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Abstract
In this paper, we present a novel unsupervised video sum-
marization model that requires no manual annotation. The
proposed model termed Cycle-SUM adopts a new cycle-
consistent adversarial LSTM architecture that can effectively
maximize the information preserving and compactness of
the summary video. It consists of a frame selector and a
cycle-consistent learning based evaluator. The selector is a
bi-direction LSTM network that learns video representations
that embed the long-range relationships among video frames.
The evaluator defines a learnable information preserving met-
ric between original video and summary video and “super-
vises” the selector to identify the most informative frames
to form the summary video. In particular, the evaluator is
composed of two generative adversarial networks (GANs),
in which the forward GAN is learned to reconstruct orig-
inal video from summary video while the backward GAN
learns to invert the processing. The consistency between the
output of such cycle learning is adopted as the information
preserving metric for video summarization. We demonstrate
the close relation between mutual information maximization
and such cycle learning procedure. Experiments on two video
summarization benchmark datasets validate the state-of-the-
art performance and superiority of the Cycle-SUM model
over previous baselines.

Introduction
With explosion of video data, video summarization tech-
nologies (Ma et al. 2002; Pritch et al. 2007; Lu and Grau-
man 2013) become increasingly attractive to help efficiently
browse, manage and retrieve video contents. With such tech-
niques, a long video can be shortened to different forms, e.g.
key shots (Gygli et al. 2014), key frames (Kim, Sigal, and
Xing 2014) and key objects (Meng et al. 2016). Here, we
aim at selecting key frames for summarizing a video.

Video summarization is usually formulated as a structure
prediction problem (Zhang et al. 2016; Mahasseni, Lam, and
Todorovic 2017). The model takes as input a sequence of
video frames, and outputs a subset of original video frames
containing critical information. Ideally, the summary video
should keep all key information of the original video with
minimal redundancy. Summary completeness and compact-
ness are expected for good video summarization.
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Figure 1: Overview of the Cycle-SUM model. The sum-
mary video is selected by the selector from the input original
video. To optimize the selector, a cycle-consistent adversar-
ial LSTM evaluator is introduced to evaluate the summary
quality through cycle-consistent learning to measure the mu-
tual information between the original and summary video.

Existing approaches can be roughly grouped into su-
pervised and unsupervised ones. Many supervised ap-
proaches (Zhang et al. 2016; Gygli, Grabner, and Van Gool
2015) utilize human-annotated summary as ground truth to
train a model. However, sufficient human-annotated video
summarization examples are not always available or expen-
sive to collect. Thus, unsupervised approaches that do not re-
quire human intervention become increasingly attractive due
to their low cost. For these methods, it is very critical to de-
sign a proper summary quality metric. For instance, (Mahas-
seni, Lam, and Todorovic 2017) adopt the GAN (Goodfel-
low et al. 2014) to measure the similarity between summary
and original video and improve the summarization model
by optimizing the induced objective, based on a basic idea
that a good summary video should be able to faithfully re-
construct the original input video. However, this approach
only considers one-direction reconstruction, thus some sig-
nificant frames may dominate the quality measure, leading
to severe information loss in the summary video.

In this paper, we propose a novel cycle-consistent unsu-
pervised model, motivated by maximizing the mutual in-
formation between summary video and original video. Our
model is developed with a new cycle-consistent adversarial
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learning objective to pursue optimal information preserving
for the summary video, partially inspired by the cycle gen-
erative adversarial network (Zhu et al. 2017; Yi et al. 2017).
Moreover, to effectively capture the short-range and long-
range dependencies among sequential frames (Zhang et al.
2016), we propose a VAE-based LSTM network as the back-
bone model for learning video representation. We name such
a cycle-consistent adversarial LSTM network for video sum-
marization as the Cycle-SUM.

