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Abstract

We have witnessed the tremendous growth of videos over
the Internet, where most of these videos are typically paired
with abundant sentence descriptions, such as video titles, cap-
tions and comments. Therefore, it has been increasingly cru-
cial to associate specific video segments with the correspond-
ing informative text descriptions, for a deeper understand-
ing of video content. This motivates us to explore an over-
looked problem in the research community — temporal sen-
tence localization in video, which aims to automatically de-
termine the start and end points of a given sentence within
a paired video. For solving this problem, we face three criti-
cal challenges: (1) preserving the intrinsic temporal structure
and global context of video to locate accurate positions over
the entire video sequence; (2) fully exploring the sentence
semantics to give clear guidance for localization; (3) ensur-
ing the efficiency of the localization method to adapt to long
videos. To address these issues, we propose a novel Attention
Based Location Regression (ABLR) approach to localize sen-
tence descriptions in videos in an efficient end-to-end manner.
Specifically, to preserve the context information, ABLR first
encodes both video and sentence via Bi-directional LSTM
networks. Then, a multi-modal co-attention mechanism is
presented to generate both video and sentence attentions. The
former reflects the global video structure, while the latter
highlights the sentence details for temporal localization. Fi-
nally, a novel attention based location prediction network is
designed to regress the temporal coordinates of sentence from
the previous attentions. We evaluate the proposed ABLR
approach on two public datasets ActivityNet Captions and
TACoS. Experimental results show that ABLR significantly
outperforms the existing approaches in both effectiveness and
efficiency.

Introduction
Video has become a new way of communication between
Internet users with the proliferation of sensor-rich mobile
devices. Moreover, as videos are often accompanied by text
descriptions, e.g., titles, captions or comments, it has en-
couraged the development of advanced techniques for a
broad range of video-text understanding applications, such
as video captioning (Pan et al. 2016; Duan et al. 2018), video
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Figure 1: Temporal sentence localization in untrimmed
video.

generation conditioned on captions (Pan et al. 2017) and
video question answering (Xu et al. 2017). While promising
results have been achieved, one fundamental issue under-
lying these technologies is overlooked, i.e., the informative
video segments should be trimmed and aligned with the rel-
evant textual descriptions. This motivates us to investigate
the problem of temporal sentence localization in video. For-
mally, as shown in Figure 1, given an untrimmed video and a
sentence query, the task is to identify the start and end points
of the video segment in response to the given sentence query.

To solve the temporal sentence localization in video, peo-
ple may first consider applying the typical multi-modal
matching architecture (Hendricks et al. 2017; Bojanowski
et al. 2015; Gao et al. 2017; Liu et al. 2018). One can
first sample candidate clips by scanning videos with vari-
ous sliding windows, then compare the sentence query with
each of these clips individually in a multi-modal common
latent space, and finally choose the highest matched clip
as the localization result. While simple and intuitive, this
“scan and localize” architecture still has certain limitations
as follows. First, independently fetching video clips may
break the intrinsic temporal structure and global context of
videos, making it difficult to holistically predict locations
over the entire video sequence. Second, as the whole sen-
tence is represented with a coarse feature vector in the multi-
modal matching procedure, some important sentence details
for temporal localization are not fully explored and lever-
aged. Third, densely sampling sliding window is computa-
tionally expensive, which limits the efficiency of the local-
ization method in applying to long daily videos in practice.

To address the above limitations, we consider that tempo-
ral sentence localization should be strengthened from both
video and sentence aspects. From the video aspect, com-
pared with partially watching each candidate clip, it is more
natural for people to look through the whole video and then
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decide which part does the sentence describe. In the latter
case, the global video context is intact and the computation
overload caused by densely scanning is avoided, resulting
in a more comprehensive and efficient video understanding.
Therefore, predicting the sentence position upon the overall
video sequence from a global view is better than the local
matching strategy upon each candidate video clip. From the
sentence aspect, as some words or phrases can give clear
cues to identify the target video segment, we should pay
more attention to these sentence details so as to predict more
accurate locations.

