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Abstract

Semantic segmentation is pixel-wise classification which re-
tains critical spatial information. The “feature map reuse” has
been commonly adopted in CNN based approaches to take
advantage of feature maps in the early layers for the later spa-
tial reconstruction. Along this direction, we go a step further
by proposing a fully dense neural network with an encoder-
decoder structure that we abbreviate as FDNet. For each stage
in the decoder module, feature maps of all the previous blocks
are adaptively aggregated to feedforward as input. On the one
hand, it reconstructs the spatial boundaries accurately. On
the other hand, it learns more efficiently with the more ef-
ficient gradient backpropagation. In addition, we propose the
boundary-aware loss function to focus more attention on the
pixels near the boundary, which boosts the “hard examples”
labeling. We have demonstrated the best performance of the
FDNet on the two benchmark datasets: PASCAL VOC 2012,
NYUDv2 over previous works when not considering training
on other datasets.

Introduction
Recent works on semantic segmentation are mostly based on
the fully convolutional network (FCN) (Long, Shelhamer,
and Darrell 2015). Generally, a pretrained classification
network (such as VGGNet (Simonyan and Zisserman 2015),
ResNet (He et al. 2016) and DenseNet (Huang et al. 2017))
is used as an encoder to generate a series of feature maps
with rich semantic information at the higher layers. In order
to obtain the probability map with the same resolution as
the input image size, the decoder is adopted to recover
the spatial resolution from the output of the encoder (Fig.
1 Top). The encoder-decoder structure is widely used for
semantic segmentation (Vijay, Alex, and Roberto 2017;
Long, Shelhamer, and Darrell 2015; Noh, Hong, and Han
2015; Zhao et al. 2017) .

The key difficulties for the encoder-decoder structure
are twofold. First, as multiple stages of spatial pooling and
convolutional strides are used to reduce the final feature
map size in the encoder module, much spatial information
is lost. This is hard to recover in the decoder module and
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Figure 1: Different types of encoder-decoder structures for
semantic segmentation. Top: basic encoder-decoder struc-
ture (e.g. DeconvNet (Noh, Hong, and Han 2015) and Seg-
Net (Vijay, Alex, and Roberto 2017)) using a multiple-stage
decoder to predict masks, often results in very coarse pixel
masks since spatial information is largely lost in the encoder
module. Middle: Feature map reuses structures using previ-
ous feature maps of the encoder module achieves very good
results in semantic segmentation tasks (Lin et al. 2017a;
Islam et al. 2017; Ghiasi and Fowlkes 2016) and other re-
lated tasks (Pinheiro et al. 2016; Huang et al. 2018), but the
potential of feature map reuse is not deeply released. Bot-
tom: The proposed fully dense networks, using feature maps
from all the previous blocks, are capable of capturing multi-
scale information, of restoring the spatial information, and
of benefitting the gradient backpropagation.

leads to poor semantic segmentation results, especially
for boundary localization. Second, the encoder-decoder
structure is much deeper than the original encoder network
for image classification tasks (such as VGGNet (Si-
monyan and Zisserman 2015), ResNet (He et al. 2016) and
DenseNet (Huang et al. 2017)). This results in the training
optimization problem as introduced in (He et al. 2016;
Huang et al. 2017) though it has been partially solved by
using batch normalization (BN) (Ioffe and Szegedy 2015).

In order to address the spatial information loss problem,
DeconvNet (Noh, Hong, and Han 2015) uses the unpooling
layers to restore the spatial information by recording the
locations of maximum activations during the pooling oper-
ation. However, this cannot completely solve the problem
since only the location of maximum activations is restored.
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Figure 2: Left: (a) original images; (b) trimap example with
1 pixels; (c) trimap example with 10 pixels. Right: semantic
segmentation results within a band around the object bound-
aries for different methods (mean IOU).