Cycle-SUM performs original and summary video re-
construction in a cycle manner, and leverages consistency
between original/summary video and its cycle reconstruc-
tion result to “supervise” the video summarization. Such
a cycle-consistent objective guarantees the summary com-
pleteness without additional supervision. Compared with the
one-direction reconstruction (i.e., from summary video to
original video) (Zhu et al. 2017; Yi et al. 2017), the bi-
direction model performs a reversed reconstruction and a
cycle-consistent reconstruction to relieve information loss.

Structurally, the Cycle-SUM model consists of two com-
ponents: a selector to predict an importance score for each
frame and select the frames with high importance scores
to form the summary video, and a cycle-consistent evalu-
ator to evaluate the quality of selected frames through cycle
reconstruction. To achieve effective information preserving,
the supervisor employs two VAE-based generators and two
discriminators to evaluate the cycle-consistent loss. The for-
ward generator and discriminator are responsible for recon-
structing the original video from the summary video, and the
backward counterparts perform the backward reconstruction
from original to the summary video. Both reconstructions
are performed in the learned embedding feature space. The
discriminator is trained to distinguish the summary video
from original. If the summary video misses some informa-
tive frames, the discriminator would tell its difference with
the original and thus serves as a good evaluator to encourage
the selector to pick important frames.

An illustration of the proposed framework is given in
Fig. 1. The summary video is a subset of all training video
frames, selected by the selector based on the predicted
frame-wise importance scores. The original video is recon-
structed from the summary video, and then back again.
Given a distance between original video and summary video
in the deep feature space, the Cycle-SUM model tries to op-
timize the selector such that the distance is minimized over
training examples. The closed loop of Cycle-SUM is aimed
at 1) assisting the Bi-LSTM selector to select a subset of
frames from the original video, and 2) keeping a suitable
distance between summary video and original video in the
deep features space to improve summary completeness and
reduce redundancy.

Our contributions are three-fold. 1) We introduce a new
unsupervised video summarization model that does not re-
quire any manual annotation on video frame importance yet
achieves outstanding performance. 2) We propose a novel
cycle-consistent adversarial learning model. Compared with
one-direction reconstruction based models, our model is su-
perior in information preserving and facilitating the learning
procedure. 3) We theoretically derive the relation of mutual

information maximization, between summary and original
video, with the proposed cycle-consistent adversarial learn-
ing model. To our best knowledge, this work is the first to
transparently reveal how to effectively maximize mutual in-
formation by cycle adversarial learning.

Related Work
Supervised video summarization approaches leverage
videos with human annotation on frame importance to train
models. For example, Gong et al. formulate video summa-
rization as a supervised subset selection problem and pro-
pose a sequential determinantal point processing (seqDPP)
based model to sample a representative and diverse sub-
set from training data (Gong et al. 2014). To relieve hu-
man annotation burden and reduce cost, unsupervised ap-
proaches, which have received increasing attention, gen-
erally design different criteria to give importance ranking
over frames for selection. For example, (Wang et al. 2012;
Potapov et al. 2014) propose to select frames according to
their content relevance. (Mei et al. 2015; Cong, Yuan, and
Luo 2012) design unsupervised critera by trying to recon-
struct the original video from selected key frames and key
shots under the dictionary learning framework. Clustering-
based models (De Avila et al. 2011; Kuanar, Panda, and
Chowdhury 2013) and attention-based models (Ma et al.
2002; Ejaz, Mehmood, and Baik 2013) are also developed
to select key frames.

Recently, deep learning models are developed for both su-
pervised and unsupervised video summarization, in which
LSTM is usually taken as the video representation model.
For example, (Zhang et al. 2016) treat video summariza-
tion as a sequential prediction problem inspired by speech
recognition. They present a bi-direction LSTM architecture
to learn the representation of sequential frames in variable
length and output a binary vector to indicate which frame
to be selected. Our proposed Cycle-Sum model also adopts
LSTM as backbone for learning long-range dependence be-
tween video frames.

