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Abstract

Person re-identification (Re-ID) is typically cast as the prob-
lem of semantic representation and alignment, which requires
precisely discovering and modeling the inherent spatial struc-
ture information on person images. Motivated by this obser-
vation, we propose a Key-Value Memory Matching Network
(KVM-MN) model that consists of key-value memory repre-
sentation and key-value co-attention matching. The proposed
KVM-MN model is capable of building an effective local-
position-aware person representation that encodes the spatial
feature information in the form of multi-head key-value mem-
ory. Furthermore, the proposed KVM-MN model makes use
of multi-head co-attention to automatically learn a number
of cross-person-matching patterns, resulting in more robust
and interpretable matching results. Finally, we build a set-
wise learning mechanism that implements a more generalized
query-to-gallery-image-set learning procedure. Experimental
results demonstrate the effectiveness of the proposed model
against the state-of-the-art.

Introduction
As an important and challenging problem in computer vision,
person re-identification (Re-ID) focuses on effectively match-
ing persons across non-overlapping cameras, and has a wide
range of applications such as cross-camera person tracking
and target person search. Typically, a key challenge for Re-ID
is how to precisely align person images in semantics. To ad-
dress this problem, many efforts have been devoted to taking
into account auxiliary prior information for misalignment
reduction such as pose-driven approaches(Su et al. 2017;
Sarfraz et al. 2017) and part-segmented models(Qi et al. 2018;
Kalayeh et al. 2018). Usually, such prior information is ex-
pensive to obtain in practice, and relies on scenario-specific
settings with a certain inflexibility. Motivated by this obser-
vation, we concentrate on designing an end-to-end learning
scheme with the capability of adaptively discovering the in-
herent matching structures in a totally data-driven fashion.

As shown in Fig. 1, precise semantic matching for the
paired images is confronted with many difficulties like local-
position-sensitive correspondence (e.g., bag). Therefore, it is
necessary to set up an effective local-position-aware person
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representation as well as its associated matching mechanism.
In this paper, we propose a Key-Value Memory Matching Net-
work (KVM-MN) that comprises the modules of key-value
memory representation and key-value co-attention matching.
Specifically, the key-value memory representation module
is in charge of encoding the spatial feature information in
the form of multi-head key-value memory, where the key
indicates the presence index of a feature component while
the value stands for its detailed feature attribute information.
In this way, a person image is naturally represented as a
set of local-position-aware key-value pairs. Based on these
key-value pairs, the matching problem for a given person
image pair is converted to that of dense cross-matching be-
tween the person-specific key-value pairs. In order to make
cross-matching more robust and interpretable, the key-value
co-attention matching module further makes use of multi-
head co-attention to automatically learn a collection of cross-
person-matching patterns. Consequently, the above two mod-
ules are jointly learned in a unified end-to-end framework.
For the sake of effective matching network learning, we
build a setwise learning mechanism that supports the joint
learning task with a query image and a set of gallery im-
ages. The mechanism is capable of adaptively selecting the
matched gallery image from the set with a certain matching
confidence, resulting in a more flexible learning pipeline
against pairwise or triplet training (Cheng et al. 2016a;
Ahmed, Jones, and Marks 2015).

In summary, the main contributions of this work are three-
fold. Firstly, we propose a dense local-position-aware key-
value memory representation, which effectively encodes the
spatial structure information on person images. Secondly, we
present a Key-Value Memory Matching Network that fully
utilizes multi-head co-attention to adaptively discover a set of
inherent cross-person-matching patterns over key-value pairs.
Thirdly, we introduce a setwise learning mechanism that
performs the query-to-gallery-image-set learning procedure
in a more flexible manner.

Related Works
Matching in Re-ID: Many recent works on person re-
identification focus on finding the spatial relationships of the
paired images. People have adopted a bunch of techniques
to align the paired images for comparison, fixed or learning-
based. The approaches with fixed alignment models often
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Figure 1: Illustration of multi-head co-attention of a specific location (H = 4). For a given reference location, we obtain different
matching patterns of different heads using co-attention. Specifically, Head 1 tends to attend global information of the image
while Heads 2,3,4 are likely to find local correspondences in this trained model. Also, when a reference position stays near
multiple feature components, the model may attend them using different heads to achieve more robust matching structures and
reduce confusions. Best viewed in color.