Another way to deal with this problem is to reuse the feature
maps with rich spatial information of earlier layers. U-Net
(Ronneberger, Fischer, and Brox 2015) exploits previous
feature maps in the decoder module by a “skip connections”
structure (See Fig. 1 Middle). Furthermore, RefineNet (Lin
et al. 2017a) refines semantic feature maps from later layers
with fine-grained feature maps from earlier layers. Simi-
larly, G-FRNet (Islam et al. 2017) adopts multi-stage gate
units to make use of previous feature maps progressively.
The feature map reuse significantly improves the restoration
of spatial information. Meanwhile, it helps to capture
multi-scale information from the multi-scale feature maps
of earlier layers in the encoder module. In addition, it also
boosts information flow and gradient backpropagation as
the path from the earlier layers to the loss layer is shortened.

However, the potential of feature map reuse is not
completely revealed. In order to further improve the per-
formance, we propose to reconstruct the encoder-decoder
neural network to form a fully dense neural network (See
Fig. 1 Bottom). We refer to our neural network as FDNet.
FDNet is a nearly symmetric encoder-decoder network and
is easy to optimize. We choose DenseNet-264 (Huang et al.
2017) as the encoder, which achieves state-of-the-art results
in the image classification tasks. The feature maps in the
encoder module are beneficial to the decoder module. The
decoder module is operated as an upsampling process to
recover the spatial resolution, aiming for accurate boundary
localization. The feature maps of different scale sizes
(including feature maps in the decoder module) will be fully
reused through an adaptive aggregation structure, which
will generate a fully dense connected structure.

In general, the cross entropy loss func-
tion is used to propagate the loss in previ-
ous works (Liu, Rabinovich, and Berg 2016;
Lin et al. 2017a). The weakness of this method is that
it sees all pixels as the same. As shown in Fig. 2, labeling
for the pixels near the boundary (band width < 40) is not
very accurate. In other words, the pixels near the boundary
are “hard examples”, which need to be treated differently.
Based on this observation, we propose a boundary-aware
loss function, which pays more attention to the pixels
near the boundary. Though attention based loss has been
adopted in object detection task (Lin et al. 2017c), our
boundary-aware loss comes from the prior that pixels near
the boundary are “hard examples”. This is very different

from focal loss, which pays more attention to the pixels with
higher loss. In order to further boost training optimization,
we use multiple losses for the output feature maps of the
decoder module. As a result, basically each layer of FDNet
has direct access to the gradients from the loss layers. This
will be very helpful to gradient propagation (Huang et al.
2017).

Related work
The fully convolutional network (FCN) (Long, Shelhamer,
and Darrell 2015) has improved the performance of se-
mantic segmentation significantly. In the FCN architec-
ture, a fully convolutional structure and bilinear interpo-
lation are used to realize pixel-wise prediction, which re-
sults in coarse boundaries as large amounts of spatial infor-
mation have been lost. Following the FCN method, many
works (Vijay, Alex, and Roberto 2017; Lin et al. 2017a;
Zhao et al. 2017) have tried to further improve the perfor-
mance of semantic segmentation.
Encoder-decoder. The encoder-decoder structure with a
multi-stage decoder gradually recovers sharp object bound-
aries. DeconvNet (Noh, Hong, and Han 2015) and SegNet
(Vijay, Alex, and Roberto 2017) employ symmetric encoder-
decoder structures to restore spatial resolution by using un-
pooling layers. RefineNet (Lin et al. 2017a) and G-FRNet
(Islam et al. 2017) also adopt a multi-stage decoder with fea-
ture map reuse in each stage of the decoder module. In LRR
(Ghiasi and Fowlkes 2016), a multiplicative gating method
is used to refine the feature map of each stage and a Lapla-
cian reconstruction pyramid is used to fuse predictions.
Moreover, (Fu et al. 2017) stacks many encoder-decoder
architectures to capture multi-scale information. Following
these works, we also use an encoder-decoder structure to
generate pixel-wise prediction label maps.
Feature map reuse. The feature maps in the higher layers
tend to be invariant to translation and illumination. This in-
variance is crucial for specific tasks such as image classi-
fication, but is not ideal for semantic segmentation which
requires precise spatial information, since important spa-
tial relationships have been lost. Thus, the reuse of feature
maps with rich spatial information of the previous layers can
boost the spatial structure reconstruction process. Further-
more, feature map reuse has also been used in object de-
tection tasks (Lin et al. 2017b) and instance segmentation
tasks (Pinheiro et al. 2016; He et al. 2017) to capture multi-
scale information when considering the objects with differ-
ent scales. In our architecture, we fully aggregate previous
feature maps in the decoder module, which shows outstand-
ing performances in the experiments.