Method
The proposed Cycle-SUM model formulates video summa-
rization as a sequence-to-sequence learning problem, taking
as input a sequence of video frames and outputting a se-
quence of frame-wise importance scores. The frames with
high importance scores are selected to form a summary
video. Throughout the paper, we use O and S to denote the
original input video and summary video respectively, and o
and s to denote the frame-level features of O and S respec-
tively. To train Cycle-SUM in an unsupervised manner, we
develop the cycle-consistent learning method for maximiz-
ing mutual information between o and s.

Mutual Information Maximization via Cycle
Learning
Video summarization is essentially aimed at extracting video
frames that contain critical information of the original video.
In this subsection, we explain how to derive our cycle-
consistent learning objective through the desired objective
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Figure 2: Demonstration of Cycle-SUM architecture. Red parts denote the components of our Cycle-SUM model while blue
one denotes data-processing. Cycle-SUM has two parts: the selector for selecting frames and the cycle-consistent evaluator to
”supervise” the selection. The feature of the frame in original video o is extracted from video O by a deep CNN. The selector
takes o as input and outputs the importance scores x. During training, the generator Gf takes s as input and reconstructs a
sequence of features, Gf (s). The discriminator Df is trained to distinguish ô and o. The generator Gb takes o as input and
outputs Gb (o); the discriminator Db also tries to distinguish between s and ŝ. To achieve cycle consistency, the forward cycle
s → Gf (s) → Gb(Gf (s)) ≈ s and the backward cycle o → Gb(o) → Gf (Gb(o)) ≈ o are implemented to encourage the
information to be consistent between o and s.

of maximizing the mutual information between the summary
video s and the original video o.

Formally, the mutual information I(o, s) is defined as

I(o, s) ,
∑
o

p(o)DKL (p(s|o)||p(s)) ,

whereDKL is the KL-divergence between two distributions.
Then the objective of video summarization is to extract the
summary video s from o to maximize their mutual infor-
mation. The video summarization model should try to pro-
duce s such that its conditional distribution p(s|o) gives the
maximal mutual information with p(s). However, though it
is easy to obtain empirical distribution estimation of orig-
inal video o, it is difficult to obtain ground truth distribu-
tion p(s) of corresponding s in an unsupervised learning
scenario. This makes one major challenge to unsupervised
video summarization.

We propose a cycle-consistent learning objective to re-
lieve such learning difficulty. We notice that

I(o, s) =
1

2

[∑
o

p(o)DKL (p(s|o)||p(s))

+
∑
s

p(s)DKL (p(o|s)||p(o))

]
.

(1)

The above mutual information computation “anchors” at
p(o) that can be faithfully estimated and thus eases the pro-
cedure of learning distribution of s even in an unsupervised
learning setting.

To effectively model and optimize the above learning ob-
jective, we adopt the Fenchel conjugate to derive its bound
that is easier to optimize. The Fenchel conjugate of a func-
tion f is defined as f∗(t) , supu∈domf

{ut − f(u)}, or
equivalently f(u) = supt∈domf∗{ut− f∗(t)}.

Thus, defining f(u) = log u, we have the following upper
bound for the KL-divergence between distributions p and q:

DKL(p||q) = −
∑
x

q(x) log
p(x)

q(x)

= −
∑
x

q(x) sup
t

(
t
p(x)

q(x)
− f∗(t)

)
= −

∑
x

q(x) sup
t

(
t
p(x)

q(x)
+ 1 + log(−t)

)

≤ − sup
T∈T

(∑
x

p(x) log T (x) +
∑
x

q(x) log(1− T (x))

)
,

where t = T (x)− 1 and T is an arbitrary class of functions
T : X → R. The above inequality is due to the Jensen’s
inequality and functions T is only a subset of all possible
functions. Therefore, we have

DKL(p(s|o)||p(s))

≤ − sup
T∈T

(∑
p(s|o) log T (s) +

∑
p(s) log(1− T (s))

)
≈ − sup

T∈T

1

|S|

 ∑
s∼p(s|o)

log T (s) +
∑

s∼p(s)

log(1− T (s))

 .