Based on the above considerations, we propose an end-
to-end Attention Based Location Regression (ABLR) model
for temporal sentence localization. The proposed ABLR
model goes beyond the existing “scan and localize” archi-
tecture, and can directly output the temporal coordinates of
the localized video segment. Specifically, ABLR first uti-
lizes two Bi-directional LSTM networks to encode video
clip and word sequences respectively, where each unit is en-
riched by the flexible forward and backward context. Based
on the encoded features, a multi-modal co-attention mech-
anism is designed to learn both video and sentence atten-
tions. Video attention incorporates the relative associations
between different video parts and the sentence query, and
therefore it can reflect the global temporal structure of video.
Sentence attention highlights the crucial details in the word
sequence, and therefore it can give clear guidance for the
following temporal location prediction. Finally, a multilayer
attention based location prediction network is proposed to
regress the temporal coordinates of the target video segment
from the previous global attention outputs. By jointly learn-
ing the overall model, our ABLR is able to localize sentence
query in video efficiently and effectively.

The main contributions of this paper are summarized as
follows:

(1) We address the problem of temporal sentence local-
ization in video by proposing an effective end-to-end Atten-
tion Based Location Regression (ABLR) approach. Differ-
ent from the existing “scan and localize” architecture which
partially processes each video clip, our ABLR directly pre-
dicts the temporal coordinates of sentence queries from a
global video view.

(2) We introduce the multi-modal co-attention mechanism
for temporal localization task. The multi-modal co-attention
mechanism leverages the sentence features to divert the at-
tention to the most indicative video parts, and meanwhile
investigates the important sentence details for localization.

(3) We conduct experiments on two public datasets Activ-
ityNet Captions (Krishna et al. 2017) and TACoS (Regneri
et al. 2013). The results demonstrate our proposed ABLR
model not only achieves superior localization accuracy, but
also boosts the localization efficiency compared to the exist-
ing approaches.

Related Work
We briefly group the related works into two main direc-
tions: temporal action localization and temporal sentence
localization. The former direction aims to solve the prob-
lem of recognizing and determining temporal boundaries of

action instances in untrimmed videos. Although promising
results have been achieved (Shou, Wang, and Chang 2016;
Lin, Zhao, and Shou 2017; Escorcia et al. 2016), one major
limitation is that they are restricted to a predefined list of ac-
tion categories, which cannot precisely identify the complex
scenes and activities in videos. Therefore, some researchers
begin to explore the latter direction: temporal sentence local-
ization in video, which is also the main focus of this paper.

Localizing sentences in videos is a challenging task which
requires both language and video understanding. Early
works mainly constrain to certain visual domains (movie
scenes, laboratory or kitchen environment), and often fo-
cus on localizing multiple sentences within a single video in
chronological order. Inspired by the Hidden Markov Model,
Naim and Song et al. proposed unsupervised methods to lo-
calize natural language instructions to corresponding video
segments (Naim et al. 2014; Song et al. 2016). Tapaswi et al.
computed an alignment between book chapters and movie
scenes using matching dialogs and character identities as
cues with a graph based algorithm (Tapaswi, Bauml, and
Stiefelhagen 2015). Bojanowski et al. proposed weakly su-
pervised alignment model under ordering constrain. They
cast the alignment between video clips and sentences as a
temporal assignment problem, and learned an implicit linear
mapping between the vectorial features of the two modali-
ties (Bojanowski et al. 2015). In contrast to the above ap-
proaches, we aims to solve the temporal sentence localiza-
tion problem for general videos without any domain restric-
tions. Moreover, we do not rely on the chronological order
between different sentence descriptions, i.e., each sentence
is independent in the localization procedure.