Fully dense neural networks
In this section, we introduce the proposed fully dense neural
network (FDNet), which is visualized in Fig. 3 comprehen-
sively. We first introduce the whole architecture. Next, the
adaptive aggregation structure for dense feature maps is pre-
sented in detail. At last, we show the boundary-aware loss
function.
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Figure 3: Overview of the proposed fully dense neural network (FDNet). The feature maps (output of dense block 1, 2, 3, 4) of
the encoder module and even the feature maps (output of dense block 5) of the decoder module are fully reused. The adaptive
aggregation module combines feature maps from all the previous blocks to form new feature maps as the input of subsequent
blocks. After an adaptive aggregation module or a dense block, a convolution layer is used to compress the feature maps. The
aggregated feature maps are upsampled to H ×W × C (C is the number of the classes for the labels) and the pixel-wise cross
entropy loss is computed.

Encoder-decoder architecture
Our model (Fig. 3) is based on the deep encoder-decoder ar-
chitecture (e.g. (Noh, Hong, and Han 2015; Vijay, Alex, and
Roberto 2017)). The encoder module extracts features from
an image and the decoder module produces semantic seg-
mentation prediction.
Encoder. Our encoder network is based on the DenseNet-
264 (Huang et al. 2017) while removing the softmax and
fully connected layers of the original network (from the
starting convolutional layer to the dense block 4 in Fig. 3).
The input of each convolutional layer within a dense block
is the concatenation of all outputs of its previous layers at a
given resolution. Given that xl is the output of the `th layer
in a dense block, x` can be computed as follows:

x` = Hl([x0, x1, ..., x`−1]) (1)

where [x0, x1, ..., x`−1] denotes the concatenation opera-
tion of the feature maps x0, x1, ..., x`−1, and x0 is the in-
put feature map of the dense block. Meanwhile, H`(·) is
defined as a composite function of operations: BN, ReLU,
a 1 × 1 convolution operation followed by BN, ReLU, a
3 × 3 convolution operation. As a result, the output of a
dense block includes feature maps from all the layers in this
block. Each dense block is followed by a transition layer,
which is to compress the number and size of the feature
maps through 1 × 1 convolution and pooling layers. For
an input image I , the encoder network produces 4 feature
maps (B1, B2, B3, B4) with decreasing spatial resolution
( 14 ,

1
8 ,

1
16 ,

1
32 ). In order to reduce spatial information loss,

we can remove the pooling layer before the dense block 4 so
that the output feature map of the last dense block (i.e. B4)
in the encoder module is 1

16 of the size. Atrous convolution
is also used to control the spatial density of computed fea-
ture responses in the last block as suggested in (Chen et al.
2017). We refer to this architecture as FDNet-16s. The orig-
inal architecture can be taken as FDNet-32s.
Decoder. As the encoder-decoder structure has much more
layers than the original encoder network, how to boost gradi-
ent backpropagation and information flow becomes another
problem we have to deal with. The decoder module pro-
gressively enlarges the feature maps while densely reusing
previous feature maps by aggregating them into a new fea-
ture map. As the input feature map of each dense block has
a direct connection to the output of the block, the inputs
of previous blocks in the encoder module are also directly
connected to the new feature map . The new feature map is
then upsampled to compute loss with the groundtruth, which
leads to multiple losses computation. Thus, the inputs of all
dense blocks in the FDNet have a direct connection to the
loss layers. This will significantly boost the gradient back-
propagation.