Here S is the set of produced summary videos. We can use
a generative model to estimate p(s|o). To this end, we fol-
low the generative-adversarial approach (Goodfellow et al.
2014) and use two neural networks, Gf and Df , to imple-
ment sampling and data transformation. Here Gf is the for-
ward generative model, taking the condition o as input and
outputting a sample of summary sample s.Df is the forward
discriminative model. We learn the generative model Gf by
finding a saddle-point of the above objective function, where
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we minimize w.r.t. Gf and maximize w.r.t. Df :

min
Gf

max
Df

L(Gf , Df )

=
1

|S|

 ∑
s∼Gf (o)

logDf (s) +
∑
s∼p(s)

log(1−Df (s))

 .

(2)
The above objective is similar to the one of GANs, but the
generative model is a conditioned one.

Similarly, we can obtain the learning objective to optimize
the KL-divergence DKL(p(o|s)||p(o)) by solving

min
Gb

max
Db

L(Gb, Db)

=
1

|O|

 ∑
o∼Gb(s)

logDb(o) +
∑
o∼p(o)

log(1−Db(o))

 .

(3)
Substituting Eqn. (2) and Eqn. (3) into Eqn. (1) gives the
following cycle learning objective to maximize the mutual
information between the original and summary video:

min
Gf ,Gb

max
Df ,Db

L(Gf , Gb, Df , Db)

=
∑

s∼Gf (o)

logDf (s) +
∑
s∼p(s)

log(1−Df (s))

+
∑

o∼Gb(s)

logDb(o) +
∑
o∼p(o)

log(1−Db(o)),

(4)

where we omit the constant number of original frames. To
relieve the difficulties brought by the unknown distribution
p(s), we use the following cycle-consistent constraint to fur-
ther regularize the generative model and the cycle learning
processing:

Gb(Gf (o)) ≈ o, and Gf (Gb(s)) ≈ s.

We name cycle learning with the above consistent constraint
as the cycle-consistent learning.

Architecture
Based on the above derivations, we design the cycle-
consistent adversarial model for video summarization
(Cycle-SUM). The architecture of our Cycle-SUM model is
illustrated in Fig. 2. The selector is a Bi-LSTM network,
which is trained to predict an importance score for every
frame in the input video. The evaluator consists of two pairs
of generators and discriminators. In particular, the forward
generator Gf and the discriminator Df form the forward
GAN; the backward generator Gb and the discriminator Db

form the backward GAN. The two generators are imple-
mented by variational auto-encoder LSTM, which encode
the frame feature to the latent variable z and then decode it
to corresponding features. The two discriminators are LSTM
networks that learn to distinguish generated frame features
and true features. We extensively use the LSTM architec-
ture here for comprehensively modeling the temporal in-
formation across video frames. Moreover, by adopting the
joint structure of VAE and GAN, the video similarity can be

more reliably measured by generating better high-level rep-
resentations (Larsen et al. 2015). The cycle structure (for-
ward GAN and backward GAN) convert from original to
summary video and back again, in which information loss is
minimized.

Given a video O of k frames, the first step is to extract its
deep features o = {ot|t = 1, . . . , k} via a deep CNN model.
Given these features o, the selector predicts a sequence
of importance scores x = {xt : xt ∈ [0, 1] | t = 1, . . . , k}
indicating the importance level of corresponding frames.
During training, the frame feature of summary video s =
{st = xtot|t = 1, . . . , k}. But for testing, Cycle-SUM out-
puts discretized importance scores x = {xt : xt ∈ {0, 1}};
then frames with importance scores being 1 are selected.

