). We use color movies because color informa-
tion plays an important role for improving tracking perfor-
mance in modern benchmarks (Wu, Lim, and Yang 2015;
Kristan, Matas, and Leonardis 2015). For each movie, the
following three steps are adopted to ensure robust learning.
Removing frames. Most of movies have many frames for
prologue and epilogue which do not contain meaningful ob-
jects. These frames often come from the first 2 and the last

6 minutes and thus are removed. Figure 1 (a) shows two re-
moved frames from prologue and epilogue, respectively.
Grouping frames. One movie contains a lot of scenes for
depicting different stories. However, most of changes be-
tween two consecutive scenes are not smooth. Region pairs
discovered from two different scenarios are likely to con-
tain different instances, leading to unstable tracking perfor-
mance. To mitigate this problem, we segment a long movie
into several shot clips by automatically detecting scene cuts
between two adjacent frames. Specifically, we first convert
all frames into gray images and then downsample them
with a factor of 10 for fast processing. We calculate cross-
correlation scores for all adjacent frames. A low correlation
score between two frames often means scene cuts. In this
paper, we assign two consecutive frames into two individual
clips when the correlation score is below 0.3. Two examples
of segmented shot clips are shown as two rows in Figure 1
(b). As one can see, frames in the same clip depict similar
instances and backgrounds.
Extracting regions. To learn a robust tracker for generic ob-
ject tracking, we need to generate many region pairs which
contain objects. Here, we adopt Selective Search (Uijlings et
al. 2013) method to generate hundreds of object proposals
for each frame and retain at most 100 object proposals ac-
cording to their objectness scores. Figure 1 (c) shows some
object proposals of two example frames.

Off-line Incremental Learning
A naive solution to construct database D is to initialize the
DCFNet and then apply it to obtain region pairs using Eq.
(3), and then optimize DCFNet using such D. However, re-
gion pairs discovered by an unoptimized DCFNet often con-
tain many false matchings, resulting in poor tracking per-
formance. To improve tracking robustness and accuracy, we
formulate the unsupervised DCFNet optimization as an in-
cremental learning problem, which mainly consists of two
iteratively phases: target tracking and tracker update.

Our training pipeline is shown in Figure 2. More specif-
ically, we use current DCFNet to track many regions from
the sampled frame pairs. Some of those discovered pairs
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Figure 2: The pipeline of our training process. The input is a set of frame pairs, where each pair are sampled from the same
clip. During training we alternate between: (1) using current DCFNet to track region proposals between two frames in Forward-
Backward mode, as shown in Red and Blue arrows, respectively, (2) constructing a databaseD by Forward-Backward Analysis.
(3) optimizing the network using current database D. The process is iterated over a movie. Best viewed in PDF.

will be removed so that the database D can be generated
to ensure region diversity and quality. With a given database
D, the DCFNet can be trained. We alternatively implement
these two steps until a pre-defined condition is satisfied. To
demonstrate the effect of the proposed unsupervised learn-
ing scheme, we adopt the same DCFNet (Wang et al. 2017)
in our method. The structure of DCFNet is shown in the right
part of Figure 2. It has two convolutional layers and a DCF
layer. Each convolutional layer has convolutional kernels of
size 3× 3 with 1 padding and outputs 32 feature maps. Note
that the convolutional layers are shared between x and z
(dash line). The DCF layer will generate a response map g
by Eq. (3). In the following, we present the details of the two
major phases of our learning method.
Stage 1: target tracking. For each turn, the tracking phase
is evaluated on V segmented clips from a single movie. For
each clip, we sample I frame pairs to discover useful re-
gions. Since these frames are grouped by their correlation
scores, the sampled frame pairs are likely to contain similar
instances or background contexts. In addition, it is found that
instances in the same clip tend to move smoothly and thus
their spatial locations will not change significantly. Based
on these observations,the pair regions can be discovered in
a local searching area. For each frame pair, let’s denote by
(F t, F t+l) as a pair of sampled frame, where l ≤ L is a
random number for frame interval. For each proposal pti in
F t, the current DCFNet is used to find a most likely loca-
tion pt+l

i in F t+l by Eq. (3). (pti, p
t+l
i ) is the discovered re-

gion pair which will be used for network optimization. How-
ever, some of the pairs can be highly overlapped with each
other, and some of them are low quality matching results,
which will degrade the region extraction accuracy and con-
sequently the tracking performance.

