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Abstract

Action recognition in videos has attracted a lot of attention
in the past decade. In order to learn robust models, previ-
ous methods usually assume videos are trimmed as short se-
quences and require ground-truth annotations of each video
frame/sequence, which is quite costly and time-consuming.
In this paper, given only video-level annotations, we propose
a novel weakly supervised framework to simultaneously lo-
cate action frames as well as recognize actions in untrimmed
videos. Our proposed framework consists of two major com-
ponents. First, for action frame localization, we take advan-
tage of the self-attention mechanism to weight each frame,
such that the influence of background frames can be effec-
tively eliminated. Second, considering that there are trimmed
videos publicly available and also they contain useful in-
formation to leverage, we present an additional module to
transfer the knowledge from trimmed videos for improving
the classification performance in untrimmed ones. Extensive
experiments are conducted on two benchmark datasets (i.e.,
THUMOS14 and ActivityNet1.3), and experimental results
clearly corroborate the efficacy of our method.

Introduction
Having been extensively studied in the last decade, action
recognition is still a challenging problem due to large varia-
tions (e.g., in human appearance, postures, cluttered back-
ground, etc.) as well as the unregulated characteristics in
untrimmed videos. To address a less complicated problem,
many previous action recognition methods (Lindeberg and
Laptev 2005; Wang and Schmid 2013; Wang, Qiao, and
Tang 2016; Tran et al. 2015; Wang et al. 2016) work on
trimmed video sequences, where each sequence contains a
single activity label (in other words, each frame has the same
annotation) and usually lasts no more than tens of seconds.
However, since there are much more untrimmed videos than
trimmed ones in the real world, how to effectively recognize
actions in untrimmed videos is of high demands and, how-
ever, is less studied in the literature.
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Figure 1: Workflow of our proposed method. Our method
utilizes the temporal-spatial information by extracting
frames and optical flows from both untrimmed and trimmed
training videos. Those frames and optical flows are passed
to two independent convolutional neural networks to obtain
high-level semantic features and then to another two sepa-
rate self-attention modules for action frame localization. The
knowledge later extracted from the trimmed training videos
is then transferred to enhance the classification performance
of the overall model for the untrimmed videos.

With the rapid progress in deep learning, convolutional
neural networks (CNNs) have attracted more and more at-
tention in the research community of action recognition, be-
cause of the superior performance over traditional methods
which extract hand-crafted features (Lindeberg and Laptev
2005; Wang and Schmid 2013; Wang, Qiao, and Tang 2016;
Wu et al. 2011). Till now, quite a number of CNN based
methods were proposed to learn feature representations for
different action patterns (Tran et al. 2015; Wang et al.
2016). For instance, Simonyan and Zisserman developed a
so-called two-stream network to learn appearance and mo-
tion features based on RGB frames and optical flow, re-
spectively (Simonyan and Zisserman 2014). And more re-
cently, Monfort et al. proposed 3D convolutional neural net-
works (C3D) by employing 3D convolutional kernels to cap-
ture the spatial and temporal information from raw videos

9227



directly (Tran et al. 2015). However, most above methods
require frame-level annotations to learn the corresponding
models, which may not be practical in real-world applica-
tions.,

In this paper, we aim to handle untrimmed videos by only
providing video-level labels. We propose to leverage addi-
tional information from publicly available trimmed videos
to learn a more robust model. Moreover, motivated by the
good performance of the attention mechanism, we incor-
porate self-attention (Lin et al. 2017) in this work and
propose a new method called Transferable Self-attentive
Representation learning based deep neural Network (re-
ferred to as TSRNet), which is illustrated in Figure 1. The
main contributions of our work are summarized in the fol-
lowing:
• To the best of our knowledge, TSRNet is the first to intro-

duce transfer learning for action recognition in untrimmed
videos with weak supervision, where the knowledge of
additional trimmed videos is effectively leveraged and
transferred to improve the classification performance for
untrimmed ones.

• With the adopted self-attention mechanism, TSRNet is
able to obtain self-attention weights at frame levels, so
that frames with higher weights can be selected out for
the purpose of temporal action localization/detection in
videos.

• Extensive experiments on two challenging untrimmed
video datasets (i.e., THUMOS14 (Jiang et al. 2014) and
ActivityNet1.3 (Heilbron et al. 2015)) show promising re-
sults of TSRNet over the existing state-of-the-art competi-
tors (Wang et al. 2017; Nguyen et al. 2017; Singh and Lee
2017).