With s and o, the supervisor performs cycle-consistent
learning (see Fig. 2) to evaluate the quality of summary
video s w.r.t. both completeness and compactness. Specif-
ically, within the selector, the forward generator Gf takes
the current summary video s as input and outputs a se-
quence of reconstructed features for the original video,
namely Gf (s) = {ôt|t = 1, ..., k}. The paired discrim-
inator Df then estimates the distribution divergence be-
tween original video and summary video in the learned fea-
ture space. The backward generator Gb and discriminator
Db have a symmetrical network architecture and training
procedure to the forward ones. In particular, the genera-
tor Gb takes the original video feature o as input, and out-
puts Gb (o) = {ŝt : t = 1, ..., k} to reconstruct the sum-
mary video. The discriminator Db then tries to distinguish
between s and ŝ. The forward cycle-consistency processing
s → Gf (s) → Gb(Gf (s)) ≈ s and the backward cycle-
consistency o → Gb(o) → Gf (Gb(o)) ≈ o are imple-
mented to enhance the information consistency between o
and s. This cycle-consistent processing guarantees the orig-
inal video to be reconstructed from the summary video and
vice versa, meaning the summary video can tell the same
story as the original.

Training Loss
We design the following loss functions to train our Cycle-
SUM model. The sparsity loss Lsparsity is used to control
the summary length for the selector; the prior loss Lprior
and the reconstruction loss Lrecon are used to train the two
VAE-based generators; adversarial losses LGAN are derived
from the forward GAN and backward GAN; and Lcycle is the
cycle-consistent loss.

Sparsity loss Lsparsity This loss is designed to penalize the
number of selected frames forming the summary video over
the original video. A high sparsity ratio gives a shorter sum-
mary video. Formally, it is defined as

Lsparsity =

∥∥∥∥∥1

k

k∑
t=1

xt − σ

∥∥∥∥∥
2

where k is the total number of video frames and σ is a
pre-defined percentage of frames to select in video summa-
rization. The ground truth of σ in standard benchmark is
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15% (Gygli et al. 2014; Song et al. 2015), but we empiri-
cally set σ as 30% for the selector in training (Mahasseni,
Lam, and Todorovic 2017).

Generative loss Lgen We adopt VAE as the generator for
reconstruction, thus Lgen contains the prior loss Lprior and
the reconstruction loss Lrecon. For the forward VAE (forward
generator Gf ), the encoder encodes input features s into
the latent variable z. Assume pz(z) is the prior distribution
of latent variables, and the typical reparameterization trick
is to set pz(z) as Gaussian Normal distribution (Kingma
and Welling 2013). Define qψ(z|s) as the posterior distri-
bution and pθ(s|z) as conditional generative distribution for
s, where ψ is the parameter of the encoder and θ is that of
the decoder. The objective of the forward generator is

Lgen,f = DKL (qψ(z|s) ‖ pz(z))− E [log(pθ(s|z))] ,

where the first term is KL divergence for the prior loss:
Lprior = DKL(qψ(z|s) ‖ pz(z)).

The second term is an element-wise metric for measuring
the similarity between samples, so we use it as the recon-
struction loss Lrecon. The typical reconstruction loss for auto
encoder networks is the Euclidean distance between input
and reconstructed output: ‖x− x̂‖2. According to (Larsen
et al. 2015), element-wise metrics cannot model properties
of human visual perception, thus they propose to jointly train
the VAE (the generator) and the GAN discriminator, where
hidden representation is used in the discriminator to measure
sample similarity. Our proposed Cycle-SUM also adopts the
same structure to measure the video distance and achieves
a feature-wise reconstruction. Specifically, if x and x̂ are
the input and output of the VAE (the generator), the out-
put of the last hidden layer of the discriminator are φ(x) and
φ(x̂). Then, consider p(φ(x)|e) ∝ exp(−‖φ(x)− φ(x̂)‖).
The expectation E can be computed by empirical average.
The reconstruction loss can be re-written as

Lrecon = E[− log(pθ(s|e))] ∝
1

k
‖φ(o)− φ(ô)‖2 .

The backward generator GB has the same Lprior and Lrecon
as the forward generator. The only difference is that their
input and output are reversed.

