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Abstract

In visual question answering (VQA), recent advances have
well advocated the use of attention mechanism to precisely
link the question to the potential answer areas. As the diffi-
culty of the question increases, more VQA models adopt mul-
tiple attention layers to capture the deeper visual-linguistic
correlation. But a negative consequence is the explosion of
parameters, which makes the model vulnerable to over-fitting,
especially when limited training examples are given. In this
paper, we propose an extremely compact alternative to this
static multi-layer architecture towards accurate yet efficient
attention modeling, termed as Dynamic Capsule Attention
(CapsAtt). Inspired by the recent work of Capsule Network,
CapsAtt treats visual features as capsules and obtains the
attention output via dynamic routing, which updates the at-
tention weights by calculating coupling coefficients between
the underlying and output capsules. Meanwhile, CapsAtt also
discards redundant projection matrices to make the model
much more compact. We quantify CapsAtt on three bench-
mark VQA datasets, i.e., COCO-QA, VQA1.0 and VQA2.0.
Compared to the traditional multi-layer attention model, Cap-
sAtt achieves significant improvements of up to 4.1%, 5.2%
and 2.2% on three datasets, respectively. Moreover, with
much fewer parameters, our approach also yields competi-
tive results compared to the latest VQA models. To further
verify the generalization ability of CapsAtt, we also deploy it
on another challenging multi-modal task of image captioning,
where state-of-the-art performance is achieved with a simple
network structure.

Introduction
Visual question answering (VQA) has received extensive
research attention in computer vision and artificial intel-
ligence (Antol et al. 2015; Yang et al. 2016). Similar to
other joint learning tasks of vision and language such as
image captioning (IC), the typical setting of VQA involves
the acquisition of correlated visual entities about the tex-
tual information. To this end, the attention mechanism (Bah-
danau, Cho, and Bengio 2014) has been widely explored
in VQA (Yang et al. 2016; Lu et al. 2016; Yu et al. 2017;
Teney et al. 2018).
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Figure 1: Comparison between the traditional multi-step at-
tention and the proposed Dynamic Capsule Attention (Cap-
sAtt) in Visual Question Answering. The “F” in cycles de-
notes feature fusions. The left part describes the procedure
of the traditional multi-step attentions, while the right one
depicts the framework of CapsAtt. Visualized attention re-
sults are given on two sides.

The principle behind attention mechanism is to mimic the
process of human cognition, assigning limited attention re-
sources to the most relevant information for a given task (Xu
et al. 2015). In VQA, given a question feature, this mecha-
nism forces the model to attend to the visual feature matrix
and generates a probability distribution to denote the impor-
tance of each regional feature, based on which a weighted-
sum vector is output for the answer prediction. As another
appealing property, it requires no additional label informa-
tion, and its gradient can be derived from the designed ob-
jective function (Xu et al. 2015). These advancements have
pushed attention mechanism to various tasks such as neu-
ral machine translation (Bahdanau, Cho, and Bengio 2014;
Vaswani et al. 2017), machine comprehension (Xiong and
Socher 2016), and image captioning (Xu et al. 2015) etc.

However, the increasing difficulty of the question often
goes beyond the capacity of a single-step attention. There-
fore, recent models resort to multiple attention layers for
capturing the deeper visual-linguistic correlation. (Yang et
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al. 2016; Lu et al. 2016; Vaswani et al. 2017). Fig.1 shows a
representative structure of the multi-step attention (Yang et
al. 2016) in VQA. Along with the accuracy improvement, a
consequent deficiency is the explosion of parameters, which
also leads to a huge cost of computation. The main reason is
that the fusion process in the attention layer typically con-
tains large-scale parameters. For instance, the compact bi-
linear pooling used in MCB (Fukui et al. 2016), a bench-
mark model in VQA, has about 48 million parameters. In
this case, the training deficiency as well as the model’s ro-
bustness have become urgent issues.

We argue that, the key to solving these issues is to replace
such a multi-layer attention with a more flexible structure.
In particular, as a static stack of information refinements,
this multi-layer attention should be replaced with a dynamic
alternative. Meanwhile, inspired by the Dynamic Routing
in the recent work of CapsNet (Sabour, Frosst, and Hinton
2017), in this paper we reveal the possibility of performing
multi-step attentions in a dynamic one-component setting.
In CapsNet, the routing algorithm updates the coupling co-
efficients between capsules in lower and upper layers via it-
erations, which further determine the contributions of input
capsules. We have found that such an intention is similar to
the attention mechanism for evaluating the importances of
input visual signals.