involve a pre-trained network to extract key information for
alignment, such as poses (Su et al. 2017; Sarfraz et al. 2017;
Liu, Zhao, and Wu 2018; Zhao et al. 2017a), and part seg-
mentations (Suh et al. 2018; Kalayeh et al. 2018). These ap-
proaches may suffer from domain biases due to different set-
tings between scenes and cameras and lead to incorrect match-
ings for person re-identification. Learning-based approaches
for alignment try to enable the network to find the match-
ing structures adaptively from training data. Most of these
methods involve image matching with spatial constraints that
ensure matchings occuring at the neighbor of the reference
region, and they are roughly divided into neighborhood-based
matching (Ahmed, Jones, and Marks 2015; Lin et al. 2017;
Zhang et al. 2016), row-based matching (Li et al. 2014; Zhang
et al. 2017), and sub-region-based matching (Zhou et al. 2017;
Chang, Hospedales, and Xiang 2018). In this paper, we focus
on a more generic matching structure that does not rely on
any constraints of spatial relationships and can capture the
long-range precise dependencies between paired images.

Metric learning in Re-ID: Metric learning is another core
process in the person re-identification problem. In person
re-identification, metric learning mainly focuses on minimiz-
ing the intra-personal variance while maximizing the inter-
personal margin, including classification-based approaches
and margin-based approaches. In classification-based ap-
proaches (Zhang et al. 2016; Ahmed, Jones, and Marks 2015;
Qian et al. 2017), people employ the learned metric function
to classify whether a given image pair belongs to the same per-
son or not. The margin-based methods learn discriminative
feature representations with generic matching metrics like
L2 distance. They design contrastive loss (Chen et al. 2017;

Guo and Cheung 2018) or triplet loss (Cheng et al. 2016b;
Paisitkriangkrai, Shen, and van den Hengel 2015; Zhao et
al. 2017b) to learn the feature representations based on the
distance between positive and negative image pairs. Recent
efforts mainly focus on improving the ranking loss by intro-
ducing harder samples or by optimizing the margins between
positive and negative pairs (Hermans, Beyer, and Leibe 2017;
Cheng et al. 2016a). However, the existing metric learning
methods based on pairwise loss and triplet loss often suffer
from slow convergence and overfitting (Sohn 2016). In this
paper, we focus on building and learning from a flexible non-
parametric matching structure between the probe image and
all the images in gallery set and obtain a robust similarity
metric.

Key-Value Memory Matching Network
Person re-identification (Re-ID) aims at finding the person
of the same identity given a probe image. In this paper, we
seek to adaptively find the inherent and fine-grained matching
structure between person images to help similarity measure-
ment. To achieve this goal, we propose a Key-Value Memory
Matching Network (KVM-MN), as shown in Fig. 2. The pro-
posed network mainly consists of two modules: key-value
memory representation and key-value co-attention matching.
In this section, we first describe how to represent the image
as a set of multi-head key-value vector pairs that encode mul-
tiple aspects of spatial structure information. Based on these
representations, a robust attention-based matching mecha-
nism is built upon the key-value memory representations. We
make use of multi-head co-attentions to adaptively learn a
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Figure 2: Key-Value Memory Matching Network (KVM-MN) for person re-identification. Each image can be represented using
a key-value matrix pair corresponding to the extracted feature maps. Given a common head from the probe view, we address and
read required values related to the key for further comparison and similarity measurement. The probe image is matched with all
the images in the gallery set by using Softmax over similarity scores and finding the correct match.

set of matching patterns between persons and output the final
similarity. The proposed KVM-MN could be further bene-
fited using a set-based learning schema to fully capture the
matching structure between the probe and a set of gallery
images.

Position-aware Key-Value Memory Representation
Given a person image I, we are interested in how to represent
its local feature effectively in order to conduct dense cross-
matching. In KVM-MN, we investigate the effectiveness of
key-value memory network for structure representation. For
the extracted convolutional feature maps F ∈ RH×W×d of
I, we build a set of key-value vectors pairs {(kl, vl)} that
encode the local structure information. Specifically, the key
is denoted as the index of a specific feature component and
the value represents its detailed attributes and appearances.

