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Abstract

3D object detection plays an important role in a large number
of real-world applications. It requires us to estimate the lo-
calizations and the orientations of 3D objects in real scenes.
In this paper, we present a new network architecture which
focuses on utilizing the front view images and frustum point
clouds to generate 3D detection results. On the one hand, a
PointSIFT module is utilized to improve the performance of
3D segmentation. It can capture the information from dif-
ferent orientations in space and the robustness to different
scale shapes. On the other hand, our network obtains the use-
ful features and suppresses the features with less informa-
tion by a SENet module. This module reweights channel fea-
tures and estimates the 3D bounding boxes more effectively.
Our method is evaluated on both KITTI dataset for outdoor
scenes and SUN-RGBD dataset for indoor scenes. The exper-
imental results illustrate that our method achieves better per-
formance than the state-of-the-art methods especially when
point clouds are highly sparse.

Introduction
In recent years, remarkable progress has been made on the
task of 2D object detection in complex scenes by deep con-
volutional neural networks (Girshick 2015; Redmon et al.
2016; Liu et al. 2016). However, it still remains an open
problem on 3D object detection. Such as on the KITTI ob-
ject detection benchmark (Geiger, Lenz, and Urtasun 2012),
a great gap of the average precision (AP) still remains be-
tween 2D and 3D object detections. The most important
thing of 3D object detection is the way to use the 3D infor-
mation which represents the depth information of objects in
the estimation task. In addition, different from 2D object de-
tection, we need to consider the orientations of 3D bounding
boxes simultaneously. Since 3D Lidar is limited by the num-
ber of horizontal scan lines and has a non-uniform sampling
manner in 3D space, the obtained point clouds are usually
very sparse and uneven distributed. These difficulties on 3D
object detection bring us enormous challenges.

Some existing methods (Li, Zhang, and Xia 2016; Wang,
Zhan, and Tomizuka 2017) project the 3D point clouds to
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the 2D images or fuse the object information from multi-
ple views (Su et al. 2015; Rubino, Crocco, and Del Bue
2018). These approaches are intuitive and have obtained sat-
isfactory results in simple scenes. However, they are limited
in complex scenes for the reason of losing 3D information.
Other methods (Engelcke et al. 2017; Maturana and Scherer
2015) convert point clouds into a 3D voxel grid by quan-
tization and extract each voxel feature by applying 3D con-
volutional neural networks. However, these approaches have
high computational costs especially on dealing with 3D con-
volutional operations preventing them for real-world appli-
cations.

Since 3D data is usually storaged in the form of point
clouds, we can mainly make use of this kind of data to ex-
tract shape features. Recently, Qi et al. provide a unified net-
work architecture named Pointnet (Qi et al. 2017a), which
can represent the permutation invariance of the original in-
put point clouds. It is widely applied in 3D object classifica-
tion and 3D part segmentation. Pointnet has strong ability to
capture global structure information rather than local infor-
mation. Therefore, an improved version of Pointnet which
called Pointnet++ (Qi et al. 2017b) is proposed to obtain
local structures by increasing contextual scales in distance
metric space.

Although point clouds have abundant 3D information, as
the complexity of real scenes, it is still very difficult to lo-
calize 3D objects only with point clouds especially when
they are highly sparse. It is necessary to combine 3D point
clouds with 2D images which can provide comprehensive
perception information. Some researchers (Wang, Zhan, and
Tomizuka 2017; Ku et al. 2018) utilize the front view im-
ages and 3D point clouds to further improve the accuracy of
3D object detection. On the one hand, 2D front view images
have rich appearance information of scenes, but they fail to
obtain the spatial descriptions. On the other hand, 3D point
clouds have accurate location and reflection intensity infor-
mation, while 3D point clouds are usually very sparse. Thus,
3D point clouds and 2D images are complementary on 3D
object detection tasks. With this observation, F-Pointnet (Qi
et al. 2018) leverages both effective 2D object detectors (Fu
et al. 2017; Lin et al. 2017) and advanced 3D deep neural
networks (Pointnet/Pointnet++) for 3D object detection and
localization. Their method gains the cutting-edge results on
both KITTI and SUN-RGBD 3D object detection bench-

9267



marks. However, it still has some limitations. Since Point-
net++ uses K-nearest searching method, it may lose many
useful local orientation information. In real scenes, objects
have quite different scales. Thus, we need to consider the
scale variations of 3D objects. In addition, each channel fea-
ture has different contribution to the network which should
have the ability to distinguish their importance.