To this end, we propose a dynamic algorithm towards ro-
bust and highly efficient attention, namely Dynamic Capsule
Attention (CapsAtt)1, as shown in Fig.1(right) and Fig.2.a.
CapsAtt draws on the idea of CapsNet and treats vectors
in the feature matrix as underlying capsules. The attention
output is regarded as an overlying capsule obtained through
dynamic interactions with these underlying capsules. In con-
trast to the traditional prediction-based calculation of atten-
tion weights, CapsAtt directly uses the coupling coefficients
between modalities to determine the importances of input
features. It also discards redundant projection matrices to
make the model much more compact. Conclusively, CapsAtt
has three major advantages:

• It performs the multi-step attentions by using only one
attention layer and avoids the vanishing gradient problem
of the traditional stacked attention layers.

• It greatly reduces the number of parameters, making mod-
els more compact and robust.

• It is general and applicable to most of the existing
attention-driven models.

To validate the merits of the proposed CapsAtt, we first
conduct extensive experiments on three VQA datasets, i.e.,
COCO-QA (Ren, Kiros, and Zemel 2015), VQA1.0 (An-
tol et al. 2015) and VQA2.0 (Goyal et al. 2017). The ex-
perimental results show that, CapsAtt can obtain significant
improvements on all three datasets compared with the clas-
sic multi-step attention model. With a much smaller num-
ber of parameters and a simple fusion strategy, our approach
also achieves near or better performances compared with
other benchmark models, like MCB (Fukui et al. 2016) or

1https://github.com/XMUVQA/CapsAtt

BUA (Teney et al. 2018). To further validate the general-
ization ability of CapsAtt, we also conducts experiments on
COCO-Caption (Chen et al. 2015), where competitive per-
formance is also obtained for the task of image captioning.

Related Work
Attention mechanism is a process of mimicking human cog-
nition that focuses on most related information to a vision
and/or language modeling task. The concept of attention
mechanism has been studied in many works (Tang, Srivas-
tava, and Salakhutdinov 2014; Ba, Mnih, and Kavukcuoglu
2014; Mnih et al. 2014), among which the most widely-used
structure might resort to that in (Bahdanau, Cho, and Ben-
gio 2014). In the task of neural machine translation (NMT),
(Bahdanau, Cho, and Bengio 2014) uses the hidden state
of the decoder to attend to the collection of hidden states
generated by the encoder, and then outputs a weighted-sum
vector for word prediction. The attention mechanism was
further introduced to the task of visual question answer-
ing (VQA) by (Xu and Saenko 2016; Yang et al. 2016).
In VQA, the visual regional feature matrix becomes the
collection of features to attend, and the reference vector
is the question feature. However, the increasing difficulty
of questions in VQA often exceeds the ability of a single-
step attention. In this case, multiple-glimpse based atten-
tions were further proposed to refine the visual/textual infor-
mation, such as the multi-step attentions in (Yang et al. 2016;
Vaswani et al. 2017) and the co-attentions in (Lu et al. 2016).
Attention mechanism is also applied to many other tasks in-
cluding image captioning (Xu et al. 2015; Lu et al. 2017), vi-
sual grounding (Fukui et al. 2016), video captioning (Song et
al. 2017) and text comprehension (Xiong and Socher 2016).

Dynamic Capsule Attention
The Attention Mechanism
Since there are various attention mechanisms proposed in
the literature, we do not intend to explore all potential de-
signs of attention models in this paper, e.g., the selection
of fusion approaches or input features. Instead, we aim at
showing how to use a single attention layer to perform multi-
step attentions. Therefore, we take the most commonly used
attention framework (Ba, Mnih, and Kavukcuoglu 2014;
Xu et al. 2015; Yang et al. 2016) as baseline. Before intro-
duction, definitions of feature matrix and reference vector
are given first:

• Feature matrix refers to a collection of feature vectors
to attend. In different tasks, its representation varies. In
VQA (Yang et al. 2016) or image captioning (IC) (Xu et
al. 2015), it is the feature maps of an image generated by
a convolutional neural network. And in NMT (Bahdanau,
Cho, and Bengio 2014), it is a collection of hidden states
of the encoder.

• Reference vector is used to determine the attention
weights of different vectors in the feature matrix. In VQA,
it is the question feature, while in IC and NMT, it is the
hidden state of the decoder in the previous step.
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Figure 2: Illustrations of the proposed Dynamic Capsule At-
tention (a) and the corresponding VQA model (b). In (a), s is
the output capsule which is initialized by the reference vec-
tor h. fi is the vector in the feature matrix F. Wh and Wf

are projection matrices. ci is the coupling coefficient which
can be regarded as the attention weight. In (b), “FC” refers
to the fully-connected layer.