Position embedding: To capture local-position-sensitive
correspondences, we first need to inject some information
on the absolute and relative positions of the local feature fl.
Inspired by the idea of position embedding (Gehring et al.
2017; Vaswani et al. 2017) used for word embeddings, we
add sinusoidal position embedding p with length d to each
location:

pl (2i) = sin(x/100004i/d)

pl (2i+ 1) = cos(x/100004i/d)

pl (2i+ d/2) = sin(y/100004i/d)

pl (2i+ 1 + d/2) = cos(y/100004i/d)

(1)

where (x, y) corresponds to the absolute position in the fea-
ture maps of the l-th location and i = 1, 2, ..., d/4 is to

represent the dimension. We use a vector of length d/2 to
encode the x and y positions respectively and add the feature
vector to the feature representation: fl ← fl + pl.

Multi-head key-value representation: Using the posi-
tion embedding technique, it is much convenient for key-
value memory networks to encode the spatial feature infor-
mation. To comprehensively capture multiple feature compo-
nents, we employ a multi-head key-value memory network
that projects the original feature vectors into different key-
value subspaces to capture various underlying local patterns.
This is achieved by simply using feed-forward networks pa-
rameterized by a set of weight matrices {Wk,h ∈ Rd×dk}Hh=1

and {Wv,h ∈ Rd×dv}Hh=1 with totally H heads:

Kh = ϕ(FWk,h)
Vh = ϕ(FWv,h)

(2)

where ϕ denotes the ReLU activation after Batch Normaliza-
tion (Ioffe and Szegedy 2015) and F ∈ RL×d is the unrolled
representation of F.

Multi-Head Co-Attention for Dense Matching
Given the paired images (IA, IB) from different views, we ex-
tract their position-aware key-value memory representation in
Equ. 2, written as {(KA

h , V
A
h )}Hh=1 and {(KB

h , V
B
h )}Hh=1 re-

spectively. Based on the memory representations, the match-
ing problem of (IA, IB) is converted to that of dense match-
ing between these paired key-value memory matrices.

To make the matching process more effective and effi-
cient, in this paper, we explore the capacity of attention
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mechanisms to precisely associate the paired images. Dif-
ferent from conventional attention models (Xu et al. 2015;
Sharma, Kiros, and Salakhutdinov 2015), the proposed
method instead searches attentional regions in both images
to find the matching using a common head. Various heads
formulate a set of matching patterns that connect the paired
images in different ways. So we call the attention mecha-
nism “co-attention” as it seeks to find “where to compare”
to associate the paired images. Some typical co-attentions are
illustrated in Fig. 1.

Co-attention: As shown in Fig. 2, co-attention aims at
mapping a head krh ∈ Rdk and paired memory matrices
to an output pair. We employ content addressing to obtain
attentional distributions over the L memory locations and
read the required values by weighted averaging over values:

rAh = softmax
(
KA

h k
r
h/µ

)T
V A
h

rBh = softmax
(
KB

h k
r
h/µ

)T
V B
h

(3)

where µ =
√
dk is a scalar to prevent the dot-product value

to be large.
Fusing multi-head co-attention: By Equ. 3, we can ob-

tain co-attentions of H heads written as rA1 , ..., r
A
H and

rB1 , ..., r
B
H . They are concatenated and once again embed-

ded to produce the output using the weight matrix Wo ∈
RHdv×do :

oA = ϕ
(
Wo

T
[
rA1 , ..., r

A
H

])
oB = ϕ

(
Wo

T
[
rB1 , ..., r

B
H

]) (4)

where [·] indicates the concatenation operation, and the pair
(oA, oB) encodes the multi-head co-attention of a set of ref-
erence keys {krh}.

Comparing co-attentions: The co-attention representa-
tions oA and oB of Equ. 4 encode the visual representations
with common heads. To compare the values, we employ a
metric function to capture the interactions between them with
Wc ∈ R2do×dc :

c = ϕ
(
WT

c

[
oA, oB

])
(5)

where c ∈ Rdc encodes the comparison representations given
the heads {kAh }.

Scoring with dense matching: To perform dense cross-
image matching, we use all the keys in {KA

h } to produce
paired multi-head co-attention vectors and their comparison
vector using Equ. 3 to Equ. 5, resulting in a comparison
matrix denoted as C ∈ RL×dc , where the l-th row of C
represents the comparison representation based on the heads
{kAh,l}h. We then perform a simple feed-forward network
producing the final similarity score using the concatenation
of comparison vectors:

f(IA, IB) = FFN ([c1, ..., cL]) (6)

where FFN() is a simple neural network using two fully
connected layers to output the final similarity score.