Following the DenseNet structure, we also use dense
blocks at each stage of the same size after a compression
layer with convolution operation, which will change the
number of feature maps from adaptive aggregation struc-
ture. The compression layer is composed of BN, ReLU and
a 1 × 1 convolution operation. In the two compression lay-
ers after adaptive aggregation, their filter numbers are set to
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Figure 4: An example of an adaptive aggregation structure
for dense feature maps. For all the input feature maps (not
including direct connected input feature map, i.e. blue line),
a compression layer with BN, ReLU and 1 × 1 convolution
is applied to adjust the number of feature maps. Then an up-
sampling or downsampling layer is first operated so that all
the feature maps are consistent in size with the output fea-
ture map. They are then concatenated to form a new feature
map with 1

8 of the size of the input image.

1024 and 768. In the two compression layers after block 5
and block 6, the filter numbers are set to 768 and 512. For
block 5 and block 6, there are 2 convolutional layers in each
of them.

Adaptive aggregation of dense feature maps
In previous works, e.g. U-Net (Ronneberger, Fischer, and
Brox 2015) for semantic segmentation, FPN (Lin et al.
2017b) for object detection and SharpMask (Pinheiro et al.
2016) for instance segmentation, feature maps are reused
directly in the corresponding decoder module by concate-
nating or adding the feature maps. Furthermore, RefineNet
(Lin et al. 2017a), LRR (Ghiasi and Fowlkes 2016) and G-
FRNet (Islam et al. 2017) refine the feature maps progres-
sively stage by stage. Instead of just using previous feature
maps as before, we introduce an adaptive aggregation struc-
ture to make better use of the feature maps from previous
blocks. As shown in Fig. 4, the feature maps from previous
blocks are densely concatenated together by using the adap-
tive aggregation structure.

The adaptive aggregation structure takes all the feature
maps from previous blocks (B1, B2, ...) as input. The fea-
ture maps from the lower layers (e.g. B1, B2) are of high
resolution with coarse semantic information, whereas fea-
ture maps from the higher layers (e.g. B3, B4) are of low
resolution with rich semantic information. The adaptive ag-
gregation structure combines all previous feature maps to
generate rich contextual information and also spatial infor-
mation. For incoming feature maps, the scale sizes may be
different. As shown in Fig. 4, the output feature map is 1

8
of the size of the input image. To reduce memory consump-
tion, we firstly use the convolutional layer to compress the
incoming feature maps except for the direct connected fea-
ture map (which has been compressed). The compression
layer is also composed of BN, ReLU and a 1 × 1 convo-
lution operation. In order to make all feature maps consis-
tent in size, we use the convolutional layer to downsample
and the deconvolutional layer to upsample the feature maps.

Intuitively, we directly concatenate the feature map if it is
equivalent to the size of the output feature map. The convo-
lutional layers are all composed of BN, ReLU and a 3 × 3
convolution operation with different strides. The deconvo-
lutional layers are all composed of BN, ReLU and a 4 × 4
deconvolutional operation with different strides. At last, all
the resultant feature maps Di

1, D
i
2, ..., D

i
M (M input feature

maps) are concatenated into a new feature map F i for the ith
stage, which is then fed to latter loss computation operation
or dense block. The formulation for obtaining the ith dense
feature map from the previous feature maps can be written
as follows:

Di
1 = T i1(B1), D

i
2 = T i2(B2), ..., D

i
M = T iM (BM )

F i = [Di
1, D

i
2, ..., D

i
M ] (2)

where T (·) denotes the transformation operation (downsam-
ple or upsample). If Bj is of the same size as the output fea-
ture map, no operation is performaned on Bj . In addition,
[· · · ] stands for the concatenation operation.

In the adaptive aggregation structures for the three stages
of the decoder module, the filter numbers in the compression
layer for the reused feature map are set to 384, 256 and 128
respectively. The upsampling and downsampling layers will
not change the dimension of feature maps.