Adversarial loss LGAN The learning objective of the eval-
uator is to maximize the mutual information between the
original and summary video. According to Eqn. (4), the ad-
versarial losses for the forward GAN (Gf and Df ) and the
backward GAN (Gb and Db) are

LGAN,f = E[logDf (o)] + E[1− logDf (Gf (s))],

LGAN,b = E[logDb(s)] + E[1− logDb(Gb(o))].

To avoid mode collapse and improve stability of optimiza-
tion, we use the loss suggested in Wasserstein GAN (Ar-
jovsky, Chintala, and Bottou 2017):

LGAN,f = Df (o)−Df (Gf (s)),

LGAN,b = Db(s)−Db(Gb(o)).

Cycle-Consistent Loss Lcycle Since we expect summary
frame features to contain all the information of original
frame features, the original video should be fully recon-
structed from them. Thus, when we convert from original
to summary video and then back again, we should obtain
a video similar to the original one. In this way we can
safely guarantee the completeness of the summary video.
This processing is more advantageous than the one-direction
reconstruction in existing image reconstruction works (Zhu
et al. 2017; Yi et al. 2017). Based on such an intuition,
we introduce the below cycle-consistent loss. The proce-
dure for forward cycle is s → Gf (s) → Gb(Gf (s)) ≈
s. The Lcycle, f is correspondingly defined as Lcycle, f =
1
k ‖Gb(Gf (s))− s‖. For the backward cycle, the procedure
is o → Gb(o) → Gf (Gb(o)) ≈ o. So the Lcycle, b is
Lcycle, b = 1

k ‖Gf (Gb(o))− o‖. We adopt L1 distance for
Lcycle, since the L2 often leads to blurriness (Larsen et al.
2015; He et al. 2016).

Overall Loss L The overall loss function is the overall ob-
jective for training the Cycle-SUM model:

L =Lsparsity + λ1(LGAN,f + LGAN,b)

+ λ2(Lgen,f + Lgen,b) + λ3(Lcycle,f + Lcycle,b),

where λ1, λ2 and λ3 are hyper parameters to balance adver-
sarial processing, generative processing and cycle-consistent
processing.

Training Cycle-SUM Given the above training losses and
final objective function, we adopt the Stochastic Gradient
Variational Bayes estimation (Kingma and Welling 2014) to
update the parameters in training. The selector and the gen-
erators in the Cycle-SUM are jointly trained to maximally
confuse the discriminators. To stabilize the training process,
we initialize all parameters with Xavier (Glorot and Bengio
2010) and clip all parameters (Arjovsky, Chintala, and Bot-
tou 2017). The clipping parameter c in this training falls in
[−0.5, 0.5]. The typical value for the generator iteration per
discriminator iteration n is 2 ∼ 5, which means the gener-
ator will iterate n times per discriminative iteration. Algo-
rithm 1 summarizes all steps for training Cycle-SUM.

Experiment
Experiment Setup
Datasets and Protocol We evaluate Cycle-SUM on two
benchmark datasets: SumMe (Gygli et al. 2014) and TV-
Sum (Song et al. 2015). The SumMe contains 25 videos
ranging from 1 to 7 minutes, with frame-level binary impor-
tance scores. The TVSum contains 50 videos downloaded
from YouTube, with shot-level importance scores for each
video taking constant from 1 to 5.

Following the convention (Gygli, Grabner, and Van Gool
2015; Zhang et al. 2016; Mahasseni, Lam, and Todorovic
2017), we adopt the F-measure as the performance metric.
Given ground truth and produced summary video, we calcu-
late the harmonic mean F-Scores according to precision and
recall for evaluation.