Matching Networks for Similarity Learning
Finally, we build a setwise learning mechanism that greatly
boosts the training process of the similarity function. Inspired

by the idea of Matching Networks (Vinyals et al. 2016) for
one-shot learning, we further introduce a much flexible learn-
ing framework to learn the similarity metric as shown in Fig.
2. In detail, we construct a specific “training sample” as a
combination of training images. Each combination consists
of a probe image IA and a gallery set {IBi}Mi=1, where the
gallery set consists of totally M images of different identi-
ties labeled as 1 to M respectively including probe identity
labeled as p ∈ {1, ...,M}. Given the probe image IA, the
model adaptively interacts with gallery images {IBi} accord-
ing to the similarity scores produced by f(IA, IBi) so as
to correctly classify the probe image IA into one of the M
classes in the gallery set. To achieve this goal, we first define
the label distribution ŷA ∈ RM of the probe sample in the
gallery set:

ŷA =

M∑
i=1

softmax
(
f(IA, IBi)

)
yBi (7)

where yBi is the one-hot label distribution of im-
age IBi labeled as i, and softmax(f(IA, IBi)) =

exp(f(IA, IBi))/
∑M

j=1 exp(f(I
A, IBj )) is the matching

probability of IA in the gallery image set. Finally, we train the
whole network by minimizing the cross-entropy error over
the ground-truth label distribution yA and the predicted dis-
tribution ŷA. We formulate the loss of each training sample
as follows:

` = −
M∑
i=1

yA(i) log
(
ŷA(i)

)
(8)

where yA is the ground truth one-hot label distribution in the
gallery set.

Experiments
To demonstrate the effectiveness of the proposed matching
network, we evaluate our method on three popular datasets.
Using the Tensorflow(Abadi et al. 2015) framework, it takes
around 24 hours to train the network thoroughly on two
NVIDIA GTX 1080Ti GPUs and 2.1ms for computing the
similarity between the paired images. In this section, we first
compare our method with state-of-the-art approaches on the
three datasets. Also, we conduct ablation study to examine
the effectiveness of each component.

Datasets
The method is evaluated on three public datasets, namely
CUHK03 (Li et al. 2014), CUHK01 (Li, Zhao, and Wang
2012), and Market-1501 (Zheng et al. 2015). For clarity,
we illustrate the settings and evaluation protocols of all the
datasets to be fairly compared with other approaches in Table
2.

As for CUHK03, we train and evaluate the network using
the “labeled” set. Following the standard process, we use
two settings on the CUHK01 dataset with different train/test
splits, as shown in Table 2. To avoid accidental results, ex-
periments conducted on the CUHK03 and CUHK01 datasets
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Table 1: Top recognition rate (%) of the various methods over CUHK03 labeled dataset with 100 test IDs, CUHK01 dataset with
100 test IDs, CUHK01 dataset with 486 test IDs with rank = 1, 5, 10, and over Market-1501 with rank = 1 and mAP. The method
with “*” means that it involves extra dataset for training.

Method CUHK03 (labeled) CUHK01 (100 test IDs) CUHK01 (486 test IDs) Market-1501
r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r=1 mAP

KVM-MN (ours) 94.0 99.6 99.8 96.9 99.97 99.99 84.4 95.9 98.6 91.5 78.0
KVM-MN-noAug (ours) 91.7 98.7 99.4 94.2 99.2 99.5 82.0 94.4 97.3 89.1 74.8
Spindle Net*(Zhao et al. 2017a) 88.5 97.8 98.6 - - - 79.9 94.4 97.1 76.9 -
PDC*(Su et al. 2017) 88.7 98.6 99.2 - - - - - - 84.1 63.4
MSCAN(Li et al. 2017) 74.2 94.3 97.5 - - - - - - 80.3 57.5
PartAligned(Zhao et al. 2017b) 85.4 97.6 99.4 88.5 98.4 99.6 75.0 93.5 95.7 81.0 63.4
DCSL(Zhang et al. 2016) 80.2 97.7 99.2 89.6 97.8 98.9 76.5 94.2 97.5 - -
JSTL*(Xiao et al. 2016) 75.3 - - - - - 66.6 - - - -
ImprovedDL(Ahmed, Jones, and Marks 2015) 54.7 86.5 93.9 65.0 89.0 94.0 47.5 71.6 80.3 - -
KISSME(Koestinger et al. 2012) 14.2 37.5 52.2 29.4 60.2 74.4 - - - - -
FPNN(Li et al. 2014) 20.7 50.9 67.0 27.9 59.6 73.5 - - - - -