Boundary-aware loss
In previous works, cross entropy loss function is often used
in pipeline, which treat all pixels equally. As shown in Fig.
2, we can see that the pixels surrounding the boundary are
“hard examples”, which lead to bad prediction. Based on this
observation, we construct a boundary-aware loss function,
which guides the network to pay more attention on the pixels
near the boundary. The loss function is

loss(L,Lgt) = − 1

N

K∑
j=1

∑
Ii∈Sj

C∑
c=1

αjL
gt
i,cw(Li,c)logLi,c

(3)

where L is the result of softmax operation on the output
feature map and Lgt is the groundtruth. The Ii is the i-th
pixel in the image I and C is number of categories. We split
all the N pixels of image I into several sets Sj based on
the distance between the pixels and the boundary so that
I = {S1, S2, ..., SK}. We apply image dilation operation
on the boundary with varying kernel size, which refers to
as band width shown in Fig. 2, to obtain different set of pix-
els surrounding the boundary. αj is the balancing weight and
w(Li,c) is an attention weight function. Motivated by (Lin et
al. 2017c), we test two attention weight functions (poly and
exp): w(Li,c) = (1 − Li,c)

λ and w(Li,c) = e−λ(1−Li,c).
The λ is used to control attention weight. The ablation ex-
periment results are shown in Table 2.

In order to further boost the gradient backpropagation and
information flow, we compute multiple losses for different
aggregated feature map F i motivated by (Zhao et al. 2017;
Islam et al. 2017; Fu et al. 2017). Specifically, F i is fed to
upsample module to obtain a feature map Li with channel
C, where C is number of classes in prediction labels. Then
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Figure 5: The effect of employing the proposed fully dense
feature map reuse structure compared with other frame-
works. Our proposed FDNet shows better results (Column
4), especially on the boundary localization, compared with
the results (Column 3) of encoder-decoder structure with
feature reuse method (Fig. 1 Middle) and the results (Col-
umn 2) of encoder-decoder structure without feature reuse
method (Fig. 1 Top).

the feature map Li is upsampled by using bilinear interpo-
lation method directly to produce feature map H ×W ×C,
which is used to compute pixel-wise loss with groundtruth.
In terms of formula, the final loss Lfinal is computed as fol-
lows:

Li = softmax(Ui(F
i))

Lfinal =
∑
i

loss(Li, Lgt) (4)

where Ui(·) denotes a upsample module with bilinear inter-
polation operation.

In the encoder module, the output feature map of each
module is the concatenation of all the feature maps within
this block, including the input. And the aggregated feature
map is feature maps from all the previous blocks. Thus, each
feature map in the encoder has much shorter path to loss
compared with previous encoder-decoder structure (Lin et
al. 2017a; Islam et al. 2017). The gradient backpropagation
and information flowing is much more efficient. This will
further boost our network optimization.

Implementation details
Training: The proposed FDNet is implemented with Py-
Torch on a single NVIDIA GTX 1080Ti. The weights of
DenseNet-264 are directly employed in the encoder module
of FDNet. In the training step, we adopt data augmentation
similar to (Chen et al. 2016). Random crops of 512×512 and
horizontal flip is applied. We train the dataset with 30K itera-
tions. We optimize the network by using the “poly” learning
rate policy where the initial learning rate is multiplied by

Table 1: The mean IoU scores (%) for encoder-decoder with
different feature map reuse methods on PASCAL VOC 2012
validation dataset.

Encoder stride w/o feature
reuse

w/ feature
reuse

dense feature
reuse

32 77.2 78.5 78.9
16 78.2 79.1 79.4

Table 2: The mean IoU scores (%) for boundary-aware loss
on PASCAL VOC 2012 validation dataset. The poly and exp
represent different weighting methods.

loss mIoU
CE 79.4

b-aware(poly) kernel = (10, 20, 30, 40), λ = 0
α = (5, 4, 3, 2, 1) 79.5
α = (8, 6, 4, 2, 1) 80.3

b-aware(poly) α = (8, 6, 4, 2, 1), λ = 0
kernel = (5, 10, 15, 20) 79.6

b-aware(poly) α = (8, 6, 4, 2, 1),
kernel = (10, 20, 30, 40)
λ = 1 80.0
λ = 2 79.6
λ = 5 77.7

b-aware(exp) α = (8, 6, 4, 2, 1),
kernel = (10, 20, 30, 40)
λ = 0.25 80.7
λ = 0.5 80.3
λ = 0.75 80.9
λ = 1 80.6
λ = 2 79.2