For localizing independent sentence queries in open-
world videos, there only exists very few works (Hendricks
et al. 2017; Gao et al. 2017; Liu et al. 2018), and all of them
employ the aforementioned “scan and localize’ framework.
Specifically, Hendricks et al. presented a Moment Context
Network (MCN) for matching candidate video clips and sen-
tence query. In order to incorporate the contextual informa-
tion, they enhanced the video clip representations by inte-
grating both local and global video features overtime (Hen-
dricks et al. 2017). To reduce the overload of scanning slid-
ing windows, Gao et al. proposed a Cross-modal Tempo-
ral Regression Localizer (CTRL) which only uses coarsely
sampled clips, and then adjusts the locations of these clips
by learning temporal boundary offsets through a temporal
localization regression network. Inspired by the CTRL ap-
proach, Liu et al. proposed a Attentive Cross-Modal Re-
trieval Network (ACRN) with two further extensions (Liu
et al. 2018). The first is that they designed a memory atten-
tion mechanism to emphasize the visual feature mentioned
in the query and incorporate it to the context of each sam-
ples clips. The second is that they enhanced the multi-modal
representations of clip-query pairs with the outer product of
their features. The proposed ABLR approach is fundamen-
tally different from these three models, because they sepa-
rately process each video clip from a local perspective, while
our ABLR directly regresses the temporal coordinates of the
target clip from a global view and can be trained in an end-
to-end manner.
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Figure 2: Framework of our end-to-end Attention Based Location Regression (ABLR) model. ABLR contains three main
components. (1) Contextual Incorporated Feature Encoding preserves context information in video and sentence query through
two Bi-directional LSTMs. (2) Multi-Modal Co-Attention Interaction sequentially alternates between generating video and
sentence attentions. (3) Attention Based Coordinates Prediction sets up an attention based location prediction network, which
regresses the temporal coordinates of sentence query from the former output attentions. Meanwhile, there are two different
regression strategies: attention weight based regression and attended feature based regression.

Attention Based Location Regression Model
The main goal of our Attention Based Location Regression
(ABLR) model is to build an efficient localization architec-
ture which can locate the position of the sentence query in
the overall video sequence. Meanwhile, the global video in-
formation and the concrete sentence details should be fully
explored to ensure the localization accuracy. Therefore, as
illustrated in Figure 2, we design our ABLR model with
three main components, i.e., contextual incorporated fea-
ture encoding which can preserve video and sentence con-
texts, multi-modal co-attention interaction which can gen-
erate global video attentions and highlight crucial sentence
details, and attention based coordinates prediction which can
directly regress the temporal coordinates of the target video
segment. From the video and sentence inputs to the temporal
coordinates output, the proposed ABLR model is an end-to-
end architecture that can be jointly optimized.

In the following, we will first give the problem state-
ment of the temporal sentence localization in video, and then
present the three main components of ABLR in detail. Fi-
nally, we will introduce the learning procedure of the overall
model.

Problem Statement
Suppose a video V is associated with a set of temporal sen-
tence annotations {(S, τs, τe)}, where S is a sentence de-
scription of a video segment with start and end time points
(τs,τe) in the video. Given the input video and sentence,
our task is to predict the corresponding temporal coordinates
(τs, τe).

Contextual Incorporated Feature Encoding
Video Encoding: As temporal localization is to locate a po-
sition within the whole video, both specific video content

and global video context are crucial elements that cannot
be overlooked. Some previous methods claim that they have
incorporated contextual information in video clip features.
However, they perform this through some hard-coding ways
— roughly fusing the global video features (Hendricks et
al. 2017) or extending the clip boundaries with a predefined
scale (Gao et al. 2017; Liu et al. 2018). Actually, incorporat-
ing too much contextual information will confuse the local-
ization procedure, and limiting the clip extension will fail to
maintain some long-term relationships. To overcome these
problems, we propose to exploit Bi-directional LSTM net-
work for video encoding.

For each untrimmed video V , we first evenly split it
into M video clips {v1, · · · vj , · · · vM} in chronological or-
der. Then, we apply the widely used C3D network (Tran et
al. 2015) to encode these video clips. Finally, we use Bi-
directional LSTM to generate video clip representations in-
corporated with the contextual information. Precise defini-
tions are as follows:

xj = C3D(vj),

hf
j , c

f
j = LSTMf (xj ,h

f
j−1, c

f
j−1),

hb
j , c

b
j = LSTM b(xj ,h

b
j+1, c

b
j+1),

vj = f
(
Wv(h

f
j ‖h

b
j) + bv

)
.

(1)

Here xj is the fc7 layer C3D features of the video clip
vj . The Bi-directional LSTM consists of two independent
streams, in which LSTMf moves from the start to the end
of video and LSTM b moves end to start. The final repre-
sentation vj of video clip vj is computed by transforming
the concatenation of the forward and backward LSTM out-
puts at position j. f(·) indicates the activation function, i.e.,
Rectified Linear Unit (ReLU), in this paper. As modeled in
LSTM, adjacent video clips will influence each other, and
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therefore the representation of each video clip is enriched
by a variably-sized context. The overall video can be rep-
resented as V = [v1, · · ·vj , · · ·vM ] ∈ Rhv×M , with each
column indicating the final hv-dimensional representation of
a video clip.