9147



Algorithm 1 Training Cycle-SUM model
Require: Frame features of the training video: o
Ensure: Learned parameters for the selector ΘS , the two

generators and discriminators: ΘGf
, ΘGb

, ΘDf
, ΘDb

1: Initialize all parameters by using Xavier approach
2: repeat
3: for i = 1,...,n do
4: o→ original frame-level features from CNN
5: s→ selector(o) % selected frame-level features
6: ô→ Gf (s) % reconstruction by generator A
7: ŝ→ Gb(o) % reconstruction by generator B
8: scycle → Gb(ô) % forward cycle
9: ocycle → Gf (ŝ) % backward cycle

10: % Updates using RMSProp
11: −OLoverall ⇒

{
ΘS ,ΘGf

,ΘGb

}
12: clip(

{
ΘS ,ΘGf

,ΘGb

}
,−c, c)

13: end for
14: +OLdis,f ⇒

{
ΘDf

}
%maximization update

15: clip(ΘDf
,−c, c)

16: +OLdis,b ⇒ {ΘDb
} %maximization update

17: clip(ΘDb
,−c, c)

18: until convergence

For the TVSum dataset, shot-level ground truths are pro-
vided while the outputs of Cycle-SUM in testing are frame-
level scores. Thus we follow the method in (Zhang et al.
2016) to convert frame-level evaluation to shot-level evalua-
tion.

Implementation Details For fairness, the frame features
used for training our model are the same with (Zhang et
al. 2016; Mahasseni, Lam, and Todorovic 2017). We ex-
tract 1024-d frame features from the output of pool5 layer
of the GoogLeNet network (Szegedy et al. 2015) which is
pre-trained on ImageNet (Deng et al. 2009).

Each of the two generators in our Cycle-SUM is a
VAE-based LSTM network consisting of an encoder and
a decoder, which has two-layers with 300 hidden units
per layer. The decoder LSTM which reconstructs the se-
quence reversely is easier to train (Srivastava, Mansimov,
and Salakhudinov 2015), so the decoders in Cycle-SUM
also reconstruct the frame features in a reverse order. The
discriminators are LSTM networks followed by a fully-
connected network to produce probability (true or false) for
the input. Following the architecture of WGAN (Arjovsky,
Chintala, and Bottou 2017), we remove the Sigmoid func-
tion in the last layer of the discriminator to make the model
easier to train. The selector is a Bi-LSTM network consist-
ing of three layers, each with 300 hidden units.

The two VAE generators are initialized by pre-training on
frame features of the original video. Similar to (Mahasseni,
Lam, and Todorovic 2017), such an initialization strategy
can also accelerate training and improve overall accuracy.

All experiments are conducted for five times on five ran-
dom splits and we report the average performance.

Table 1: Comparison on F-scores of Cycle-SUM with other
unsupervised learning approaches on SumMe and TVSum.

SumMe TVSum

De Avila, et al. (De Avila et al. 2011) 33.7 -
Li, et al. (Li and Merialdo 2010) 26.6 -
Khosla, et al. (Khosla et al. 2013) - 50
Song, et al. (Song et al. 2015) 26.6 50
SUM-GAN (Mahasseni, Lam, and Todorovic 2017) 39.1 51.7
Cycle-SUM 41.9 57.6

Table 2: Performance comparison (F-scores) of the vanilla
Cycle-SUM model and its ablation variants on SumMe and
TVSum.

SumMe TVSum

Cycle-SUM-C 34.8 49.5
Cycle-SUM-1G 38.2 51.4
Cycle-SUM-2G 39.7 53.6
Cycle-SUM-Gf 40.3 55.2
Cycle-SUM-Gb 39.9 55.0
Cycle-SUM 41.9 57.6

Quantitative Results
We compare our Cycle-SUM model with several unsuper-
vised state-of-the-arts in Tab. 1. One can see that the Cycle-
SUM model outperforms all of them by a margin up to 2.8%.
In particular, Cycle-SUM outperforms SUM-GAN (Mahas-
seni, Lam, and Todorovic 2017) across the two datasets,
clearly demonstrating effectiveness of our proposed cycle-
consistent loss. On TVSum, the performance improvement
is over 5.9%. These results well prove the superior perfor-
mance of Cycle-SUM for video summarization.

Ablation Analysis of Cycle-SUM
We further conduct ablation analysis to study the effects
of different components of the Cycle-SUM model, includ-
ing the generative adversarial learning and cycle-consistent
learning. In particular, we consider following ablation vari-
ants of Cycle-SUM.