Problem Setup. Given a feature matrix F ∈ Rn×K ,
whereK denotes the number of feature vectors and h ∈ Rm

is the reference vector, the attention based prediction aims at
maximizing the following conditional probability:

P (y|h,F) = g (h, fa) , (1)

where fa ∈ Rn is the attention feature which is a weighted-
sum vector of F.

Based on h, an attention model first generates a probabil-
ity distribution on vectors fi ∈ Rn of F, and then obtains
fa. This process is formulated as:

fa =

K∑
i

αifi, (2)

where αi is the attention weight of the i-th feature vector
fi in Fv . It is often based on the joint representation of two
modalities, and is computed by:

αi =
exp (ei)∑K
j exp (ej)

,

where ei = ss · F (h, fi) .

(3)

Here, ei is the log prior, ss ∈ Rm is the weight vector,
and F (·) is any fusion methods, which often includes two
weight matrices, Wh ∈ Rm×d and Wf ∈ Rn×d, to project
h and fi onto the same semantic space.

The Multi-Step Attention. In the traditional setting of
multi-step attentions (Yang et al. 2016), the model uses fa
in the previous step to refine the reference vector h, and then
performs attention again. The t-step attention result for the
i-th feature in F is calculated by:

αt
i =

exp (eti)∑K
j exp

(
etj
) ,

where eti = Wt
s · F (ht, fi) ,

ht = F
(
ht−1, f t−1a

)
.

(4)

Algorithm 1 Dynamic Capsule Attention
Input: feature matrix F and reference vector h
Output: coupling coefficients c and the output capsule s

1: Initialize projection matrices, Wf and Wh

2: Project F and h, and obtain f ip ∈ Fp and hp
3: Initialize s0 with hp
4: for t in N iterations do
5: Obtain coupling coefficients: ci ← softmax (bi)

6: Obtain weighted-sum feature: fpa ←
∑K

i cif
i
p

7: Update output capsule: st ← st−1 + fpa
8: Update agreements: bi ← f ip

> · st + bi

9: end for
10: return c, sN .

After that, the attention feature f ta is computed again by
Eq.2. Notably, weight matrices used in each layer are sep-
arated.

Capsule Attention
To achieve the multi-step reasoning with one attention layer,
we propose an iterative attention algorithm, termed as Dy-
namic Capsule Attention (CapsAtt). Inspired by the Cap-
sNet, CapsAtt treats each vector in the feature matrix F as an
underlying capsules. The attention output is the only upper
capsule that contains information related to the prediction.

Concretely, the output capsule s is initialized with the
projected reference vector hp, which is denoted as s0 =
σ(Whh). In the t-th iteration, the output capsule is calcu-
lated by the following:

st = st−1 +

K∑
i

cif
i
p, f ip = σ (Wffi) , (5)

where ci is the coupling coefficients indicating the contri-
butions of the underlying capsules to the overlying one .
Note that, the sum of coupling coefficients between capsules
in the feature matrix and the output capsule adds up to 1.
Therefore, we treat them as the attention weights over F.

The coupling coefficient ci is determined by a “routing
softmax” whose initial logit is denoted as bi. bi is the log
prior probability that the capsule i should be coupled to the
output capsule s. Then, the coefficients is calculated by:

ci =
exp (bi)∑K
j exp (bj)

. (6)

The log prior is initialized with zero and then updated by
adding agreements between the underlying capsules and the
output capsule, which is calculated by:

bi = bi+ f ip
> · st−1. (7)

These agreements are added to log priors after each routing.
The detailed process is presented in Alg.1.

In CapsNet, s is considered as the total input of a capsule
and is further “squashed” using a non-linear function to ob-
tain a vector output v (Sabour, Frosst, and Hinton 2017). In
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contrast, we use s directly as the capsule output in CapsAtt,
which is the main difference between these two works. To
explain, CapsNet uses the length of v to represent the prob-
ability that the entity represented by the capsule is presented
in the current input (Sabour, Frosst, and Hinton 2017). In
CapsAtt, the output vector is to represent both the feature
matrix and the reference vector. Therefore, the informa-
tion contained in this vector is highly correlated with the
final prediction task. Accordingly, we discard the “squash-
ing” function that may introduce information loss. The out-
put capsule s is further used for model predictions, and the
gradients of CapsAtt can be calculated by using a standard
back-propagation.