Sentence Encoding: In order to explore the details in
sentence, we also employ Bi-directional LSTM to repre-
sent sentence as (Karpathy and Fei-Fei 2015) did. Unlike
the general LSTM which encodes sentence as a whole,
the Bi-directional LSTM takes a sequence of N words
{s1, · · · sj , · · · sN} from sentence S as inputs and encodes
each word sj into a contextual incorporated feature vec-
tor sj . The precise definition of the sentence Bi-directional
LSTM is similar to Eq (1), and the input features are 300-
D glove (Pennington, Socher, and Manning 2014) word
features. Finally, the sentence representation is denoted as
S = [s1, · · · sj , · · · sN ] ∈ Rhs×N . In the following, we
unify the hidden state size of both sentence and video Bi-
bidirectional LSTM as h, i.e., hv = hs = h.

Multi-Modal Co-Attention Interaction
In the literature, visual attention mechanism mainly focuses
on the problem of identifying “where to look” on different
visual tasks. As such, it can be naturally applied to temporal
sentence localization, which is exactly to localize where to
pay attention in video with the guidance of sentence descrip-
tion. Furthermore, the problem of identifying “which words
to guide” or the sentence attention is also important for this
task, as highlighting the key words or phrases will provide
the localization procedure a more clear target.

Based on the above considerations, we propose to set up
a symmetry interaction between video and sentence query
by introducing the multi-modal co-attention mechanism (Lu
et al. 2016). In this attention mechanism, we sequentially
alternate between generating video and sentence attentions.
Briefly, the process consists of three steps: (1) attend to the
video based on the initial sentence feature; (2) attend to
the sentence based on the attended video feature; (3) attend
to the video again based on the attended sentence feature.
Specifically, the attention function z̃ = A(Z;g) takes the
video (or sentence) feature Z and the attention guidance g
derived from the sentence (or video) as inputs, and outputs
the attended video (or sentence) feature as well as the atten-
tion weights. Concrete definitions are as follows:

H = tanh
(
UzZ+ (Ugg)1

T + ba1
T
)
,

az = softmax(uT
aH),

z̃ =
∑

azjzj .

(2)

Here Ug,Uz ∈ Rk×h, ba,ua ∈ Rk are parameters of
the attention function, 1 is a vector with all elements to be 1,
az is the attention weights of Z, z̃ is the attended feature. As
shown in the middle part of Figure 2, in the first step of alter-
native attention, Z = V and g is the average representation
of words in the sentence. In the second step, Z = S and g is
the intermediate attended video feature from the first step. In
the last step, we attend the video again based on the attended
sentence feature from the second step.

Through the above process, the video attention weights
aV can be considered as a kind of feature in temporal di-
mension, in which one single element aVj represents the rel-
ative association between the jth video clip and the sentence
description. Therefore, the entire video attention weights
will reflect the global temporal structure of the video and
the attended video feature will focus more on the specific
video contents which are relevant to the sentence descrip-
tion. Meanwhile, since we also calculate the sentence at-
tention based on the video content, the crucial words and
phrases in the sentence will provide a stronger guidance in
the localization procedure.

Attention Based Coordinates Prediction
Given the video attention weights aV produced from the
last step of co-attention function, one possible way to lo-
calize the sentence is to choose or merge some video
clips with higher attention values (Rohrbach et al. 2016;
Shou et al. 2017). However, these methods rely on some
post-processing strategies and separate the location predic-
tion with the former modules, resulting in sub-optimal solu-
tions. To avoid this problem, we propose a novel attention
based location prediction network, which directly explores
the correlation between the former attention outputs and the
target location. Specifically, the attention based location pre-
diction network takes the video attention weights or the at-
tended features as input, and regresses the normalized tem-
poral coordinates of the selected video segment. In addition,
we design two kinds of location regression strategies: one is
attention weight based regression and the other is attended
feature based regression.