Related Work
Action Recognition
Action recognition is conventionally formulated as a classi-
fication problem aimed to determine the categories of hu-
man actions in a video. There are various methods pro-
posed in the field. In the past few years, the improved dense
trajectories (iDT) (Wang and Schmid 2013) has achieved
the most outstanding performance. Its features consist of
HOF, HOG, and MBH extracted along with the trajec-
tories. When the deep learning is adopted, tremendous
progress has been made in this field. For instance, two-
stream network (Simonyan and Zisserman 2014) is uti-
lized to learn both appearance and motion features based
on RGB frame and optical flow field, respectively. An-
other emerging method, 3D convolutional neural networks
(C3D) (Tran et al. 2015) adopt 3D convolutional kernels
to capture the spatial and temporal information from raw
videos directly with an end to end network. Other techniques
have been developed to recognize activities based on feature
representation approaches (Wang et al. 2016). Meanwhile,
many benchmarks for action recognition tasks have been ad-
dressed, such as UCF101 (Soomro, Zamir, and Shah 2012),
HMDB51 (Kuehne et al. 2011) and Sports-1M (Karpathy et
al. 2014).

Temporal Action Detection
Unlike action recognition, temporal action detection is uti-
lized to identify the action categories of given untrimmed
videos as well as the start and end time. Early approaches
address this task utilizing temporal sliding windows to
generate segment proposals followed by classifiers, i.e.
SVM (Singh and Cuzzolin 2016) etc. Some other ap-
proaches follow the methods of generating temporal pro-
posals and classifying them (Escorcia et al. 2016). In re-
cent years, convolutional neural network (CNN) have at-
tracted widespread attention. Specifically, S-CNN (Shou,
Wang, and Chang 2016) proposes a multi-stage CNN to
boost the localization accuracy. Structured segment network
(SSN) (Zhao et al. 2017) proposed to model the temporal
structure of each action instance via a structured temporal
pyramid. Another methods localize actions by learning con-
textual relations (Soomro, Idrees, and Shah 2015). Besides
CNN-based methods, recurrent neural network (RNN) (Ma,
Sigal, and Sclaroff 2016) is also widely employed in activ-
ity detection approaches. Recently, a variety of benchmarks
have sprung up for these tasks, such as THUMOS14 (Jiang
et al. 2014), ActivityNet (Heilbron et al. 2015) and MEXac-
tion2 (MEXaction2 2015).

However, there exists only a few methods based on
weakly supervised learning to localize activities in temporal
domain. Among these methods, UntrimmedNet (Wang et al.
2017) learns attention weights on video segments which are
processed in advance. STPN (Nguyen et al. 2017) computes
and combines temporal class activation maps and class ag-
nostic attentions for temporal localization from a sparse sub-
set of segments. In this paper, we present a novel framework
to classify the action categories on video-level.

Transfer Learning
Transfer learning is a renowned technology to apply knowl-
edge gained from a domain to different domains. A heated
research topic focuses on measuring the distance between
different data distributions. For example, MMD (maximum
mean discrepancy) (Gretton et al. 2012) is a typical metric
criterion that is used to maximize the mean distance between
two distributions. Aiming at learning the abstract represen-
tations between different network layers, deep neural net-
works (DNN) are adopted to explain the relationship about
population (Bengio, Courville, and Vincent 2013) through
reducing the cross-domain discrepancy to make it become
more interpretable. Recently, the deep domain adaptation
has been widely studied, which is intended to boost the per-
formance of transfer models (Hoffman et al. 2017).

Attention Mechanism
Recently, attention mechanisms have been integrated into
models to capture global key features. In particular, self-
attention, also called intra-attention, was first utilized in a
sequence to calculate the significant position by attending to
all positions in the sequence (Lin et al. 2017). In our work,
we firstly integrate the self-attention with action recogni-
tion framework and annotate the temporal action duration
for each action instance for temporal action localization.
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Figure 2: The framework of our approach. Our model starts with self-attentive feature extraction utilizing a pretrained network
for both trimmed videos and untrimmed videos. Then the transfer module makes domain adaptation from trimmed video domain
to untrimmed video domain via minimizing the discrepancy between video features, which is aimed to improve the video-level
prediction in untrimmed videos. And the self-attention module outputs the self-attention weights of each frame to be multiplied
with the untrimmed video softmax scores to localize the action instances.

Secondly, the trimmed video domains are adopted to help
improve the recognition accuracy by minimizing the cross-
domain discrepancy. Finally, different transfer settings are
discussed to validate the effectiveness of our approach.