(1− iter
max iter )

power with power = 0.9. The initial learning
rate is set to 0.00025. We set momentum to 0.9 and weight
decay to 0.0005.
Inference: In the inference step, we pad images with mean
value before feeding full images into the network. We apply
multi-scale inference, which is commonly used in seman-
tic segmentation methods (Lin et al. 2017a; Fu et al. 2017).
For multi-scale inference, we average the predictions on the
same image across different scales for the final prediction.
We set the scales ranging from 0.6 to 1.4. Horizontal flipping
is also adopted in the inference. In the ablation experiments,
we just use the single scale (i.e. scale = 1.0) and horizontal
flipping method to do inference. In addition, we use the last-
stage feature map of the decoder module to generate final
prediction label map.

Experiments
In this section, we describe configurations of experimen-
tal datasets and show ablation experiments on PASCAL
VOC 2012. At last, we report the results on two benchmark
datasets: PASCAL VOC 2012 and NYUDv2.

Datasets description
To show the effectiveness of our approach, we conduct com-
prehensive experiments on PASCAL VOC 2012 dataset (Ev-
eringham et al. 2010) and NYUDv2 dataset (Silberman et al.
2012).
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Table 3: GPU memory, number of parameters and some re-
sults on VOC 2012 test dataset are reported.

Methods RefineNet-152 FDNet SDNM2

GPU Memory (MB) 4253 2907 -
Parameters (M) 109.2 113.1 161.7
mIOU 83.4 84.2 83.5

Table 4: Comparison of different mothods on PASCAL VOC
2012 validation dataset with mean IoU score (%). FDNet-
16s-MS denotes the evaluation on multiple scales. FDNet-
16s-finetuning-MS denotes fine-tuning on standard training
data (1464 images) of PASCAL VOC 2012 dataset after
training on the trainaug dataset.

Method mIoU
Deeplab-MSc-CRF-LargeFOV 68.7
DeconvNet 67.1
DeepLabv2 77.7
G-FRNet 77.8
DeepLabv3 79.8
SDN 80.7
DeepLabv3+ 81.4
FDNet-16s 80.9
FDNet-16s-MS 82.1
FDNet-16s-finetuning-MS 84.1

PASCAL VOC 2012: The dataset has 1,464 images for
training, 1,449 images for validation and 1,456 images for
testing, which involves 20 foreground object classes and one
background class. Meanwhile, we augment the training set
with extra labeled PASCAL VOC images provided by Se-
mantic Boundaries Dataset (Hariharan et al. 2011), resulting
in 10,582 images as trainaug dataset for training.

NYUDv2: The NYUDv2 dataset (Silberman et al. 2012)
consists of 1449 RGB-D images showing indoor scenes.
We use the segmentation labels provided in (Gupta, Arbe-
laez, and Malik 2013), in which all labels are mapped to 40
classes. We use the standard training/test split with 795 and
654 images, respectively. Only RGB images are used in our
experiments.

Moreover, we perform a series of ablation evaluations on
PASCAL VOC 2012 dataset with mean IoU score reported.
We use the trainaug and validation dataset of PASCAL VOC
2012 for training and inference, respectively.

Feature map reuse
To verify the power of dense feature maps reuse, we com-
pare our method with other two baseline frameworks. In
this experiment, cross entropy loss is used. One is encoder-
decoder structure without feature map reuse (Fig. 1 Top)
and the other is encoder-decoder structure with naive fea-
ture map reuse (Fig. 1 Middle). We also compare the three
frameworks on different encoder strides (the ratio of input
image resolution to smallest output feature map of encoder,
i.e. 16 and 32).

Figure 6: Some visual results on PASACAL VOC 2012
dataset. Three columns of each group are image, groundtruth
and prediction label map.