Attention weight based regression takes the video atten-
tion weights aV as a kind feature in temporal dimension and
directly regresses the normalized temporal coordinates as:

t = (ts, te) = f
(
Waw(a

V )T + baw

)
. (3)

Here Waw ∈ R2×M and baw ∈ R2 are regression parame-
ters. (ts, te) are the predicted start and end times of the sen-
tence description, which points out the position in video.

Attended feature based regression firstly fuses the at-
tended video feature ṽ and sentence feature s̃ to a multi-
modal representation f , and then regresses the temporal co-
ordinates as:

f = f
(
Wf (ṽ‖s̃) + bf

)
,

t = (ts, te) = f(Waf f + baf ).
(4)

Here Wf ∈ Rh×2h and bf ∈ Rh are used for feature fusion.
Waf ∈ R2×h and baf ∈ R2 are parameters of the attended
feature based regression. As shown in Eq (3) and Eq (4), we
define the temporal coordinates regression with the form of a
single layer fully connected operation. Practically, there are
two fully connected layers between the input data and the
output temporal coordinates in our settings.

Both the two regression strategies consider the entire
video environment as the temporal localization basis, but are
suitable for different video scenarios. We will discuss the in-
fluence of them in the Experiments section.
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Learning of ABLR
Firstly, we denote the training set of ABLR as
{(Vi, τi, Si, τ

s
i , τ

e
i )}

K
i=1. Vi is a video of duration τi.

Si is a sentence description of a particular video segment,
which has start and end points (τsi , τ

e
i ) in video Vi. Note

that one video can have multiple sentence descriptions, and
therefore different training samples may refer to the same
video.

We normalize the start and end time points of sentence
Si to t̃i = (t̃si , t̃

e
i ) = (τsi /τi, τ

e
i /τi), which is regarded as

the ground truth of the location regression. With the ground
truth and predicted temporal coordinates pair (̃ti, ti), we
design an attention regression loss to optimize the tempo-
ral coordinates prediction, which is defined by the form of
smooth L1 function R(x) (Girshick 2015):

Lreg =

K∑
i=1

[R(t̃si − tsi ) +R(t̃ei − tei )]. (5)

In general, the learning procedure of attention does not
have any explicit ground truth of attention to guide, no mat-
ter in (Lu et al. 2016) or other computer vision tasks. How-
ever, in ABLR, we need to directly regress the temporal co-
ordinates from video attentions. Therefore, the accuracy of
the learned video attentions will have a great influence on
the subsequent location regression. Based on the above con-
sideration, we additionally design an attention calibration
loss, which constrains the multi-modal co-attention module
to generate video attentions well aligned with the ground
truth temporal interval:

Lcal = −
K∑
i=1

∑M
j=1mi,j log(a

Vi
j )∑M

j=1mi,j

. (6)

Here mi,j = 1 indicates that the jth video clip in video Vi
is within the ground truth window (τsi , τ

e
i ) of sentence Si,

otherwisemi,j = 0. Obviously, the attention calibration loss
encourages the video clips within ground truth windows to
have higher attention values. For sentence attention, as there
is lack of annotations, we can only implicitly learn it from
the overall model as in general cases.

The overall loss of our localization system consists of
both the attention regression and the attention calibration
loss:

L = αLreg + βLcal. (7)

α and β are hyper parameters which control the weights be-
tween the two loss terms, and the values of them are deter-
mined by grid search.

With the above overall loss term, our ABLR model can be
trained end to end from the feature encoding step to the coor-
dinates prediction step. In test stage, we input the video and
sentence query to our ABLR model and then output the nor-
malized temporal coordinates of the sentence query. During
this process, we obtain the absolute position by multiply-
ing the normalized temporal coordinates with video dura-
tion. Since the video attention weights are calculated at clip
level, we finally trim the predicted interval to include integer
numbers of video clips.

Experiments
Datasets
In this work, two public datasets are exploited for evaluation.

TACoS (Regneri et al. 2013): Textually Annotated Cook-
ing Scenes (TACoS) contains a set of video descriptions (in
natural language) and timestamp-based alignment with the
videos. In total, there are 127 videos picturing people who
perform cooking tasks, and approximately 17000 pairs of
sentences and video clips. We use 50% of the dataset for
training, 25% for validation and 25% for test as (Gao et al.
2017) did.