In this paper, we propose a sub-network (Point-UNet)
to achieve the scale invariance and capture the orientation
information. In term of the network structure, we can ob-
tain context information and produce the precise localiza-
tion through a symmetric expanding path. The network can
be trained from limited samples but obtains a satisfactory
result. This is also captured in 3D UNet (Çiçek et al. 2016)
for segmentation tasks. Since the standard 3D convolutional,
pooling and upsampling operations would lead to a large
amount of computation cost. In our network, we take the
Set Abstraction (SA) module and the point Feature Propa-
gation (FP) module (Qi et al. 2017b) to improve our net-
work. Point-UNet has the ability to learn the different orien-
tation information while it is adaptive to scale variations. We
achieve this by integrating a PointSIFT module (Jiang, Wu,
and Lu 2018) into our network. Since the front view image
has rich appearance information, we encode them into our
Point-UNet with Resnet-50 (He et al. 2016) as our backbone
feature extractor. Thus, our network can distinguish the cat-
egories of objects efficiently through the color information
of each 3D point.

The second component of our network is a T-Net sub-
network. It is used to centralize the points of interests ini-
tially. In the network, we use a SA module not only to learn
the global feature but also take the extra Lidar reflection in-
tensity feature into consideration. Finally, Point-SENet is the
sub-network designed to estimate final 3D bounding boxes.
Since each channel feature has different contribution to the
whole network. To make the network have an ability to en-
hance the useful features and suppresses the useless features,
we extend the SENet (Hu, Shen, and Sun 2018) module into
3D space to learn the relationship of 3D point channel fea-
tures.

For outdoor scenes, F-Pointnet (Qi et al. 2018) has ob-
tained 8.04% Average Precision (AP) better than (Chen et al.
2017) on 3D detection task for Cars on KITTI dataset. For
indoor scenes, it has also achieved 4.4% better 3D mean Av-
erage Precision (mAP) than COG (Ren and Sudderth 2016)
on SUN-RGBD dataset. Compared with F-Pointnet (Qi et
al. 2018), our model obtains 1.4% higher 3D mAP perfor-
mance on the validation set of KITTI and 4.4% higher 3D
mAP performance on the test set of SUN-RGBD.

Our contributions in this paper are as follows:

• We propose a new network architecture which has scale
invariance to the shape of point clouds. It has excellent
applicability to highly sparse point clouds as it is robust
to different scale shapes.

• Our network can reweight features by learning the corre-
lation from different channel features. This takes the rela-
tionship of different channel features into account.

• Our method has significant and consistent improvement

on both outdoor dataset and indoor dataset compared with
the state-of-the-art approaches.

Related Work
Researchers propose high-quality hand-crafted feature rep-
resentations to localize 3D objects (Dorai and Jain 1997;
Johnson and Hebert 1999; Rusu, Blodow, and Beetz 2009)
when 3D object detection just emerges. These methods can
obtain acceptable results when 3D shape descriptions are
available in a simple scene. However, they fail to learn po-
tential invariant features from more complex scenes so that
they have a certain gap in practical applications.

The monocular RGB images can provide rich appear-
ance and context information. Deep3DBox (Mousavian et
al. 2017) finds the fact that the perspective projection of the
3D bounding boxes should fit tightly within their 2D de-
tection boxes. It extracts the 3D bounding boxes only from
monocular RGB images. (Chen et al. 2016) proposes an en-
ergy minimization method that puts candidate boxes in 3D
space by exploiting the fact that objects should be on the
ground-plane and perform 3D object detection from monoc-
ular images. However, due to lacking of depth information,
they fail to get high accuracy on 3D object detection tasks.