Proposed Method
In this section, we present the details of TSRNet, whose
framework is shown in Figure 2.

Two-Stream Feature Extraction
Given a video consisting of n frames V = {fi|ni=1}, where
fi is the i-th frame, we employ the ResNet101 model to ex-
tract frame-level features. The ResNet101 networks are pre-
trained on the ImageNet, and fine-tuned afterwards in the
model training stage. In order to receive satisfactory action
recognition and detection performance, it is typical to uti-
lize multiple streams of information to provide both spa-
tial and temporal description. Following this standard prac-
tice, we implement two-stream feature extraction with two
separately trained networks with identical settings, corre-
sponding to the RGB and optical flow, and obtain spatial
and temporal features, respectively. For each frame fi ∈ V ,
the d-dimensional feature vectors extracted for the RGB and
optical flow are denoted as xi,RGB and xi,FLOW , respec-
tively. By stacking the n frame features, we obtain the cor-
responding d-by-n feature matrices of video V , i.e. XRGB

and XFLOW .

Self-attentive Action Classification
To identify the actions in a video, we introduce the self-
attention mechanism for action classification, and mean-
while evaluate the relevance of the frames to the actions. The
feature matrix of a video is fed to the self-attention module,
which consists of four parts, i.e. two fully connected (FC)
layers, a tanh activation layer between the two FC layers,
and a softmax activation layer to ensure each set of gen-
erated weights sum up to 1. We focus on different frames
of the video, so as to form a more compact representation.
For each stream, the self-attentive representation is passed
through two FC layers followed by a softmax layer to obtain
the class scores, which are subsequently fused through an
additional softmax layer for action classification.

Without loss of generality, let X ∈ Rd×n be the feature
matrix of video V from a single stream. The self-attention
model aims at encoding the variable length video into a fixed
size representation, which is achieved by computing a linear
combination of the n feature vectors corresponding to the
frames. Taking X as input, the self-attention module outputs
a weighted sum of feature vectors m ∈ Rd×1:

m = Xa = X(softmax(w2 · tanh(W1X)))> (1)

Here a = [a1, a2, ..., an]> ∈ Rn×1 is a vector of atten-
tion weights, W1 ∈ Rb×d and w2 ∈ R1×b are intermediate
parameters to be learned, where b is a hyperparameter set
empirically.
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The loss function for self-attentive action classification is
composed of two terms, i.e. the classification loss and the
self-attention regularization, which is defined as follows:

LSA = Lclass +RSA (2)

where Lclass is the standard multi-label cross-entropy loss
computed on the video-level action labels, and RSA is the
regularization which consists of two terms:

RSA = α · Rsmooth + β · Rsparsity (3)

where α and β are constants controlling the trade-off be-
tween the regularization terms. The regularization terms are
carefully designed based on the following considerations.

(1) As we know, the adjacent frames in a video are usu-
ally similar in both spatial and temporal features. As a result,
the corresponding adjacent attention weights also tend to be
similar. In view of that, Rsmooth enforces smoothness in a,
and takes the following form:

Rsmooth =

n−1∑
i=1

(ai − ai+1)2

=2a>a− a>P1a− a>P2a− 2a>P3P
>
4 a

(4)

where P1 =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

, P2 =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1



P3 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 0

, P4 =


0 0 · · · 0
1 0 · · · 0
...

...
. . .

...
0 0 1 0

.

(2) As forRsparsity, it is designed to encourages sparsity
in the attention weights, and is given by:

Rsparsity = ‖a‖1 (5)

It forces the attention weights to have values close to either
0 or 1. In this way, action recognition is achieved with a lim-
ited number of key frames, and meanwhile the background
frames can be well eliminated.

One set of attention weights only focuses on a spe-
cific aspect of the video. In practice, however, key frames
can be evaluated from various aspects, especially for long
videos. Therefore, we can calculate multiple sets of atten-
tion weights to obtain an overall analysis of the video, and
naturally extend the attention weight vector to matrix.

Knowledge Transfer between Trimmed and
Untrimmed Videos
Besides untrimmed videos, we can further extract extra in-
formation from external sources, such as the large scale
trimmed video datasets. For each trimmed video, the action
of interest is precisely annotated and localized, which can
provide instructive clues for action recognition and detection
of the untrimmed videos. Inspired by transfer learning, we
take the networks on trimmed and untrimmed videos as the
source and target networks, respectively. We derive informa-
tive knowledge based on the mining of trimmed videos, and

improve the performance on untrimmed videos via knowl-
edge transfer.