To address these issues, we propose to use Forward-
Backward Analysis (FBA) (Kalal, Mikolajczyk, and Matas
2010) to select matching pairs. More detail, each tracked re-
gion pt+l

i in F t+l is treated as a new start point to obtain
a backward result ptib in F t, where b means backward. To
analyze each proposal‘s trajectory, we define a score over
pti and ptib using IoU(pti, p

t
ib) and adopt Non-Maximum-

Suppression (NMS) to remove highly overlapped regions.
The topK regions with highest IoU scores are selected from
each frame. We do not use NMS to remove overlapped re-
gions according their objectness scores in the off-line data
preparation phase since many overlapped regions are also
helpful for tracker optimization. More importantly, it is hard
to determine which region can be easily tracked between two
sampled frames. Another merit of FBA is that it can auto-
matically detect many less quality matching pairs. For ex-
ample when the motion of an target is faster than expected.
Tracker is likely to produce a trajectory which is to some ex-
tent random. Similar observation can be found in backward
tracking. In addition, considering an object is disappeared
in F t+l, its appearance at start point pti and pt+l

i are differ-
ence, which will yield unstable trajectories. After FBA based
selection, training pairs (xi, zi)

K
i=1 are cropped at positions
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(pti, p
t+l
i )Ki=1 from (F t, F t+l) respectively. Then all cropped

regions are resized to 125 × 125 and added into D. Current
D is constructed by checking all I × V frame pairs.
Stage 2: DCFNet update. Given a discoveredD, we can up-
date DCFNet in a similar way as supervised learning (Wang
et al. 2017). For each iteration, we randomly sample a batch
of (xi, zi)

M
i=1 from current database D and fed them into

DCFNet to generate M response map gi. Batch loss is com-
puted according to Eq. (4) by comparing each output gi
with the desired output g̃, which is generated by a Gaus-
sian distribution with spatial bandwidth 0.1. Gradients of φ
can be gained from Eq. (5) and Eq. (6). We train network
[N/M ] times, where [·] is rounding operator. Then the up-
date DCFNet is utilized to construct a new D as illustrated
in Stage 1, which will be used for the next round optimiza-
tion of DCFNet. This incremental learning iteratively refines
the network and the database D, resulting in a more stable
tracker.

Online Tracking
Online tracking is the same as the original paper (Wang et
al. 2017). Specifically, DCF layer is firstly replaced by stan-
dard DCFs and filters w are learned using Eq (1) in the ini-
tial frame. For current frame, a searching area is cropped
centered at the previously estimated position and then rep-
resented as feature map by the learned network φ. The tem-
platew is compared that feature to generate a response map
g using Eq (3). The new position is obtained by finding the
maximal score in that of response map. To cope with scale
changes, the maximum score is searched from a pyramid of
patch with 3 scales {1.015s, s = −1, 0, 1}. Finally, filtersw
are updated with a parameter αt to control the importance of
sample x in time t, which is shown as following:

wk = F−1(
ΣT

t=1αtφ̂(xt)� ŷ∗
t

ΣT
t=1αtΣK

k=1φ̂
k(xt)� (φ̂k(xt))∗ + λ

) (7)

Experiments
In this section, we firstly conduct several experiments to
study the effect of various options to train a DCFNet. Sec-
ondly, we will compare the learned DCFNet to variants
where the networks are trained from different movies. Fi-
nally, we demonstrate that our unsupervised learning based
tracker achieves state-of-the-art results in comparison to the
ones based unsupervised pre-training approaches.