Estimating the orientations of 3D bounding boxes is of
great importance as the orientation angles will directly af-
fect the 3D detection. We can easily get the orientation
information from the bird’s eye view of 3D point clouds.
(Chen et al. 2017) utilizes a bird’s eye view representation of
point clouds to generate 3D highly accurate candidate boxes.
However, this region proposal method would fall behind for
small object detection.

3D space can be discretized into a 3D voxel grid and a
sliding window method can be used through all three di-
mensions for detection (Wang and Posner 2015). It is also
demonstrated that the exhaustive window searching in 3D
space can be extremely efficient by exploiting the sparsity
of the problem. Voxelnet (Zhou and Tuzel 2018) divides 3D
points into 3D voxel grids equally in space, putting forward
a novel voxel feature encoding (VFE) layer to encode each
voxel via stacked VFE layers, which enable the interaction
between points within a voxel by combining point-wise fea-
tures with a locally aggregated feature. Then, the region pro-
posal network takes the voxel features and obtains the 3D
detection results.

In order to reduce the search space, F-pointnet (Qi et al.
2018) extracts the 3D frustum point clouds by extruding
2D bounding boxes from 2D image detectors. Then Point-
nets (Qi et al. 2017a; 2017b) are performed for each 3D
bounding box frustum to get 3D points of interests. Finally,
an amodal 3D box estimation network is applied to yield the
3D detection results.

SIFRNet For 3D Object Detection
In this section, we introduce the architecture of Scale Invari-
ant and Feature Reweighting Network (SIFRNet) shown in
Figure 1, which mainly composed of three parts: 3D instance
segmentation network (Point-UNet), T-Net and 3D box es-
timation network (Point-SENet). Next, the design principles
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Figure 1: The pipeline of SIFRNet for 3D object detection

of SIFRNet architecture are introduced.

Point-UNet: 3D instance segmentation network
This module takes 3D points in the frustum as the input and
outputs the probability of each point to determine whether it
is the point of interests or not. In the later 3D box estimation
network, only these points of interests are really useful to
the estimation of 3D bounding boxes, and other points may
be the background or noise.

For one-class 3D detection tasks, an efficient model can
be more easily designed to get satisfied detection results.
However, objects in multiple categories have huge differ-
ences in size and orientation angle. These problems bring
great difficulties for the 3D box estimation. Therefore, it is
necessary that the network should have the ability to iden-
tify different types of objects. Then, the geometric features
of objects in different categories can be distinguished when
estimating 3D bounding boxes.

RGB image information with an effective and available
feature plays an irreplaceable role in most 2D classification,
detection and scene understanding tasks. For example, the
color information is quite different from Cars, Pedestrians
and Cyclists on the KITTI dataset. If the color information
of these objects is known in advance, we can exploit the dif-
ference in color to get better performance. However, some
objects are hardly to be distinguished only be the color in-
formation in sparse 3D point cloud space, such as Pedes-
trians and Cyclists. Luckily, the front view 2D image can
provide much more appearance information, so we can en-
code the regions of interests into high-dimensional represen-
tations and fuse them into the network. Finally, the one-hot
class information from 2D detection results can be utilized
to improve the performance of the segmentation network as
well.