For the trimmed network, we implement the standard two-
stream network structure based on ResNet101 with iden-
tical settings to the untrimmed one. The RGB and opti-
cal flow streams are trained separately, and go through the
self-attention module followed by action classification com-
ponent. Different from the untrimmed network, since the
trimmed videos are carefully segmented, the constraints of
smoothness and sparsity are no longer necessary. As a result,
the trimmed network is trained by minimizing Lclass on the
trimmed video dataset.

After optimization is achieved for the trimmed network,
we fed the parameters of intermediate FC layers in the clas-
sification stage to the transfer module, and boost the per-
formance of untrimmed network via knowledge transfer. To
ensure the transferability, we utilize the maximum mean dis-
crepancy (MMD) to measure the distance of the two net-
works in the reproducing kernel Hilbert space. Note that
knowledge transfer is performed between RGB and opti-
cal flow separately. In this manner, instructive information
is delivered from trimmed to untrimmed network to further
improve the overall performance.

The loss function for such knowledge transfer is com-
posed of two squared MMD losses, which is given by:

LKT = LFC1 + LFC2 (6)

where LFC1 and LFC2 are two MMDs between the features
of trimmed and untrimmed videos that are fed into the first
and second FC layers, respectively.

Formally, let T = {ti|nT
i=1} and U = {ui|nU

i=1} be the
sets of features, for trimmed and untrimmed videos, fed into
the first FC layer of the two classification networks, respec-
tively. With that, discrepancy between the data distributions
of trimmed and untrimmed videos can be formulated as:

LFC1 = MMD2(T ,U)

=
1

n2T

nT∑
i=1

nT∑
j=1

k(ti, tj) +
1

n2U

nU∑
i=1

nU∑
j=1

k(ui,uj)

− 2

nT · nU

nT∑
i=1

nU∑
j=1

k(ti,uj), (7)

where k(·, ·) is the predefined Gaussian kernel function.
Similarly, LFC1 can be calculated as:

LFC2 = MMD2(FC1(T ), FC1(U)), (8)

where FC1(·) stands for the output features after the first FC
layer in the classification stage.

Based on (2) and (6), we arrive the overall loss as follows:

L = LSA + LKT . (9)

Temporal Action Detection
The self-attention module not only delivers a classification
scores for action recognition, but also attaches attention
weights on each frame, based on which temporal action de-
tection is effectively attainable. To generate temporal pro-
posals, we fuse the self-attention weights and classification
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Table 1: Classification accuracy (%) of all the methods on
the THUMOS14 dataset for action recognition. Note that
SRNet is a simpler version of TSRNet, which excludes the
knowledge transfer module.

RGB Optical Flow Fusion
(Wang and Schmid 2013) - - 63.1
(Wang et al. 2016)(3 seg) - - 78.5

(Wang et al. 2017) - - 82.2
Two-Stream 68.2 71.6 73

SRNet 72.3 76.2 79.4
TSRNet 74.4 79.6 87.1

Table 2: Classification accuracy (%) of all the methods on
the ActivityNet1.3 dataset for action recognition. Note that
SRNet is a simpler version of TSRNet, which excludes the
knowledge transfer module.

RGB Optical Flow Fusion
Two-Stream 71.4 73.5 79.2

SRNet 74.3 80.1 86.9
TSRNet 79.7 84.3 91.2

scores. Formally, we defined the weighted score of frame fi
for class c as follows:

wc
i = aisigmoid(v>c xi) (10)

where vc is the weight parameter of the FC layer w.r.t. class
c in the classification module.

Weighted scores from the RGB and optical flow streams
are subsequently fused as:

w̄c
i = θ · wc

i,RGB + (1− θ) · wc
i,FLOW (11)

where θ is the balance parameter, w̄c
i provides class-specific

information for temporal video detection. In our experi-
ments, we find that the performance is steady when θ is
smaller than 0.5, while it drops dramatically when θ be-
comes large. Based on this observation, we set θ to 0.5 in
the paper. Frames of actions and backgrounds are distin-
guished through the one-hot encoding, and the frames that
pass the predefined threshold are retained. Finally, the frame
indices of starting and ending positions [indstart, indend]
are recorded, which should further be converted into the
temporal intervals [tstart, tend]. Given the fps (frames per
second) F of video V , the temporal intervals can be calcu-
lated as follows:

tstart =
indstart
F

, tend =
indend
F

(12)

Note that the predefined threshold is tested carefully based
on the performance on a separate dataset to distinguish ac-
tions and backgrounds. In our experiment, we set the thresh-
old to 0.2 for all the datasets.