ActivityNet Captions (Krishna et al. 2017): This dataset
contains 20k videos with 100k descriptions, each with a
unique start and end time. Compared to TACoS, ActivityNet
Captions has two orders of magnitude more videos and pro-
vides annotations for an open domain. The public training
set is used for training, and validation set for testing.

Experimental Settings
Compared Methods: Since temporal sentence localization
in video is a new research direction, there are few existing
works to compare with and we list them as follows:

(1) MCN (Hendricks et al. 2017): Moment Contextual
Network as mentioned before.

(2) CTRL (Gao et al. 2017): Cross-modal Temporal Re-
gression Localizer as mentioned before.

(3) ACRN (Liu et al. 2018): Attentive Cross-Modal Re-
trieval Network as mentioned before.

To validate the effectiveness of our ABLR design, we also
ablate our model with different configurations as follows.

(1) ABLP: Attention Based Localization by Post-
processing the video attentions. Attention based location re-
gression strategies are omitted in this variant. Temporal co-
ordinates of sentence queries are determined by applying the
temporal boundary refinement (Shou et al. 2017) on video
attention weights.

(2) ABLRreg-aw/ABLRreg-af: ABLR model which is
trained with attention regression loss only, attention cali-
bration loss is omitted. In addition, “aw” means attention
weight based regression strategy is adopted and “af” means
attended feature based regression is adopted.

(3) ABLRc3d-aw/ABLRc3d-af: We remove the Bi-
directional LSTM in video encoding. Video clips are
represented by C3D features, without incorporating the
contextual information.

(4) ABLRstv-aw/ABLRstv-af: The Bi-directional LSTM for
sentence encoding is replaced by Skip-thought (Kiros et al.
2015) sentence embedding extractor. Therefore, each sen-
tence description is represented by a single feature vector,
and the proposed multi-modal co-attention module is de-
graded with only video attention reserved.

(5) ABLRfull-aw/ABLRfull-af: Our full ABLR model.
Evaluation Metrics: We adopt similar metrics “R@1,

IoU@σ” and “mIoU” from (Gao et al. 2017) to evaluate
the performance of temporal sentence localization. For each
sentence query, we calcuate the Intersection over Union
(IoU) between the predicted and ground truth temporal co-
ordinates. “R@1, IoU@σ” means the percentage of the sen-
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Table 1: Comparison of different methods on ActivityNet
Captions

Methods R@1,
IoU@0.1

R@1,
IoU@0.3

R@1,
IoU@0.5 mIoU

MCN 0.4280 0.2137 0.0958 0.1583
CTRL 0.4909 0.2870 0.1400 0.2054
ACRN 0.5037 0.3129 0.1617 0.2416
ABLP 0.6804 0.4503 0.2304 0.2917
ABLRreg−af 0.6922 0.5184 0.3353 0.3509
ABLRreg−aw 0.6982 0.5187 0.3339 0.3501
ABLRc3d−af 0.6810 0.5113 0.3161 0.3356
ABLRc3d−aw 0.5578 0.3943 0.1835 0.2434
ABLRstv−af 0.6841 0.5083 0.3153 0.3368
ABLRstv−aw 0.7177 0.5442 0.3094 0.3426
ABLRfull−af 0.7023 0.5365 0.3491 0.3572
ABLRfull−aw 0.7330 0.5567 0.3679 0.3699

tence queries which have IoU larger than σ. Meanwhile,
“mIoU” means the average IoU for all the sentence queries.

Implementation details: Based on the video duration
distribution, videos in ActivityNet Captions and TACoS
dataset are averagely split into 128 clips and 256 clips, re-
spectively. Additionally, we choose the hidden state size h
of both video and sentence Bi-directional LSTM as 256,
dropout rate as 0.5 through ablation studies. As for multi-
modal co-attention module, we set the hidden state size k =
256, therefore Ug,Uz ∈ R256×256, ua,ba ∈ R256. The
trade-off parameters α and β are set as 1 and 5 by grid
search. We train our model using a mini-batch of 100 and
learning rate of 0.001 for ActivityNet Captions, 0.0001 for
TACoS.