CapsAtt for VQA
We first apply the proposed CapsAtt to the task of visual
question answering (VQA), the structure of which is de-
picted in Fig.2.b. In VQA, the training example is a triplet
(I,Q, a) , where I denotes the image, Q is the question
and a is the corresponding answer. The image I is first pro-
cessed by a convolution neural network (CNN) or a Faster
R-CNN network (Ren et al. 2017) to obtain the regional vi-
sual feature matrix, denoted as F ∈ Rn×K . Then we use
a bi-directional GRU network to process the input question
and obtain the question feature h ∈ Rm, which is the con-
catenation of the last hidden states of forward and backward
GRUs.

The visual and textual features are fed to CapsAtt to per-
form attentions. The output capsule from CapsAtt is used
as the joint representation of two modalities, and two fully-
connected layers are followed before the final prediction.

On datasets like COCO-QA where each question has only
one answer, we use the softmax cross-entropy as the loss
function. When a question is associated with a list of an-
swers, such as that in VQA1.0 and VQA2.0, we treat the pre-
diction as a multi-label classification by following the setting
in (Teney et al. 2018). The loss function is then defined as:

L =

N∑
i

yi log (pi)− (1− yi) log (pi) , (8)

where pi is the predicted probability of the i-th candidate
and yi = 1 if the i-th candidate is in the answer set .

Applying CapsAtt for Image Captioning. To examine
the generation ability of CapsAtt, we further apply it to the
task of image captioning (IC). The input image is also pro-
cessed by CNN/Faster R-CNN to obtain the visual feature
matrix. The language decoder is an LSTM unit, and we use
its hidden state of the current step, ht, as the reference vec-
tor. Based on ht, CapsAtt attends to the visual feature matrix
to produce the output capsule s, which is followed by a FC
layer and then is used to predict the word yt of the current
step. Following the setting in (Xu et al. 2015), the loss func-
tion is the averaged softmax cross entropy of all steps.

Experiments
The main purpose of our experiments is to prove that the pro-
posed CapsAtt can achieve multi-step attentions with only

Table 1: Evaluation results on COCO-QA.

Method Objects Number Color Location
( 70%) (7%) (17%) (6%)

SAN-1layer (LSTM) 62.5 49.0 54.8 51.6
SAN-2layer (LSTM) 63.6 49.8 57.9 52.8
SAN-1layer (CNN) 63.6 48.7 56.7 52.8
SAN-2layer (CNN) 64.5 48.6 57.9 54.0

CapAtt-Iter1 64.4 49.2 57.0 54.2
CapAtt-Iter2 64.7 49.5 59.5 55.8
CapAtt-Iter3 65.0 50.2 61.3 56.3
CapAtt-Iter4 64.8 50.0 62.0 56.0

*The number under the question type indicates the percentage
of this type in the dataset.

one attention layer, and obtain better performance than the
traditional multi-step attention models, such as the stacked
attention network (SAN) in (Yang et al. 2016). Besides, we
also compare CapsAtt with the state-of-the-arts.

Datasets
COCO-QA (Ren, Kiros, and Zemel 2015) is a VQA dataset
which is automatically generated by image captions of MS
COCO images. It contains 123,287 images with 78,736
training questions and 38,948 test questions. All questions
can be divided into four types, namely object, quantity,
color and location. Each answer contains only one word.
The metric we used is the classification accuracy. VQA1.0
dataset contains 200,000 natural images from MS-COCO
with 614,153 human annotated questions in total. Each ques-
tion has 10 free-response answers. The whole dataset is di-
vided into three splits, in which there are 248,349 examples
for training, 121,512 for validation, and 244,302 for test-
ing. VQA2.0 is developed based on VQA1.0, and its images
are also from MS-COCO. It has about 1,105,904 image-
question pairs, in which 443,757 examples are for training,
214,254 are for validation, and 447,793 are for testing. On
these two datasets, we evaluate all methods under the mode
of Open-ended which means no answer options are given
during training and testing. The metric we used is the VQA
accuracy proposed in (Antol et al. 2015).