The architecture of Point-UNet is shown in Figure 3. The
input data of the network is N × 3 3D point clouds for 3
axis, and the corresponding extra data is N ×3 RGB images
for 3 channels and N × 1 Lidar reflection intensity maps.
N is the number of point clouds. In the beginning, the point
cloud features can be extracted via two Set Abstract (SA)
modules, which can be vividly understood as the process of
Convolution and Pooling operations. Since Pointnets can not
consider the orientation information of point clouds and the
adaptability to the shape scales, we introduce the PointSIFT
module based on the segmentation network of Pointnet++
into the network. Before the global SA module operation,
two PointSIFT modules are integrated into our network. As
a result, it has an ability to capture the orientation informa-

tion in 3D space and has the robustness to different scale
shapes. Then, we perform three FP operations, which can be
considered as the process of Deconvolution and Upsampling
operations. In addition, the previous point features at each
stage of Feature Propagation (FP) layer are concatenated to
gain richer information. Finally, the probability of the points
of interests can be predicted via two fully-connected layers.
The 3D instance segmentation network looks like an English
letter U, so we name the network as Point-UNet.

T-Net: 3D point cloud translation network
The architecture of T-Net is shown in Figure 2, which is pri-
marily used to estimate the center of a 3D box and translate
the points of interests to the center of the box. After this pro-
cess, the subsequent network only needs to further predict
the residual for the final 3D box.

The input of the network is the points of interests from
Point-UNet. The extracted feature is the reflection intensity
of the Lidar. The input is imported into a SA module to ex-
tract the global features of 3D point clouds. Next, two fully-
connected layers are used to predict the negative center co-
ordinates, which are added to the original input points for
achieving the process of the point cloud translation. The net-
work is functionally similar to the translation network with
similar residual network structure.

Point-SENet: 3D box estimation network
Point-SENet architecture is shown in Figure 2 which is
mainly used to estimate the cx, cy , cz , h, w, l, θ param-
eters of a 3D box. cx, cy , cz represent the 3D box center
coordinates along the X, Y, Z axis, respectively. h, w, l rep-
resent the length, width and height of a 3D box, respectively.
θ represents the heading angle along up-axis. In addition, the
output of the network is a (3+4×NS+2×NH)-dimensional
vector. NS denotes the number of size templates and NH
represents for the number of orientation angle templates.

The input of the network is 3D point clouds from T-Net,
no extra feature is used. At first, two point-wise convolu-
tions are performed to get a high-dimensional point cloud
feature which is X∗. Since the general convolutional neu-
ral networks do not consider the relationship of all channel
features, it may causes some useless features propagating to
subsequent networks, decreasing the performance of the en-
tire network. In order to improve the feature representation
ability of the network, the SENet module is extended into
3D space for operating on 3D point clouds directly.

The third convolutional operation in Point-SENet model
is used to obtain the input feature of SENet module X . First,
the squeeze operation is performed by a global max pooling
layer instead of the global average pooling layer to aggregate
spatial information into the channel feature which is formu-
lated as follows:

Cl
sq = max(Xl

1:h,1:w) (1)

where h = M represents the number of 3D points of inter-
ests. w is equal to 1 and l = 1, ..., c where c is the number of
channel features in our model. Second, the excitation opera-
tion is performed via two fully-connected layers and one sig-
moid function. Through the above operations, we can obtain
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Figure 2: The network architecture of T-Net and Point-SENet.
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Figure 3: The network architecture of Point-UNet.

the correlation between all channel features. The excitation
operation is used to obtain the channel-wise dependency and
formulated as:

Scalel = Sigmoid(W2Relu(W1C
l
sq)) (2)

where W1 ∈ R
c
r×c and W1 ∈ Rc×

c
r represent the param-

eters of two fully connected layers, respectively. r denotes
the reduction rate of the bottleneck (r = 4 in our model).
Next, the original feature is multiplied by Scalel, obtaining
the feature Xl

se, which achieves the process of reweighting
the feature channels of 3D point clouds.