• Cycle-SUM-C. This variant is proposed to verify the ef-
fects of adversarial learning. It drops the adversarial loss
LGAN,f and LGAN,b and keeps all other losses, especially
cycle-consistent loss Lcycle in the overall loss.

• Cycle-SUM-2G. The cycle-consistent loss Lcycle,f and
Lcycle,b are removed in overall loss. The forward GAN and
backward GAN are still kept. We compare the results of
Cycle-SUM-2G with Cycle-SUM to analyze the functions
of cycle-consistent reconstruction.

• Cycle-SUM-1G. The cycle-consistent loss Lcycle,f and
Lcycle,b are not used when training this variant. Mean-
while, we remove the generator Gb and discriminator Db,
so there is no backward reconstruction: o → Gb(o) → ŝ.
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Figure 3: Comparison of selected frames w.r.t. importance score by Cycle-SUM and other state-of-arts (vsLSTM and SUM-
GAN). Dark blue bars show ground-truth frame-level annotation; Red bars are selected subset shots of all frames. The example
video (# 15) is from TVSum.

This model is similar to SUM-GAN (Mahasseni, Lam,
and Todorovic 2017). It only has forward GAN, and
Cycle-SUM-2G contains the two GANs during training.
We are also interested in comparing Cycle-SUM-2G and
Cycle-SUM-1G.

• Cycle-SUM-Gf. The backward cycle-consistent loss
Lcycle,b is not included in overall objective when training,
while forward cycle-consistent loss is still kept. The for-
ward and backward adversarial learning are still kept.

• Cycle-SUM-Gb. The forward cycle-consistent loss
Lcycle,f is not included in overall objective when training,
and backward one is kept. The forward and backward ad-
versarial learning are still kept.

Comparing F-scores of Cycle-SUM and Cycle-SUM-C in
Tab. 2, we can see the adversarial learning improves the per-
formance significantly, proving the positive effects of de-
ploying GAN in unsupervised video summarization. Com-
pared with one GAN variant Cycle-SUM-1G, the results
of Cycle-SUM-2G have 2% gain on average. Both compar-
isons verify adversarial learning helps improve video sum-
marization.

By comparing Cycle-SUM-2G and Cycle-SUM, we can
see averagely F-scores rise by 2.2% on SumMe and 4.0% on
TVSum. This proves that cycle-consistent reconstructions
can ensure the summary video contain full information of
the original video.

The results of Cycle-SUM-Gf are slightly better than
Cycle-SUM-Gb. However, both variants bring performance
gain over Cycle-SUM-2G, which also proves the forward
and backward cycle-consistent processing can promote the
ability to select a fully summary video from the original.

To sum up, the adversarial learning ensures the summary

and original video to keep a suitable distance in the deep
feature space, and the cycle-consistent learning ensures se-
lected frames to retain full information of the original video.

Qualitative Results
Fig. 3 shows summarization examples from a sample video
in TVSum. We compare the selected frames of Cycle-SUM
with other two recent state-of-the-arts, vsLSTM (Zhang et
al. 2016) and SUM-GAN (Mahasseni, Lam, and Todorovic
2017) by using a successful example for all three models.
As shown in Fig. 3, Cycle-SUM selects shorter but more key
shots than the other two models. Compared with results of
vsLSTM and SUM-GAN, some topic-specific and informa-
tive details, e.g. frames showing the doctor pushing medic-
inal liquid into dog’s ear, are correctly selected by Cycle-
SUM.

Conclusion
In this paper, we theoretically reveal how to effectively max-
imize mutual information by cycle-consistent adversarial
learning. Based on the theoretical analysis, we propose a
new Cycle-SUM model for frame-level video summariza-
tion. Experimental results show that the cycle-consistent
mechanism can significantly improve video summarization,
and our Cycle-SUM can produce more precise summary
video than strong baselines, which well validates effective-
ness of our method.
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