Baselines
We mainly compare our CapsAtt model with the classic
multi-step attention model proposed in (Yang et al. 2016),
denoted as SAN. Besides, on VQA1.0 and VQA2.0 datasets,
we also compare CapsAtt with a set of the sate-of-the-art
models including HiCoAtt (Lu et al. 2016), ASK (Wu et
al. 2016), VQA Machine (VQA-M) (Wang et al. 2017),
MCB (Fukui et al. 2016), MLB (Kim et al. 2017), MFB (Yu
et al. 2017) and BUA (Teney et al. 2018) etc. HiCoAtt is
a model that performs co-attentions on both visual and text
features. ASK and VQA-M are methods that apply external
knowledge or techniques to the VQA learning. MCB, MLB
and MFB are two-glimpse attention models using bilinear
pooling based fusion approaches for capturing interactions
between two modalities, and they all show most advanced
performances in VQA. BUA are the winner of VQA 2017
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Figure 3: Comparisons of the parameter sizes of differ-
ent models. “SAN-1L” and “SAN-3L” dnotes SAN models
with one attention layer and three attention layers, respec-
tively. CapsAtt achieve the state-of-art performances with
only 10.8 million parameters.

Challenge, which is equipped with various tricks for the per-
formance improvement, and uses the F-RCNN features from
(Anderson et al. 2018) as the visual input.

Model Configurations
On COCO-QA, the visual feature used is the convolution
feature map before the first fully-connected layer of VGG-
16 (Simonyan and Zisserman 2014) with a size of 14×14×
512. The dimensions of forward and backward GRU units
are set to 256. So the whole dimension of the output ques-
tion feature is 512. The attention dimension in CapsAtt is
set to 512, and the ones of the two FC layers are both 512
as well. The number of answer category is set to 434. The
initial learning rate is 7e-4, which is half decayed after each
10,000 training steps. On VQA1.0 and VQA2.0, the visual
feature input is the feature map before the last pooling layer
of ResNet-152 (He et al. 2016) with a size of 14×14×2, 048.
We also use the Faster RCNN features from (Anderson et al.
2018) with a size of 36 × 2, 048, which is labeled as “FR-
CNN” to distinguish. The dimensions of GRU units, Cap-
sAtt and FC layers are set to 512, 1,024, 2,048 respectively.
The answer dimensions on these two datasets are both set
to 3,000. The initial learning rate is set to 7e-4 with a decay
step of 25,000 and a decay rate of 0.5, while the batch size
is 124. The maximum training step is set to 200,000 and the
validation step is 5,000 steps. Early stop is applied when the
performance does not increase after 5 validations.

Quantitative Analysis
We first compare CapsAtt with SAN on three VQA datasets.
Tab.1 shows the comparison results on the COCO-QA
dataset. From Tab.1 we can see that under the similar ex-
perimental setup, the proposed CapsAtt has made significant
improvements in all four tasks, especially the “color” and the
“location” with improvements up to 4.1% and 2.3%, respec-
tively. Notably, the training examples of these two tasks take
account for only a small proportions of the entire dataset,
which suggests the robustness of CapsAtt. Tab.2 displays the
comparisons on VQA1.0 and VQA2.0 dataset, and the im-
provements are more significant. The overall improvements

Table 2: Comparisons with the state-of-the-arts on the Open-
Ended task of VQA1.0 and VQA2.0. Tested on the test-dev
split.

VQA1.0 Others Num. Yes/No All

SMem (Xu and Saenko 2016) 46.1 36.6 80.9 58.0
NMN (Andreas et al. 2016) 44.0 38.0 81.2 58.6
SAN-2layer (Yang et al. 2016) 46.1 36.6 79.3 58.7
ASK (Wu et al. 2016) 45.2 38.4 81.0 59.2
DMN (Xiong and Socher 2016) 48.3 38.3 80.5 60.3
HiCoAtt (Lu et al. 2016) 51.7 38.9 79.4 61.8
VQA-M (Wang et al. 2017) 53.0 38.4 81.5 63.1
MCB+att (Fukui et al. 2016) 54.8 37.7 82.2 64.2
MLB (Kim et al. 2017) 54.7 37.9 84.0 65.0
MFB+Att (Yu et al. 2017) 55.2 38.3 82.5 64.6

CapsAtt-Iter2 53.5 39.5 81.7 63.7
CapsAtt-Iter3 53.3 39.7 82.8 63.9
CapsAtt-Iter3+FRCNN* 56.4 42.4 83.7 66.1

VQA2.0 Others Num. Yes/No All

LSTM-Q (Goyal et al. 2017) 41.8 35.2 41.8 54.2
SAN-2layer (LSTM) 50.1 37.5 78.34 58.9
MCB (Fukui et al. 2016) 53.3 38.2 78.8 62.3
BuA+VG (Teney et al. 2018) 52.6 39.5 79.2 62.1
BuA+VG+FRCNN* 56.1 44.2 81.8 65.3

CapsAtt-Iter2 51.4 40.7 79.37 61.7
CapsAtt-Iter3 51.7 41.1 79.7 62.1
CapsAtt-Iter3+FRCNN* 55.5 45.1 82.6 65.5

* -FRCNN denotes that the use of regional features from (Anderson et al. 2018).

on these two datasets are up to 5.2% and 2.2%, respectively.
Under a similar setting, these results are quite significant.