Xl
se = Scalel ·Cl

ex (3)

Since the value of Scalel is limited to (0, 1), the gradient
disappears easily during the back-propagation, which makes
the optimization of the network very difficult. Encouraged
by the residual networks (He et al. 2016), we use the follow-
ing formulation for better gradient back-propagation:

FlSE = Xl
se +Xl

∗ (4)

The model can automatically obtain the importance of chan-
nel features by self-learning. According to the importance
of each channel feature, useful features are enhanced while
features that have little information to the network are sup-
pressed. The final output feature via SENet module can be
represented as FSE = {F1

SE ,F
2
SE , ...,F

c
SE}. After that, a

point-wise convolution operation is performed to upgrade
the reweighted features to 512 dimensions. It is aimed at al-
leviating the loss of information in the subsequent pooling

operation. Finally, three fully-connected layers are used to
estimate all residual parameters of 3D bounding boxes.

Loss Function
We compute the loss function for Point-UNet, T-Net and
Point-SENet jointly. Lseg is the classification loss for Point-
UNet. LT−Net is the center regression loss for T-Net. For
Point-SENet, Lc−reg and Langle−cls are losses for estima-
tion of the orientation angle. Langle−reg and Lsize−clc are
losses for the estimation of 3D box size. Lcorner represents
the distances between the eight corners of the groundtruth
3D box and the predicted 3D box. The corner loss can refer
to (Qi et al. 2018) for details. The total loss function can be
formulated as follows:

Ltotal = Lseg + LT−Net + λ(Lcenter−reg+

Langle−cls + Langle−reg + Lsize−clc

+ Lsize−reg + γLcorner)

(5)

In addition, the new L2 loss function is redefined for
Langle−reg. The L2 loss for an orientation angle is equal to
the Euclidean distance between the true angle and the pre-
dicted angle, which is a more reliable angle regression for
estimating 3D bounding boxes. It is worth noting that co-
sine function is not easy to optimize, so we only use it in the
process of fine-tuning.

Langle−reg =
1

B

NS∑
m=1

NH∑
n=1

Mmn|ejθmn − ejθ
∗
mn |2

=
1

B

NS∑
m=1

NH∑
n=1

Mmn[(cosθmn − cosθ∗mn)2

+ (sinθmn − sinθ∗mn)2]

=
1

B

NS∑
m=1

NH∑
n=1

Mmn[2− 2cos(θmn − θ∗mn)]

(6)
where B is the batch size and M is the mask which can
be obtained from the output of Point-UNet. θ represents the
groundtruth orientation angle and θ∗ means the predicted
orientation angle.

Experiments
Datesets and Evaluation Metrics
We conduct our experiments on KITTI and SUN-RGBD
datasets. 3D IoU (Intersection over Union) is used as the

9270



Method
Cars Pedestrians Cyclists

3D mAP
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Mono3D (Chen et al. 2016) 2.53 2.31 2.31 - - - - - - -
3DOP (Chen et al. 2015) 6.55 5.07 4.10 - - - - - - -
VeloFCN (Li 2017) 15.20 13.66 15.98 - - - - - - -
MV3D (Chen et al. 2017) 71.29 62.68 56.56 - - - - - - -
Pointfusion-final (Xu, Anguelov, and Jain 2018) 77.92 63.00 53.27 33.36 28.04 23.38 49.34 29.42 26.98 42.75
AVOD(Feature Pyramid) (Ku et al. 2018) 84.41 74.44 68.65 - 58.8 - - 49.7 - -
F-pointnet(V1) (Qi et al. 2018) 83.26 69.28 62.56 - - - - - - -
F-pointnet(V2) (Qi et al. 2018) 83.76 70.92 63.65 70.00 61.32 53.59 77.15 56.49 55.37 65.58
V2-SENet 84.71 71.25 63.74 69.14 60.12 52.91 78.71 57.43 53.55 65.73
V2-SENet-PointSIFT 84.45 71.87 64.06 69.13 60.21 53.10 79.43 58.55 54.86 66.18
V2-SENet-PointSIFT-rgb-image 85.99 72.72 64.58 69.26 60.54 52.90 79.43 59.26 55.09 66.64
Fine-tune-final 85.62 72.05 64.19 69.35 60.85 52.95 80.87 60.34 56.69 66.99

Table 1: AP3D (%) results on KITTI validation set for 3D object detection.