The results are shown in Table 1. It is observed that
the performance increases when feature maps are reused.
Specifically, the performance for encoder-decoder (encoder
stride = 32) without feature map reuse is only 77.2%. Af-
ter the naive feature map reuse, the performance can in-
crease to 78.5%. Furthermore, our fully dense feature map
reuse can further improve the performance to 78.9%. In ad-
dition, when we adopt the stride 16 for the encoder mod-
ule, the performance is much better than the original en-
coder with stride 32 on the three frameworks. This is be-
cause the spatial information loss is reduced by the en-
coder with smaller stride. We speculate that encoder with
stride 8 can have better result similar to (Chen et al. 2017;
2018). Because of memory limitation, we only test on the
encoder with stride 16 and 32.

We also show some predicted semantic label maps for dif-
ferent feature map reuse methods in Fig. 5. For the encoder-
decoder structure without feature map reuse, the result is
poor, especially for boundary localization. Though the naive
feature map reuse method improves the segmentation result
partially, it is still hard to obtain accurate pixel-wise predic-
tion. The fully dense feature map reuse method shows very
excellent results on the boundary localization.

Boundary-aware loss
In order to demonstrate the effect of proposed boundary-
aware loss method, we take FDNet-16s as baseline to test
the performance of different parameters. We mainly use the
kernel = (10, 20, 30, 40) and kernel = (5, 10, 15, 20) by
splitting the pixels into K = 5 sets (the remaining pixels are
referred to as S5). For poly weight method, the boundary-
aware loss method (b-aware) degrades into cross entropy
method (CE) when α = (1, 1, 1, 1, 1) and λ = 0. As shown
in Table 2, the simply weighting on the pixels surrounding
the boundary shows better performance compared with gen-
eral cross entropy method, which enhances the performance
by 0.9%. By fixing theα and kernel, we try different param-
eter λ in Table 2. Comparing the poly and exp methods, we
can observe that exp brings obvious improvement by 1.5%.
On the contrary, the poly methods lead to worse effect com-
pared with baseline method (80.0 vs 80.3). In addition, the
network cannot converge for λ < 1. We also compare the la-
beling accuracy for the pixels near the boundary. As shown
in Fig. 2, the FDNet with boundary-aware loss shows obvi-
ous better performance for the pixels surrounding the bound-
ary.

9288



Table 5: Quantitative results (%) in terms of mean IoU on PASCAL VOC 2012 test set. Only VOC data is used as training data
and denseCRF (Krähenbühl and Koltun 2011) is not included.

Method ae
ro

bi
cy

cl
e

bi
rd

bo
at

bo
ttl

e

bu
s

ca
r

ca
t

ch
ai

r

co
w

ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

pl
an

t

sh
ee

p

so
fa

tr
ai

n

tv mIoU
DeconvNet (Noh, Hong, and Han 2015) 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5
Deeplabv2 (Chen et al. 2016) 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6
GCRF (Vemulapalli et al. 2016) 85.2 43.9 83.3 65.2 68.3 89.0 82.7 85.3 31.1 79.5 63.3 80.5 79.3 85.5 81.0 60.5 85.5 52.0 77.3 65.1 73.2
Adelaide (Lin et al. 2016) 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3
LRR (Ghiasi and Fowlkes 2016) 91.8 41.0 83.0 62.3 74.3 93.0 86.8 88.7 36.6 81.8 63.4 84.7 85.9 85.1 83.1 62.0 84.6 55.6 84.9 70.0 75.9
G-FRNet (Islam et al. 2017) 91.4 44.6 91.4 69.2 78.2 95.4 88.9 93.3 37.0 89.7 61.4 90.0 91.4 87.9 87.2 63.8 89.4 59.9 87.0 74.1 79.3
PSPNet (Zhao et al. 2017) 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3 82.6
SDN (Fu et al. 2017) 96.2 73.9 94.0 74.1 76.1 96.7 89.9 96.2 44.1 92.6 72.3 91.2 94.1 89.2 89.7 71.2 93.0 59.0 88.4 76.5 83.5
FDNet 95.5 79.9 88.6 76.1 79.5 96.7 91.4 95.6 40.1 93.0 71.5 93.4 95.7 91.1 89.2 69.4 93.3 68.0 88.3 76.8 84.2

Memory analysis
For semantic segmentation task, memory consumption and
parameter number are both important issues. The proposed
FDNet uses fully dense connected structure with nearly the
same number of parameters compared with RefineNet (Lin
et al. 2017a). As shown in Table 3, the FDNet consumes
much less GPU memory (training process) compared with
RefineNet. In addition, the memory consumption of FDNet
can be reduced by using sharing memory efficiently based
on (Geoff Pleiss* 2017). Compared with SDN (Fu et al.
2017), there are much less parameters for FDNet but the per-
formance is much better.