Testing datasets
The experiments are evaluated on OTB-2013 (Wu, Lim, and
Yang 2013), OTB-2015 (Wu, Lim, and Yang 2015) and
VOT-2015 (Kristan, Matas, and Leonardis 2015) datasets.
We follow the standard evaluations adopted in both datasets.
For OTB testing, the performance is measured by one-pass
evaluation (OPE) with precision and success plots metrics.
The precision metric measures the rate of predicted loca-
tions within a certain threshold (20) distance from those of
human annotated ground truth, while the success plots mea-
sures the overlap ratio between those two kinds of bound-

ing boxes. For success plots, we mainly report area-under-
the-curve (AUC) scores. For VOT testing, we use the offi-
cial toolkit1 to evaluate and report expected average overlap
(EAO), robustness (failure rate, FRT) and accuracy (ACC).
EAO is the main evaluation metric and takes into account
both the per-frame accuracy and the number of failures.

Implementation
Parameters for DCFNet. For fairly comparison to super-
vised learning, all parameters in DCFNet are the same as
(Wang et al. 2017) to tease apart that effect. In detail, the
maximal interval L for frame pair sampling is 10. λ and γ in
Eq. (2) and Eq. (4) are set to 1e− 4 and 5e− 4 respectively.
For online tracking, the λ is the same to the off-line learning,
and the importance factor αt is set to 0.01.
Parameters for off-line learning. We set I = 4 and V =
400 for D construction. For each sampled frame pair, we
track all object proposals in the first frame and then use FBA
to select at most K = 16 examples to construct database
D. The NMS threshold in FBA is set to 0.3, which is the
same to most of object detection system. Usually, D con-
sists of around N = 25, 000 pair regions for each optimiza-
tion round. For network optimization, the initial weights are
randomly generated using improved ”Xavier” technique (He
et al. 2015). We train the network using Stochastic Gradient
Descent. For each iteration, the mini-batch size is M = 32.
Momentum rate and weight decay is set to 0.9 and 5e−4 re-
spectively. We repeat above steps until all clips from a movie
are reviewed and then start a new epoch. The network is
trained for 10 epochs with a learning rate exponentially de-
caying from 1e− 2 to 1e− 3. All above parameters are fine-
tuned on the movie The Shawshank Redemption, and reused
across all training movies. We implement on MATLAB us-
ing MatConvNet toolbox (Vedaldi and Lenc 2015).

Variant options for network training
Table 1 shows many results on OTB-2013 and OTB-2015
by off-line learning DCFNet with different configurations.
The adopted movie in this experiment is The Shawshank Re-
demption. Because of the randomness involved in our learn-
ing algorithm, we repeat each configuration 5 times with dif-
ferent random seeds, and report the mean results and stan-
dard derivations over 5 trials. For the sake of fair compari-
son, we fix the number of total discovered region pairs in var-
ious options. More detail, in settings of training without FBA
and without incremental learning, denoted as w/o FBA and
w/o IL in Table 1 respectively, we randomly select at most
16 region pairs from each frame pair to construct database
D. Note that, in case of training without incremental man-
ner, all regions are discovered by the DCFNet with random
initialized weights. As shown in Table 1, our full learning
pipeline achieves best results in both OTB-2013 and OTB-
2015 datasets, significantly outperforming those results ob-
tained without any off-line pre-training (+10%), denoted as
RW in this table. As one can see, frame grouping (FG) plays
an very important role in learning a robust visual tracker.

1https://github.com/votchallenge/vot-toolkit
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Table 1: Comparison results by training DCFNet on The Shawshank Redemption using variant options. We report mean and
(std) over 5 trials. Full is our full unsupervised learning pipeline including frame grouping (FG), Forward-Backward Analysis
(FBA), incremental learning (IL). P-NMS: using NMS for proposal removing in data preparation stage. RW: DCFNet without
off-line learning. Bold and Italic represent the best and second best results, respectively.

Full w/o FG w/o FBA w/o IL w P-NMS RW

OTB-2013 AUC 62.47 (1.37) 57.11 (4.54) 59.13 (2.21) 60.44 (1.32) 60.81 (1.42) 47.11 (1.21)
Prec@20 81.03 (2.68) 75.12 (2.79) 77.81 (1.99) 78.56 (2.14) 79.32 (2.17) 61.64 (1.98)

OTB-2015 AUC 57.45 (0.64) 51.92 (3.67) 55.31 (1.64) 56.22 (0.79) 56.14 (1.44) 46.73 (1.03)
Prec@20 75.19 (1.25) 67.94 (2.19) 70.94 (1.01) 72.11 (1.04) 72.20 (0.98) 59.93 (1.77)

Table 2: Comparison results by using different movies. SR: The Shawshank Redemption, GF: The Godfather, GF-II: The
Godfather: Part II, DK: The Dark Knight, LR: The Lord of the Rings: The Return of the King. RW: DCFNet without off-line
learning. We report mean and (std) over 5 trials. Bold and Italic represent the best and second best results, respectively.