We explain these obvious improvements in two aspects.
The first is that the traditional attention method uses a linear
layer to predict the importance of each region based on the
fused features, and then obtain the attention weights via a
Softmax layer. However, in CapsAtt, the importance of each
region is directly determined by the coefficient between its
feature and the reference vector, rather than by predictions.
So when the multi-modal space is well learned, the mea-
surement of attention weights will be more accurate by na-
ture. The other reason is that CapsAtt only uses one atten-
tion layer with only two projection matrices for multi-step
reasoning. Such a design not only reduces the number of pa-
rameters, but also avoids the semantic inconsistency among
multi-modal spaces of different layers.

Next, we compare CapsAtt with the state-of-the-art mod-
els on VQA1.0 and VQA2.0. As shown in Tab.2, Cap-
sAtt achieves state-of-the-art performances with a simple
structure and much fewer parameters on both two datasets.
For models that use external knowledge or incorporating
advance CV or NLP techniques, e.g., AKS and VQA-M,
the improvements of CapsAtt are still significant. Com-
pared with attention models with simple fusion approaches
(element-wise product or addition), e.g., SAN, HiCoAtt,
SMem (Xu et al. 2015) and DMN (Xiong and Socher 2016),
CapsAtt reports a much superior performance. For optimal
performance, MCB, MLB and MFB also use multi-glimpse
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1. Question:  Is this woman holding a phone?
Image SAN-Att.1 SAN-Att.2

Answer: sandals SAN Predict: No

CapsAtt-Att.1 CapsAtt-Att.2

CapsAtt Predict: Not

3. Question:  Are these two people kids?
Image SAN-Att.1 SAN-Att.2

Answer: sandals SAN Predict: No

CapsAtt-Att.1 CapsAtt-Att.2

CapsAtt Predict: No

2. Question:  What is the boy doing in the air?
Image SAN-Att.1 SAN-Att.2

Answer: Skateboarding SAN Predict: Snowboarding

CapsAtt-Att.1 CapsAtt-Att.2

CapsAtt Predict: Skateboarding

5 Question:  What color is hair of the little girl?
Image SAN-Att.1 SAN-Att.2

Answer: 

Blonde
SAN Predict: Brown

CapsAtt-Att.1 CapsAtt-Att.2

CapsAtt Predict: Blonde

4. Question:  Is the towel reflected in the mirror?
Image SAN-Att.1 SAN-Att.2

Answer: Not SAN Predict: Yes

CapsAtt-Att.1 CapsAtt-Att.2

CapsAtt Predict: Not

6. Question:  What logo is on the stand with the man on it?
Image SAN-Att.1 SAN-Att.2

Answer: Nike SAN Predict: Lacoste

CapsAtt-Att.1 CapsAtt-Att.2

CapsAtt Predict: Nike

7. Question:  What does the young girl hold
SAN-Att.1 SAN-Att.2 SAN-Att.3 SAN-Att.4 SAN-Att.5

CapsAtt-Att.1 CapsAtt-Att.2 CapsAtt-Att.3 CapsAtt-Att.4 CapsAtt-Att.5

8. Question:  What is the color of the motorcycle?
SAN-Att.1 SAN-Att.2 SAN-Att.3 SAN-Att.4 SAN-Att.5

CapsAtt-Att.1 CapsAtt-Att.2 CapsAtt-Att.3 CapsAtt-Att.4 CapsAtt-Att.5

Figure 4: The visualized attentions of SAN and the proposed CapsAtt. Comprared to SAN, our CapsAtt can locate the potential
answer area more quickly (1-3) and precisely (4-6), and avoid the vanishing gradient problem (7-8).

Table 3: Evaluations of Caps-Iter3 with different dimension
settings on VQA1.0 test-dev set. Trained on the train+val
split with the FRCNN features. a, f and g are dimensions of
attention, fully-connected layers and the GRU unit.