Table 2: Datasets and settings in our experiments.
Dataset CUHK03 CUHK01 Market-1501
# identities 1360 971 1501
# images 13,164 3,884 32668
# cam./ ID 2 2 6
# train IDs 1,160 871;485 750
# test IDs 100 100;486 751
evaluation protocol CMC CMC top-1, mAP

are repeated with 10 random splits, and the results are re-
ported by taking the average accuracies on these test splits.
Market-1501 is a much larger person re-identification dataset
that involves more misalignments, occlusions, and other vari-
ations.

Training the Network
We employ Inception-V1 (Szegedy et al. 2015) as our deep ar-
chitecture for extracting the feature maps, and the pretrained
model on the ILSVRC-2012-CLS image classification dataset
(Russakovsky et al. 2014) is downloaded from TF-slim li-
brary 1 . Using the model, we extract the feature maps named
as “Mixed 4f” of the input image. As a result, given input
image shape of 224 × 112 × 3, the shape of feature maps
which we obtain is 14 × 7 × d with the output stride of 16
after 1× 1 convolutions upon the output feature maps.

In our method, we use stochastic gradient descent for up-
dating the weights of the network with the momentum of
0.9. We set the base learning rate as 0.01 and weight decay
as 0.0002 to train around 250K steps with a batch size of
20 until the model converges. A stepping function is applied
to decay the learning rate to 0.001 and 0.0001 after 60%
and 80% of total training steps. As for KVM-MN, we use
d = 512, H = 4 and dk = dv = 64 for the dimension
of the feature vector, number of heads, and dimensions of
key-value vectors respectively. The lengths of co-attention
output vector do and comparison vector dc is set equal to d.
Unlike some other efforts to improve accuracy using extra
dataset or re-ranking techniques, we do not apply any extra

1https://github.com/tensorflow/models/tree/master/research/slim

data or re-ranking techniques to examine the effectiveness of
the proposed KVM-MN.

Collecting training samples: To train the network, we
use M = 15 images in the gallery set for a selected probe
image, where the negative samples are randomly collected
from 100 nearest neighbors of the probe image measured by
L2 distance and a positive sample is chosen from different
views of the probe. As a result, we collect around 500K
combinations as training samples.

Data augmentation: To generate more training images
and increase the robustness of the trained model, we perform
data augmentation including random rotation of the angle ran-
domly sampled in [−1/16π, 1/16π] and random erasing (Zhong
et al. 2017) during training.

Overall Performances
Our KVM-MN is compared with several person re-
identification methods in recent years in Table 1. As a whole,
the proposed method outperforms state-of-the-art methods
using the powerful key-value memory-based matching struc-
tures as well as the robust learning method. Specifically, the
competitive Spindle Net (Zhao et al. 2017a) and PDC (Su
et al. 2017) both employ pose estimation models to find
better body part alignments. Instead, the proposed method
does not use any auxiliary models and can still beat them by
over 4% in all of the reported evaluations. Some approaches
learn part detectors adaptively from training data, includ-
ing MSCAN(Li et al. 2017) and PartAligned (Zhao et al.
2017b). Compared with their models, the proposed model
is capable of handling fine-grained matching structure via
multi-head key-value representations, and thus achieves bet-
ter performance. In addition, we see that even without data
augmentation (“KVM-MN-noAug”), the results on all the
datasets can beat the state-of-the-art.

Besides, we show some visualization results in Fig. 1 and
Fig. 3 for better understanding the matchings based on key-
value memory representations. It is observed that the pro-
posed method can find semantic-level correspondences be-
tween images, such as head, bags, or shoes, even when the
image is not perfectly detected (last row of the second group).
Also, by employing multi-head representations, we find some
interesting matching structures as shown in Fig. 1.
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Figure 3: Visualization of co-attentions. Each column shows the co-attention regions of a specific head of probe at the position
(x, y) in the probe feature map, as shown in the top row. Best viewed in color.