Method
Cars Pedestrians Cyclists

3D mAP
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Mono3D (Chen et al. 2016) 5.22 5.19 4.13 - - - - - - -
3DOP (Chen et al. 2015) 12.63 9.49 7.59 - - - - - - -
VeloFCN (Li 2017) 40.14 32.08 30.47 - - - - - - -
MV3D (Chen et al. 2017) 86.55 78.10 76.67 - - - - - - -
Pointfusion-final (Xu, Anguelov, and Jain 2018) 87.45 76.13 65.32 37.91 32.35 27.35 54.02 32.77 30.19 49.28
F-pointnet(V1) (Qi et al. 2018) 87.82 82.44 74.77 - - - - - - -
F-pointnet(V2) (Qi et al. 2018) 88.16 84.02 76.44 72.38 66.39 59.57 81.82 60.03 56.32 71.68
V2-SENet 88.43 82.61 75.71 72.66 66.75 59.78 83.36 63.39 58.98 72.41
V2-SENet-PointSIFT 88.19 83.62 76.23 72.61 66.82 59.38 83.54 64.13 59.16 72.63
V2-SENet-PointSIFT-rgb-image 88.80 83.96 76.21 75.39 67.51 60.03 83.01 64.02 59.51 73.16
Fine-tune-final 88.63 83.45 76.08 76.67 68.49 60.78 83.50 64.57 59.87 73.56

Table 2: AP2D−Bird−V iew (%) results on KITTI validation set for 3D object localization.

common evaluation metric. If 3D IoU with the groundtruth
is over a given threshold, the predicted 3D box is considered
as a true positive (TP). For KITTI dataset, we follow the of-
ficial KITTI evaluation protocol, where 3D IoU threshold is
0.7 for Cars category and 0.5 for both Pedestrians and Cy-
clists categories, respectively. On SUN-RGBD dataset, the
3D IoU is 0.25 for all the categories.

KITTI: The KITTI 3D object detection dataset contains
7481 training images and Velodyne Lidars. We follow the
settings in (Qi et al. 2018) and split the dataset into training
set and validation set with 3717 and 3769 samples, respec-
tively. Finally, we report the results on the validation set for
Cars, Pedestrians and Cyclists categories.

SUN-RGBD: The SUN-RGBD dataset have 700 object
categories, the training set and test set contains 5285 and
5050 images, respectively. But we only report the results of
ten kinds of objects in the test set with the same settings
in (Qi et al. 2018). This is because there are more samples
on these categories and the object sizes are also relatively
larger than the others.

Implementation Details
The details on 2D detector: In 2D detection tasks, manu-
ally selecting anchor boxes can not match the distribution
of the 2D boxes well from the training set, and it is better
to apply K-means (Jain 2010) to cluster the anchor boxes
from the training set. YoloV3 (Redmon and Farhadi 2018)

is used as the 2D detector to generate the final 2D bounding
boxes. The model is pre-trained on MS-COCO dataset and
fine-tuned on SUN-RGBD dataset. We adopt Adaptive Mo-
ment Estimation (Adam) to optimize the model. The learn-
ing rate is equal to 1e-4. During the training process, we
freeze the first 185 layers and release all the layers after 50
epochs. The training is terminated after 100 epochs. For fair
comparisons, 2D detection results are the same with (Qi et
al. 2018) on KITTI dataset.

The details on SIFRNet: The input data sizes of Point-
UNet, T-Net and Point-SENet are N×7, N×4 and N×3,
respectively. ResNet-50 is used to extract the features of the
cropped images from 2D detector. The 64-dimensional fea-
ture vector is obtained by the AveragePooling2D layer of
ResNet-50. The Adam optimizer is adopted to optimize the
deep neural networks with the learning rate of 0.001. The
first exponential decay rate is equal to 0.95 and the second
exponential decay rate is equal to 0.999. In addition, data
augmentation on point clouds is performed in the following
two ways: randomly flip the point clouds in the frustums and
shift the point clouds in the frustums along the z-axis direc-
tion.