GF GF-II SR LR DK RW

OTB-2013 AUC 62.57 (1.40) 61.54 (1.12) 62.47 (1.37) 61.41 (1.07) 60.89 (0.92) 47.11 (1.21)
Prec@20 80.62 (2.00) 80.16 (1.45) 81.03 (2.68) 79.04 (1.45) 79.01 (0.47) 61.64 (1.98)

OTB-2015 AUC 57.23 (0.89) 56.47 (0.59) 57.45 (0.64) 57.41 (0.75) 57.08 (1.32) 46.73 (1.03)
Prec@20 74.30 (0.76) 73.44 (1.64) 75.19 (1.25) 74.67 (0.97) 73.85 (0.85) 59.93 (1.77)

For example, without FG, tracker obtains the highest stan-
dard derivations. This is mainly because the network is opti-
mized with many regions, which are likely contain different
instances or objects. Another important factor in our method
is Forward-Backward Analysis, which helps remove many
low quality regions. Some removed boxes are denoted using
red color in Figure 3. Green boxes are used for constructing
database D. The third picture in Figure 3 shows the statistic
of those regions whose IoU scores are below 0.5 according to
FBA. We report the percentage of those region pairs over the
total number of object proposals in each epoch. The values
are calculated over 5 trials. As one can see, for each epoch,
there have a large part of regions (around 8%) which cannot
be well matched. Our FBA removes such regions and thus
increases the final tracking performance as demonstrated in
Table 1. This table also proves that the network trained with
our incremental manner performs better +2% than that net-
work trained without IL ((w/o IL)). The main reason is that
DCFNet with random weights cannot well track all regions,
building a low quality of database for network optimization.
In the next comparison, we only report network trained with
our full scheme for analysis.

Different movies for network training
The second experiments are conducted on different movies.
We also repeat 5 times to reduce the impact of randomness
and show all results in Table 2. Visual trackers with pre-
training perform significantly better (around +10%) than
the one without any off-line optimization (denoted as RW).
Note that, we do not fine-tune the off-line learning param-
eters across different movies. Therefore, results showed in
this table demonstrate that the proposed unsupervised learn-
ing scheme is insensitive to the employed movie. For ex-
ample, visual trackers achieve very similar tracking results
by training on the movie SR and GF-II, where the latter

Figure 3: Left: Example of some matching pairs. Red and
yellow boxes are removed regions and their backward re-
sults. Green boxes are used for network optimization. Each
pair is denoted using the same number in different frames.
Right: Statistics of such removed regions in various training
epochs over 5 trials. Best viewed in PDF.

one is recorded in 40 years ago and frames of that movie re-
veal very different image qualities to videos in modern track-
ing benchmarks. In the next section, we use the best trained
model from GF to compare with other methods, and denote
our model as UL-DCFNet for simplicity.

Comparison with state-of-the-arts
OTB Dataset. The goal of our work is to explore whether
a visual tracker can be trained without human supervi-
sion, we mainly compare our trained model with closely re-
lated works. The examples include Siamese structure based
trackers, including CFNet (Valmadre et al. 2017), SiamFc
(Bertinetto et al. 2016), SINT (Tao, Gavves, and Smeul-
ders 2016) and the basic model – DCFNet (Wang et al.
2017), (2) DCF based trackers including KCF (Henriques
et al. 2015), DSST (Danelljan et al. 2014), HCFT (Ma et al.
2015a), (3) Two representative unsupervised learning based
methods including DLT (Wang and Yeung 2013) and TIR
(Ma et al. 2015b) and (4) other trackers such as CNN-SVM
(Hong et al. 2015) and FCNT (Wang et al. 2015). Note that
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Figure 4: Results on OTB-2013 dataset.