Ablation Experiments
To further demonstrate the effectiveness of each component
and examine the sensitivity to hyper-parameters, we design
a set of ablation experiments in Table 3. Due to the limited
computing resources, we generate a subset that totally con-
tains 100K training samples for training and testing all the
ablation experiments on one of the training/test split on the
CUHK03 dataset. We establish a baseline denoted as “base”
of KVM-MN in Table 3 and all the ablation experiments fol-
low the same setups except some specific settings to examine
the effectiveness of the component.

Effectiveness of multi-head co-attentions. We first eval-
uate on the number of heads to check the effectiveness of
multi-head memory representation for co-attentions. We use
H = 1, 2, 4, 8 and let dk = dv = d/H to keep the total
computing cost approximately the same. From the row (A)
in Table 3, we observe that key-value memory representa-
tion with multiple heads performs better than using a single
head, but the performance drops with too many heads. To
evaluate the effectiveness of key-value structure representa-
tion, we further compare with the memory representation
with K = V and find the accuracy drops significantly. This
suggests that the key-value structure can help to find much
better matching structures.

Effectiveness of matching networks for training. The
number of images in the gallery set during training has a
significant influence on the final accuracy, as observed in
row (D). When the gallery set is small, it is more likely
to misclassify hard negative images, and the performance
is much worse. To further investigate the influence of hard
negative samples in training, we select the harder negative
samples for M = 2 as “hard” other than randomly sampled
negatives “rand”, the performance increases by a large margin

(68.4% → 78%). In the meanwhile, when the scale of the
gallery set gets large (H = 30), the model converges slowly
in our experiments, and it is expensive and hard to obtain a
better performance. We also perform pairwise metric learning
to classify positive and negative image pairs as denoted by
“Pair” and we find that training with the matching networks
performs better than the traditional pairwise metric learning
methods (88.0% vs. 85.4%). The model converges fast and
we obtain a competitive result by only training 10K steps.

Besides, we find that increasing the dimension of feature
vectors improves the accuracy from row (B). In row (C),
we observe that position embedding has a small impact on
the overall appearance, mainly due to the capacity of con-
volutional neural networks in encoding information on the
relative positions. We further observe in the row (E) that the
proposed network could benefit a lot using data augmenta-
tion techniques as they can help the model find more stable
long-range dependencies by disturbing the input images.

Conclusion
In this paper, we propose and evaluate a novel framework
called Key-Value Memory Matching Network (KVM-MN)
for person re-identification. The proposed KVM-MN builds
an effective local-position-aware image representation using
multi-head key-value memory representation as well as cap-
tures inherent matching structures using a novel co-attention
mechanism. The network also benefits from a flexible setwise
learning mechanism to learn an effective similarity metric by
matching with a set of images. The overall performances on
popular datasets, the visualization on the learned matching
structures, and the ablation experiments all demonstrate the
effectiveness of the components in the KVM-MN.
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Table 3: Ablation experiments on CUHK03 (labeled) dataset of one training/test split. The symbol “+” or “-” denotes whether a
specific component is enabled or disabled. Full names of the components in the table: “PosEmb”: position embedding; “#Steps”:
number of training steps; “#Samples”: number of training samples; “AUG”: data augmentation; “RE”: random erasing; “RR”:
random rotation. The blanks are identical to those of the “Based” model.

Multi-head co-attention Training AUG Accuracy
d H dk dv PosEmb M #Step #Sample RE RR r=1 r=5 r=10

Base 256 4 64 64 + 10 100K 100K - - 87.1 98.9 99.6

(A)

1 256 256 85.3 98.1 98.7
2 128 128 86.9 99.0 99.2
8 32 32 86.2 99.1 99.4
4 K = V 83.5 96.9 99.2

(B) 512 4 128 128 87.3 98.4 99.5
1024 4 256 256 88.3 99.1 99.8

(C) - 86.8 98.7 99.5

(D)

Pair 85.4 98.0 99.1
2-rand 68.4 93.8 97.6
2-hard 78.0 96.6 99.3

5 83.5 98.6 99.6
15 88.0 99.2 99.6
30 87.6 99.2 99.8

10K 83.2 98.8 99.4

(E) + 88.2 98.3 99.3
+ + 90.4 99.5 99.9

(F) 512 4 128 128 15 250K 500K + + 93.6 99.7 99.9
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