PASCAL VOC 2012
We evaluate the performance on the PASCAL VOC 2012
dataset following previous works (Lin et al. 2017a; Zhao et
al. 2017). As FDNet-16s shows a better performance (Ta-
ble 1), we only report the performance of FDNet-16s in
the following experiments. We adopt the boundary-aware
method in the training step. As shown in Table 4, FDNet-16s
achieves very comparable result with an 82.1% mean IoU
accuracy compared with previous works ((Chen et al. 2017;
Islam et al. 2017; Fu et al. 2017)) when evaluated on multi-
ple scales. Moreover, after fine-tuning the model on the stan-
dard training data (1464 images) of the PASCAL VOC 2012
dataset, we achieve a much better result with 84.1% mean
IoU accuracy, which is the best result currently if not consid-
ering pretraining on other dataset (such as MS-COCO (Lin
et al. 2014)). Some visual results with image, groundtruth
and prediction label maps are shown in Fig. 6.

Table 5 shows the quantitative results of our method on
the test dataset, where we only report the results using the
PASCAL VOC dataset. We achieve the best result of 84.2%
on test data without pretraining on other datasets, which is
the highest score when considering training on PASCAL
VOC 2012 dataset. Though latest work DeepLabv3+ (Chen
et al. 2018) achieves a mean IoU score of 89.0% on test data
of PASCAL VOC 2012, the result relies upon pretraining on
a much larger dataset MS-COCO (Lin et al. 2014) or JFT
(Chollet 2017). In fact, FDNet-16s shows very comparable
result compared with DeepLabv3+ on the validation dataset
(Table 4).

NYUDv2 Dataset
We conduct experiments on the NYUDv2 dataset to com-
pare FDNet-16s with previous works. We follow the train-

Table 6: Quantitative results (%) on NYUDv2 dataset (40
classes). The model is only trained on the provided training
image dataset.

Method pixel acc. mean acc. mIoU
SegNet 66.1 36.0 23.6
Bayesian SegNet 68.0 45.8 32.4
FCN-HHA 65.4 46.1 34.0
Piecewise 70.0 53.6 40.6
RefineNet 73.6 58.9 46.5
FDNet-16s 73.9 60.3 47.4

ing setup in PASCAL VOC 2012 and multi-scale inference
is also adopted. The results are reported in Table 6. Simi-
lar to (Lin et al. 2017a), pixel accuracy, mean accuracy and
mean IoU are used to evaluate all the methods. Some works
make use of both depth image and RGB image as input and
obtain very better results. For example, RDF (Park, Hong,
and Lee 2017) achieves 50.1% (mean IoU) by using depth
information. For a fair comparison, we only report the re-
sults training on only RGB images. As is shown, FDNet-16s
outperforms previous work in terms of all metrics. In partic-
ular, our result is better than RefineNet (Lin et al. 2017a) by
0.9% in terms of mean IoU accuracy.

Conclusion
In this paper, we have presented the fully dense neural
network (FDNet) with an encoder-decoder structure for
semantic segmentation. For each layer of the FDNet in the
decoder module, feature maps of almost all the previous
layers are aggregated as the input. Furthermore, we propose
a boundary-aware loss function by paying more attention to
the pixels surrounding the boundary. The proposed FDNet
is very advantageous to semantic segmentation. On the one
hand, the class boundaries as spatial information are well
reconstructed by using the Encoder-Decoder structure with
a boundary-aware loss function. On the other hand, the FD-
Net learns more efficiently with the more efficient gradient
backpropagation, much similar to the arguments already
demonstrated in ResNet and DenseNet. The experiments
show that our model outperforms previous works on two
public benchmarks when training on other datasets is not
considered.
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