Evaluation on ActivityNet Captions Dataset
Table 1 shows the R@1,IoU@{0.1, 0.3, 0.5} and mIoU
performance of different methods on ActivityNet Captions
dataset. Overall, the results consistently indicate that our
ABLR model outperforms others. Notably, the mIoU of
ABLRfull−aw makes a significant improvement over the
best competitor ACRN relatively by 53.1%, which validates
the effectiveness of our ABLR design. Among all the base-
line methods, we could see that MCN receives worse results
compared to others. We speculate the main reason is that
MCN treats the average pooling of all the video clip features
as the context representation of each candidate clip, ignoring
the relative importance of different video contents. Roughly
fusing global video context with local video features like
MCN will bring some noisy information to the localization
procedure, and therefore influence the localization accuracy.
Both CTRL and ACRN derive from the typical “scan and lo-
calize” architecture, i.e., firstly splits a video clip candidate
from the whole video and then adjusts the clip boundary to
the target position. Although these two approaches enhance
the video clip features with some predefined neighboring
context, they overlook the global temporal structure and pos-
sible long-term relationships within videos, and therefore do
not achieve satisfying results.

To better demonstrate the superiority of ABLR, we pro-
vide some qualitative results in Figure 3. Specifically, as
shown in Figure 3(a), the scene describing the people speak-

Sentence Query: In the end they are shown speaking again outside

ground truth coordinates: (57s, 88s)

  Sentence Query: She opens the drawer and gets out a 

spatula and adds potatoes to the pan and then stirs

(a)  Temporal sentence localization example in ActivityNet Captions 

(b)  Temporal sentence localization example in TACoS 

predict coordinates: (58s, 90s)

predict coordinates: (230s, 320s)

ground truth coordinates: (224s, 314s)

Figure 3: Qualitative results of ABLR model for temporal
sentence localization. The bar with blue background shows
the predicted temporal interval for the sentence query, the
bar with green background shows the ground truth. Video
attention weights are represented with the blue waves in
the second bar, words of high attention weights in sentence
queries are highlighted by red font.

ing behavior appears twice in the video, while the sentence
query provides an important cue “in the end”, and there-
fore the latter one is the correct location. However, it is hard
for the previous methods to make a good decision, because
they process each candidate clip independently and do not
explore the relative relations between the local video part
and the global video environment. In contrast, our ABLR
model not only maintains the adaptive contextual informa-
tion through Bi-directional LSTM, but also preserves the
global temporal structure of video through the video atten-
tion outputs. Therefore, the localization decision making in
ABLR is more accurate and comprehensive. Furthermore,
with the multi-modal co-attention mechanism, we can also
see from Figure 3 that the learned sentence attentions high-
light some key words in sentence queries, such as some
objects, actions and even words with time meaning. These
highlighted words provide clear cues for localizing, and en-
hance the interpretability of the localization system.

As for different configurations of our ABLR model, we
could see from Table 1 that in both attention weight based
regression and attended feature based regression strategies,
our full ABLR design ABLRfull substantially outperforms
other variants. In particular, the mIoU of ABLRfull−af

makes the relative improvement over ABLRc3d−af by 6.4%,
which proves the importance of video contextual infor-
mation in temporal localization. Comparing ABLRstv−aw

with ABLRfull−aw, we can see the introduction of sen-
tence attention brings up to 18.9% improvement in terms of
R@1,IoU@0.5. It shows that considering the sentence de-
tails and emphasizing the key words in sentence queries can
increase the localization accuracy. By incorporating atten-
tion calibration loss, ABLRfull exhibits better performance
than ABLRreg. It demonstrates the advantage of attention
calibration, which encourages the multi-modal co-attention
module to learn video attentions well aligned with the tem-
poral coordinates, and further provides more accurate in-
puts for the location regression network. Moreover, there is
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Figure 4: Comparison of different methods on TACoS

a performance degradation from ABLRfull to ABLP. The
results confirm the superiority of the attention based loca-
tion regression over the post processing strategy. Also noted
that the experimental results of different configurations in
TACoS are consistent with ActivityNet Captions.