Figure 5: Results on OTB-2015 dataset.

all methods in (1) are trained with human supervision from
hundreds or thousands of videos (Smeulders et al. 2014;
Russakovsky et al. 2015). Among all compared methods,
TIR (Ma et al. 2015b) is the mostly related work, which
off-line trained a neural network to reconstruct input sig-
nals, and then transferred the optimized network for online
tracking in combination with DCFs. Note that we employ
the publicity available codes or results provided by the au-
thors for fairly comparisons.

Figure 4 and 5 show all compared results. In these figures,
the values in the legend represent the precisions at a thresh-
old of 20 pixels for precision plots, and the AUC scores
for success plots. U and S in the legend stand for trackers
pre-trained in unsupervised or supervised manners, respec-
tively. As we can see, our UL-DCFNet achieves 62.84 and
58.37 AUC scores on OTB-2013 and OTB-2015, respec-
tively, which are similar as that results obtained by train-
ing DCFNet using supervised learning (DCFNet (S) v.s UL-
DCFNet (U)). When compared with trackers based on super-
vised pre-training, such as SINT, CFNet-Conv3, SiamFc3s,
FCNT, HCFT and CNN-SVM. UL-DCFNet also shows very
competitive results on both testing datasets. In this com-
parison, our UL-DCFNet does not show good performance
in precision scores as compared with some trackers such
as HCFT, which utilizes the pre-trained VGG16 (Simonyan
and Zisserman 2014) model as their feature extractors, and
ensembles 3 DCFs for tracking. However, UL-DCFNet ob-
tains better AUC scores than such trackers in both datasets.

In comparison to trackers based on unsupervised pre-
training, UL-DCNet (U) attains the best results. In addition,
we convert all frames in the movie The Godfather into gray-
scale images and train DCFNet on that images using our un-
supervised learning pipeline for fairly comparison to TIR
and DLT. Our UL-DCFNet (Gray) achieves 55.34 (1.04)
/ 71.11 (1.78) scores on OTB-2015 dataset, outperforming

Table 3: Results on VOT-2015 datasets.
Method Acc FRT EAO

SiamFc3s 0.54 1.65 0.2547
SODLT 0.56 1.81 0.2329
DCFNet 0.53 1.68 0.2174

CFNet-Conv3 0.53 2.17 0.2038
UL-DCFNet (Ours) 0.53 1.70 0.2234

TIR and DLT by a large margin on both AUC (+17) and
precision plots (+8), respectively. This clearly demonstrates
that trackers trained using an objective which is similar to
the online tracking process is more suitable for visual track-
ing task. Our method provides a way to implement this idea
without human annotations. More importantly, our method
is just trained from a single movie, which can be obtained
much easier than thousands of videos or millions of images
utilized in all above mentioned methods.
VOT-2015 Dataset. We mainly compared with 5 trackers
based on supervised learning. Results are shown in Ta-
ble 3. Our UL-DCFNet shows very competitive results on
this dataset as compared with those trackers which are pre-
trained using supervised learning. Interestingly, our UL-
DCFNet shows slightly better performance than the same
network trained on many tracking videos using human an-
notated bounding boxes, denoted as DCFNet. This might be-
cause our self-tracking strategy discovers region pairs which
contain not only the primal objects, but also some part of ob-
jects, or even some stuff for network learning.
Quantitative Results. We visualize some tracking results in
the supplementary material.

Discussion and Conclusion
We proposed a novel approach to train a visual tracker with
similar pipeline to the online tracking process without hu-
man supervision. Our tracker is trained from a single movie
by iteratively alternating between tracking and updating pro-
cesses. In our method, we proposed to group frames and
utilized the Forward-Backward method to select valid train-
ing data, leading to a better off-line learned tracker. The
experiment results showed that the network trained by our
unsupervised learning scheme achieves state-of-the-art per-
formance among existing unsupervised learning approaches.
Their performance is comparable with those trackers learned
with full supervision from very large scale databases. Some
issues still remain. As it stands, our training pipeline needs
several tracking and update rounds, resulting in a longer time
than supervised based methods. Therefore, it cannot be eas-
ily scaled to many videos, such as combining all movies
for training. The discovered region pairs based on simple
FBA still contain a few low quality matches. We will ad-
dress these issues in the future work.
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