Setting Acc. Para.Size Model Size

a = 1024, f = 1024, g = 512 66.10 10.8M 183mb

a = 2048, f = 2048, g = 1024 66.18 25.6M 403mb
a = 1024, f = 2048, g = 512 65.94 18.1M 305mb
a = 512, f = 512, g = 256 65.22 4.2M 113mb
a = 256, f = 512, g = 256 64.28 3.4M 104mb

“M” is the unit of the parameter size which is one million, and “mb” denotes the
saved model size which is one mega byte2.

attention methods, but their main advantage is their bilinear-
pooling based fusions, which have been shown to effectively
capture interactions between two type of features (Gao et
al. 2016). Even so, with the same visual input, their advan-
tages are still margin. Notably, the parameter size of Cap-
sAtt is much smaller than theirs, as shown in Fig.3. Tak-
ing the benchmark model MCB for example, the param-
eter amount of CapsAtt is only about 15% of its amount.
When equipped with the Faster R-CNN features from (An-
derson et al. 2018), CapsAtt achieves the best performances
on both two datasets. On VQA2.0, the performance and the
parameter size of BUA (Teney et al. 2018), i.e., the winner
of VQA challenge 2017 is close to those of CapsAtt. Com-

Table 4: Performances on the test portion of Karpathy et
al. (Karpathy and Feifei 2015)’s splits on COCO dataset.
V ,R and F denote using features of VGG, ResNet and FR-
CNN, respectively.

Method BLEU-1 BLEU-4 METEOR CIDEr

Karpathy et.al. 2015V 62.5 23.0 19.5 66
Xu et.al. 2015V 70.9 24.3 23.9 -
Lu et.al. 2017 (Spatial) R 73.4 32.5 25.1 99
Lu et.al. 2017 (Adapt)V 74.2 33.2 26.6 108
Lu et.al. 2018F 75.5 34.7 27.1 107

CapsAtt-Iter2 V 71.3 30.5 24.6 94
CapsAtt-Iter3 V 71.7 29.4 24.5 95
CapsAtt-Iter2 F 75.6 34.0 26.8 108

pared with BUA, CapsAtt merits in requiring no complex
pre-processing, e.g., pretraining the classifier, and additional
training examples. Overall, with a simple structure and a
small parameter size, CapsAtt still achieves advanced per-
formances in VQA.

We also record the performances of different model set-
tings and the corresponding sizes of model parameters, the
results of which are shown in Tab.3. The first observation is
that the effects of parameter size to CapsAtt is small. The
performance gap between the largest model and the small-
est one is only 1.82. More importantly, even with a small
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(1) Image

Ground Truth:

a tabby cat is laying on a 

white keyboard

ShowAttendTell

Generated Caption:

a cat is sitting on a 

laptop computer

ShowAttendTell

Generated Caption:

a cat is sitting on a 

laptop computer

CapsAtt-Iter2

Generated Caption:

a cat is laying on a 

keyboard on a desk

CapsAtt-Iter2

Generated Caption:

a cat is laying on a 

keyboard on a desk

(2) Image

Ground Truth:

a stop sign with some 

graffiti on it at night

ShowAttendTell

Generated Caption:

a stop sign with a stop 

sign on it

ShowAttendTell

Generated Caption:

a stop sign with a stop 

sign on it

CapsAtt-Iter2

Generated Caption:

a red sign with a stop 

sign on it

CapsAtt-Iter2

Generated Caption:

a red sign with a stop 

sign on it

(3) Image

Ground Truth:

a black bear is walking 

through tall green grass

ShowAttendTell

Generated Caption:

a bear is standing in a 

field of flowers

ShowAttendTell

Generated Caption:

a bear is standing in a 

field of flowers

CapsAtt-Iter2

Generated Caption:

a black bear is standing 

in the grass

CapsAtt-Iter2

Generated Caption:

a black bear is standing 

in the grass

(4) Image

Ground Truth:

a man stands with his 

surfboard at the beach

ShowAttendTell

Generated Caption:

a man standing on a beach 

holding a surfboard

ShowAttendTell

Generated Caption:

a man standing on a beach 

holding a surfboard

CapsAtt-Iter2

Generated Caption:

a person on a beach 

with a surfboard

CapsAtt-Iter2

Generated Caption:

a person on a beach 

with a surfboard

Figure 5: Visualizations of the attention results of CapsAtt and ShowAttendTell when predicting the underlined words. Com-
pared with ShowAttendTell, CapsAtt focus on the described objects more precisely and generates more accurate descriptions.

amount of parameters (3.3 millions), CapsAtt still has a good
accuracy, while its model size is only about 100mb. Such a
result not only proves the efficiency and robustness of our al-
gorithm, but also provides good evidence in applying VQA
into resource (memory)-limited scenarios.