Experiments
In this section, we describe the details of the benchmark
dataset and experimental setups. Our method is compared
with other state-of-the-art algorithms based on fully super-
vised learning and weakly supervised learning.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5

M
ea

n 
A

ve
ra

ge
 P

re
ci

sio
n

IOU

Two-Stream
Two-Stream + SA (w/o ℛ"#)
Two-Stream + SA (w/o ℛ"#) + KT
Two-Stream + SA + KT

Figure 3: Ablation study of TSRNet. SA and KT stand for
self-attention and knowledge transfer module, respectively.
(Two-Stream+SA+KT) is full implementation of TSRNet.

Experimental Setup
We evaluate our model on two large benchmark datasets,
namely THUMOS14 and ActivityNet. Both datasets contain
a huge number of untrimmed video, which are attached with
temporal annotations of action instances. Note that we do
not use the temporal annotations when training our model.
The THUMOS14 dataset contains 101 action classes, among
which 20 have temporal annotations. Therefore, we mainly
utilize the 20-class sub-dataset of THUMOS14. To train our
model, we make full use of 200 validation data for training
and 213 test data for testing.

The ActivityNet dataset is a recently introduced bench-
mark for action recognition and temporal action detection
in untrimmed videos. We adopt the ActivityNet1.3 with
200 activity classes for our experiments, using the origi-
nal training dataset of 10,024 videos for training, the val-
idation dataset of 4,926 videos for testing. In this release,
this dataset contains a large number of natural videos that
involve various human activities.

Besides, we also utilize the UCF101 dataset for knowl-
edge transfer, which contains 13,320 trimmed videos be-
longing to 101 categories. We select the 20 classes that are
identical with THUMOS14 sub-dataset from the original
101 classes. For THUMOS14, all the 20 classes are included
in UCF101. Therefore, explicit knowledge is available be-
tween identical classes. As for ActivityNet1.3, there are 30
overlapping classes with UCF101. We firstly pretrain TSR-
Net with the 30 classes. After that, all the 200 classes in Ac-
tivityNet1.3 are further used for model refinement. To guar-
antee fair comparison, the evaluation is also based on the 200
classes. Detailed illustration will be discussed in Results.

Note that in TSRNet, knowledge is transferred between
untrimmed and trimmed videos based on the relevance of
their corresponding classes. For relevant classes, TSRNet
randomly selects the untrimmed and trimmed videos for
explicit knowledge transfer. For irrelevant classes, TSRNet
works in a weakly supervised self-attentive fashion, without
direct knowledge transfer. However, since all the classes are
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Table 3: Comparisons on the THUMOS14 dataset for action detection.

Method mAP@IoU (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Full supervision

(Richard and Gall 2016) 39.7 35.7 30.0 23.2 15.2 - - - -
(Shou, Wang, and Chang 2016) 47.7 43.5 36.3 28.7 19.0 10.3 5.3 - -

(Yeung et al. 2016) 48.9 44.0 36.0 26.4 17.1 - - - -
(Alwassel, Heilbron, and Ghanem 2017) 49.6 44.3 38.1 28.4 19.8 - - - -

(Lin, Zhao, and Shou 2017) 50.1 47.8 43.0 35.0 24.6 - - - -
(Yuan et al. 2016) 51.4 42.6 33.6 26.1 18.8 - - - -
(Shou et al. 2017) - - 40.1 29.4 23.3 13.1 7.9 - -

(Xu, Das, and Saenko 2017) 54.5 51.5 44.8 35.6 28.9 - - - -
(Zhao et al. 2017) 66.0 59.4 51.9 41.0 29.8 - - - -

Weak supervision

(Wang et al. 2017) 44.4 37.7 28.2 21.1 13.7 - - - -
(Singh and Lee 2017) 36.4 27.8 19.5 12.7 6.8 - - - -
(Nguyen et al. 2017) 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.1
(Nguyen et al. 2017) 45.3 38.8 31.1 23.5 16.2 9.8 5.1 2.0 0.3
TSRNet (w/o LFC2) 53.5 45.3 35.9 26.5 17.2 10.4 5.31 1.93 0.21

TSRNet 55.9 46.9 38.3 28.1 18.6 11.0 5.59 2.19 0.29

Table 4: Comparisons on the ActivityNet1.3 dataset for action detection.