Comparisons to the state-of-the-art methods
Experimental results on KITTI: The results of our 3D
object detection on KITTI validation set are shown in Ta-
ble 1. Comparing with MV3D (Chen et al. 2017) and
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Figure 4: The visualization results for 3D object detection on KITTI validation set. The first column shows the 2D detection re-
sults on 2D images. The second column displays the 3D boxes that are projected on the 2D image. The last column demonstrates
our 3D detection results on Lidar. The groundtruths are in red and the predicted boxes are in blue.

Pointfusion (Xu, Anguelov, and Jain 2018) that use multi-
sensor fusion strategy, our network greatly outperforms
these state-of-the-art methods. In the experiments, our V2-
SENet method only uses SENet module instead of the three
SA modules on F-Pointnet (v2) (Qi et al. 2018) which con-
tains more parameters. With the reduced number of param-
eters of our model, the performance still has a slight im-
provement. V2-SENet-PointSIFT is based on the V2-SENet
model with an additional PointSIFT module. V2-SENet-
PointSIFT-rgb-image is the model that image features and
RGB information are attached to V2-SENet-PointSIFT for
further improvements. Fine-tune-final is the model that we
fine-tune on the V2-SENet-PointSIFT-rgb-image model by
using the redefined angle loss function. As shown in the re-
sults, our methods have a lower accuracy on the Cars class
than AVOD for 3D object detection. It should be noted that
our network generates a single model to predict all cate-
gories for a good generalization ability. However, AVOD
separates Cars category individually for training to achieve
better performance. This makes the trained model not adap-
tive for all object categories.

In order to illustrate the effectiveness of the new an-
gle regression loss, we use the same pre-trained model to
experiment on different angle loss functions with various
epochs. The 3D mAP results of the original loss are 65.37%,
65.82%, 66.54% and 66.68% (epochs=1, 5, 10 and our fine-
tune-final result) while the corresponding 3D mAP results of
the proposed loss are 65.61%, 66.25%, 66.91% and 66.99%,
respectively. Based on the above results, our angle loss has
more contributions on the performance. In addition, Table 2
also reports the results on 3D object localization. Since Cy-
clists category contains persons, it is very difficult to distin-

guish Cyclist and Pedestrian categories. Nevertheless, our
method still outperforms the cutting-edge methods on Cars
and Cyclists categories. Figure 4 shows the visualization re-
sults of our method for 3D object detection on KITTI vali-
dation set.

Experimental results on SUN-RGBD: Different from
the KITTI dataset for outdoor scenes with only three types of
objects, SUN-RGBD contains much more kinds of objects
in indoor environment which bring us even greater chal-
lenges for 3D object detection. In the experiments, YoloV3
is used as our 2D detector and has achieved 2D mAP of
53.9% on SUN-RGBD test dataset. The whole network ar-
chitecture is the same to the one on KITTI dataset. Ta-
ble 3 indicates that our method significantly outperforms
the state-of-the-art methods which include DSS (Song and
Xiao 2016), 2d-driven (Lahoud and Ghanem 2017), Point-
fusion (Xu, Anguelov, and Jain 2018), COG (Ren and Sud-
derth 2016) and F-Pointnet (v1) (Qi et al. 2018). Surpris-
ingly, We achieve 4.4% 3D mAP higher than F-Pointnet (Qi
et al. 2018). For 2048 input 3D points, our method has a rela-
tive 2.3% 3D mAP higher than V1-2048. Figure 5 shows the
visualization results of our method for 3D object detection
on SUN-RGBD test set.