Qualitative Analysis
We visualize the attention results of the proposed CapsAtt
and the traditional multi-step attention model SAN, which
are given in Fig.4. Eg.(1)-(6) shows the comparisons of two-
step attentions generated by CapsAtt and SAN. From these
examples, we first observe that both two approaches shows
a step-by-step reasoning during attentions. A slightly differ-
ence is that, when the question is easy or the answer entity
in image is certain, CapsAtt can locate the potential answer
areas more quickly compared to SAN, e.g., Eg.(1)-Eg.(3).
The other observation is that, compared with SAN, Cap-
sAtt shows a better ability of modeling the correlation be-
tween the question content and visual information. Taking
the Eg.(4)-(5) for examples, CapsAtt understands the recog-
nition conditions in questions well and finds the correspond-
ing visual entities for answers, accurately. In contrast, the fo-
cus of SAN is obviously not in line the purpose of the given
questions. Eg.(7)-(8) displays the 5-step attentions of Cap-
sAtt and SAN. Unexpectedly, the first three steps of atten-
tions of SAN are basically inactive. To explain, SAN is built
with attention layers and has a structure similar to the for-
ward network. When the number of attention layers grows,
the gradients become more difficult to be back-propagated.
Meanwhile, this does not happen in SAN that uses three or
fewer attention layers. This indicates that CapsAtt can help
models to be free from the vanishing gradient problem.

Extending CapAtt to Image Captioning
Dataset. COCO-captions (Ren, Kiros, and Zemel 2015) is
the largest image captioning dataset at present. It has 82,783,
40,504 and 40,775 images for training, validation and test,
respectively. Each image has 5 human annotated captions.
Model Configurations. VGG-16 and ResNet-152 are both
used as the visual backbone. We also test the Faster-RCNN
features from (Anderson et al. 2018) which is labeled as

“FRCNN”. When using VGG-16, the dimensions of LSTM
and CapsAtt is set to 512. For ResNet and FRCNN features,
we set the dimensions of LSTM and CapsAtt to both 1,024.
During training, the learning rate is 4e-4 for the language
model and 1e-4 for the visual backbones. The batch size is
80 while the max number of training epoch is 40. The op-
timizer is Adam, while gradient clip is set to 5.0. For CNN
backbones, their parameters are fixed in the first 20 epochs,
and after that they will be trained together with the language
model. Early stop is also applied. We test the model with
beam sizes of 1,2,3 and 7, and chose the best results.
Analysis. We further evaluate the proposed CapsAtt on the
COCO-Caption dataset. The results are shown in Tab.4.
We first observe that CapsAtt surpasses the classic at-
tention model (Xu et al. 2015) that uses one attention
layer, which confirms the generalization of our algorithms.
When equipped with the FRCNN features, CapsAtt is able
to achieve superior performances than the most recent
works that have a similar structure. Fig.5 shows the visu-
alized attention results of CapsAtt and the classic atten-
tion model (Xu et al. 2015) in IC, denoted as ShowAtt-
Tell. As can be seen from these visualizations, compared
with ShowAttTell, CapsAtt can locate the corresponding vi-
sual entity more accurately when predicting the next word.
Meanwhile, the qualities of generated by CapsAtt is better
than those of ShowAttTell. Conclusively, these experimen-
tal results confirm the generalization fo CapsAtt.

Conclusion
In this paper, we proposed a compact and robust attention al-
gorithm for visual question answering, termed as Dynamic
Capsule Attention (CapsAtt). Inspired by Capsule Networks,
CapsAtt treats visual features as underlying capsules and ob-
tains the attention output via dynamic routing. Its novelty
also includes the elimination of redundant projection ma-
trices and the measurement of attention weights based on
the coupling coefficients. Meanwhile, it replaces the tradi-
tional multi-step attentions with only one dynamic layer,
and shows a better efficiency and robustness in capturing
the deep visual-linguistic correlation. We conduct extensive
experiments on three VQA benchmark datasets, and com-
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pare CapsAtt with the classic multi-step attention model as
well as a set of the state-of-the-arts. Experimental results not
only shows the obvious improvements of CapsAtt over the
traditional attention methods, but also proves that CapsAtt
can achieve the most advanced performances with a simple
network structure and a small number of parameters. To ex-
amine its generalization ability, we apply CapsAtt to image
captioning and also obtain competitive performances.
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