Methods mAP@IoU (%)
0.5 0.75 0.95 Average

Full supervision

(Singh and Cuzzolin 2016) 34.5 - - 11.3
(Xu, Das, and Saenko 2017) 26.8 - - -

(Xiong et al. 2017) 29.1 23.5 5.5 -
(Heilbron et al. 2017) 40.0 17.9 4.7 21.7

(Shou et al. 2017) 45.3 26.0 0.2 23.8
(Zhao et al. 2017) 39.12 23.48 5.49 23.98
(Lin et al. 2018) 52.50 33.53 8.85 33.72

Weak supervision (Nguyen et al. 2017) 29.3 16.9 2.6 -
TSRNet (pretrained:[ResNet101@ImageNet]) 29.9 17.2 2.71 19.56

TSRNet (pretrained:[TSRNet@overlap30]) 33.1 18.7 3.32 21.78

incorporated in a unified framework, the knowledge trans-
ferred from the overlapping classes can implicitly benefit the
learning performance on the other classes.

We follow the standard evaluation metric, which is based
on the values of mean average precision (mAP) under dif-
ferent levels of intersection over union (IoU) thresholds.

Implementation Details
We utilize two-stream CNN networks trained on the Ima-
geNet dataset to extract features for video frames. For the
RGB stream, we perform the center crop of size 224 ×
224. For the optical flow stream, we utilize the TV-L1 opti-
cal flow algorithm. The inputs to the two-stream model are
stacks of 5 frame-stacks sampled at 30 frames per second.
The model parameters are optimized with the mini-batch
stochastic gradient algorithm, where the batch-size is set to
16 and the momentum to 0.9. The initial learning rate is set
to 0.0001 for the spatial stream and decreases every 5,000
iterations by a factor of 10. For the temporal stream, we set
the initial learning rate to 0.0005, which is decreased ev-
ery 5,000 iterations by a factor of 10. We also utilize the
dropout operations with high ratios (0.8 for the two streams)
and common data augmentation techniques which include
rotating and cropping augmentation et al. Our algorithm is
implemented in PyTorch.

Results
Action Recognition. We compare our method with the
state-of-the-art method on THUMOS14 dataset, as is shown
in Table 1. Our proposed model outperforms the compared
methods based on weakly supervised learning scheme. We
also conduct extensive experiments on ActivityNet1.3, the
recognition results can be found in Table 2.

Action Detection. Table 3 shows the action detection re-
sults on the THUMOS14 dataset. In the table, we report
both the fully supervised results and weakly supervised re-
sults. Our method outperforms the other weakly supervised
methods. It is also observed that TSRNet even outperforms
some fully supervised methods on THUMOS14 dataset. We
also conduct experiments with different times of knowl-
edge transfer, and discover that the results of transferring
twice are better than transferring once. Through transferring
knowledge with the features of different levels, the model
can learn better representations of the video and achieve
higher performance. Figure 3 shows the comparisons be-
tween our baselines and the full model among different
IoUs. The experimental results indicate that self-attention
with regularization loss and knowledge transfer contribute
substantially to the model improvement.

We also perform experiments on the validation set of Ac-
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Figure 4: Qualitative results on THUMOS14 (top and middle) and ActivityNet1.3 (bottom).

tivityNet1.3 with different pretraining strategy. The detec-
tion results are shown in Table 4, where “pretrain: [TSR-
Net@overlap30]” means that we use the overlapping 30
classes between UCF101 and ActivityNet1.3 to initialize the
entire TSRNet, and “pretrained: [ResNet101@ImageNet]”
represents that we use ResNet101 pretrained on ImageNet
to initialize the feature extraction module of TSRNet. As
we can see, TSRNet surpasses its counterpart in semi-
supervised fashion, and even outperforms some fully super-
vised approaches.

As is shown in Figure 4, we also demonstrate the qualita-
tive results on THUMOS14 and ActivityNet1.3 dataset. It is
observed that our model can effectively pinpoint the action
instances with the help of self-attention weights and classi-
fication scores, and the self-attention weights are effective
indicators for action prediction.

Conclusion
In this work, we have presented a pioneer work which
transfers knowledge extract from publicly available trimmed
videos for action recognition and detection in untrimmed
videos, where untrimmed videos are only provided with
video-level annotations. By further introducing the self-
attention mechanism, our proposed TSRNet method is able
to learn transferable self-attentive representations which pre-

serves strong discriminability in action recognition, as well
as to automatically assign each video frame a weight which
can be used to localize frames for action detection. As
demonstrated on two challenging untrimmed video datasets,
our TSRNet achieves superior performance over other state-
of-the-art baselines.
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