Evaluation on TACoS Dataset
We also test our ABLR model and baseline methods on
TACoS dataset, and report the results in Figure 4. Overall,
it can be observed that the results are consistent with those
in ActivityNet Captions, i.e., ABLR outperforms other base-
line methods. Meanwhile, we can also see some other inter-
esting observations.

The first observation is that the R@1,IoU@0.1 and
R@1,IoU@0.3 performance of our ABLRfull−af makes the
relative improvement over the best competitor ACRN by
43.4% and 2.6% respectively, while R@1 is below that of
ACRN when the IoU threshold increases to 0.5. We spec-
ulate this phenomenon is caused by the obvious distinction
between the two datasets. As shown in Figure 3, videos in
ActivityNet Captions contain various scenes and activities,
and even in a single video, the variance between different
segments is obvious. Instead, all the videos in TACoS share
a common scene, and only the people and the cooking ob-
jects are changed. Indistinguishable video clips in TACoS
result in a relatively flatter attention wave. Under this con-
dition, the ABLR model can effectively locate the approxi-
mate position of the sentence query, achieving better results
of R@1 at lower IoU value, but will be confused to deter-
mine the precise segment boundaries with the requirement
of higher IoU threshold. As for CTRL and ACRN, they split
candidate video clips from the whole video and compare the
sentence query with each of these clips individually. There-
fore, they can reduce the disturbance caused from similar
scenes in TACoS videos. However, the splitting strategy of
CTRL and ACRN makes their localization efficiency much
lower than ABLR, which will be further discussed in the Ef-
ficiency Analysis section. Moreover, compared with Activ-
ityNet Captions dataset which have 20k videos, the TACoS
dataset have only 127 videos. The limited size of TACoS
restricts the training procedure of the localization methods,

Table 2: Average time to localize one sentence for different
methods

Methods ActivityNet Captions TACoS
MCN 0.30s 9.41s
CTRL 0.09s 3.75s
ACRN 0.12s 5.29s
ABLR 0.02s 0.15s

and will also influence the model performance.
The second observation is that attention weight based re-

gression ABLRfull−aw outperforms attended feature based
regression ABLRfull−af on ActivityNet Captions, while
ABLRfull−af is better on TACoS. Since ABLRaw di-
rectly regresses temporal coordinates from video attention
weights, the flat and ambiguous attention waves in TACoS
make ABLRaw hard to determine sentence positions accu-
rately. Compared to ABLRaw, ABLRaf incorporates video
content information and further enhances the discriminabil-
ity of the inputs of the location regression network, and thus
leads to better results.

Efficiency Analysis
Table 2 shows the average run time to localize one sentence
in video for different methods. Compared with MCN, CTRL
and ACRN, our ABLR significantly reduces the localization
time by a factor of 4 ∼ 15 in ActivityNet Captions dataset,
and the advantage is more obvious when localizing sentence
query in longer videos from TACoS dataset. The results ver-
ify the merit of the proposed ABLR model. Previous meth-
ods which adopt the two stage “scan and localize” archi-
tecture, often need to sample densely overlapped video clip
candidates by various sliding windows. Therefore, they have
to process a large number clips one by one to localize sen-
tence queries. However, ABLR model only needs to pass
through each video twice in the video encoding procedure,
and thus it can avoid redundant computations. All the ex-
periments are conducted on an Ubuntu 16.04 server with In-
tel Xeon CPU E5-2650, 128 GB Memory and NVidia Tesla
M40 GPU.

Conclusions and Future Work
In this paper, we address the problem of temporal sentence
localization in untrimmed videos, and propose a Attention
Based Location Regression (ABLR) model, which is a novel
end-to-end architecture for solving the localization problem.
The ABLR model with multi-modal co-attention mechanism
not only learns the video attentions reflecting the global tem-
poral structure, but also explores the crucial sentence details
for localization. Furthermore, the proposed attention based
location prediction network directly regresses the temporal
coordinates from the global attention outputs, which avoids
the trivial post processing strategy and makes the overall
model can be globally optimized. With all the above de-
signs, our ABLR model is able to achieve superior local-
ization accuracy on both ActivityNet Captions and TACoS
dataset, and significantly boosts the localization efficiency.
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Further problems, like temporal localization of multiple
sentences in videos and sentence localization in both tem-
poral and spatial dimensions, can also be investigated in the
future.
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