Influence of 2D Detection
In order to analyze the influence of 2D detection on the final
3D detection, we choose several trained models of YoloV3
to get different 2D detection performance on SUN-RGBD
test dataset. In Table 4, it shows that our method can get
2.0% to 2.6% 3D mAP higher than the original F-Pointnet
(V1) with the same 2D detection results, respectively. The
results demonstrate that the higher 2D performance comes
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Method bathtub bed bookshelf chair desk dresser nightstand sofa table toilet 3D mAP

DSS (Song and Xiao 2016) 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1
2d-driven (Lahoud and Ghanem 2017) 43.5 64.5 31.4 48.3 27.9 25.9 41.9 50.4 37.0 80.4 45.1
Pointfusion (Xu, Anguelov, and Jain 2018) 37.3 68.6 37.7 55.1 17.2 24.0 32.3 53.8 31.0 83.8 44.1
COG (2016) 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.6
F-Pointnet(v1) (Qi et al. 2018) 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0
V1-1024 51.6 82.0 32.2 54.6 33.5 32.4 67.9 66.3 48.0 88.2 55.7
V1-2048 51.6 83.1 35.4 54.5 33.0 33.7 68.2 66.7 48.2 87.1 56.1
Ours-1024 61.5 83.3 38.1 57.7 33.8 32.8 67.3 67.4 51.3 87.3 58.1
Ours-2048 64.0 84.4 38.4 57.9 34.1 32.2 67.7 67.3 51.4 86.2 58.4

Table 3: Comparison with the state-of-the-art methods on SUN-RGBD test dataset.

Figure 5: The visualization results for 3D object detection on
SUN-RGBD test set. The first column shows the 2D bound-
ing boxes based on YoloV3. The second column displays the
3D bounding boxes on 3D point clouds. The green boxes
are true positives and yellow boxes are false positives. The
3D IoU threshold is 0.25. The last column illustrates the
groundtruths which are in red.

the bigger gain of our model for 3D detection.

2D mAP
3D mAP

V1 Our Gain

40.6 46.1 48.1 2.0
47.1 49.6 51.6 2.0
50.5 52.2 54.3 2.1
52.9 55.5 57.6 2.1
53.9 56.1 58.4 2.3
GT 84.1 86.7 2.6

Table 4: The influence of 2D detection.

Influence of the Number of Input Points
The KITTI dataset is collected from a long-distance outdoor
scene, sometimes there are only a few points on the 3D ob-
ject. To analyze the influence of the number of 3D points for
3D bounding box estimation, we perform the experiments
on SUN-RGBD test dataset which has reliable dense depth

maps. We take 32, 128, 256, 512, 1024, 2048 points (in a
frustum) as the input, respectively. Table 5 shows 3D mAP
results with different number of input points. It can be seen
that our model can achieve a big improvement when the
number of input points is very small. In particular, with 32
3D points as the input, our mAP still obtains 51.1%, which
is 7.2% higher than the V1 result with a huge margin. It can
be proved that our model is quite suitable for highly sparse
3D point clouds.

Number of
input points

3D mAP
V153.9 Our53.9 Gain V1GT OurGT Gain

32 43.9 51.1 7.2 63.1 70.2 7.1
128 53.1 56.3 3.2 79.2 83.2 3.0
256 54.4 56.9 2.5 81.4 85.3 2.9
512 55.4 57.8 2.4 83.2 86.0 2.8
1024 55.7 58.1 2.4 83.7 86.3 2.6
2048 56.1 58.4 2.3 84.1 86.7 2.6

Table 5: The influence of the number of input points.

Conclusion
In this paper, SIFRNet is put forward for 3D object detec-
tion, which is suitable for both indoor and outdoor scenes.
The proposed architecture can make full use of the advan-
tages of both RGB images and 3D point clouds. Outstanding
experiment results both on KITTI dataset which contains a
large number of sparse point clouds and SUN-RGBD dataset
which contains many occluded objects reveal that our model
has a certain generalization ability and robustness on 3D
object detection tasks. Even when the point clouds are ex-
tremely sparse, our method can still obtain very satisfied re-
sults, which also demonstrates that our model can provide
a better 3D representation. In future work, we will focus on
the end-to-end trainable model for Lidar-only 3D data to im-
prove the efficiency of 3D object detection tasks.
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