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Abstract
Single image rain-streak removal is an extremely challenging
problem due to the presence of non-uniform rain densities
in images. Previous works solve this problem using various
hand-designed priors or by explicitly mapping synthetic rain
to paired clean image in a supervised way. In practice, how-
ever, the pre-defined priors are easily violated and the paired
training data are hard to collect. To overcome these limi-
tations, in this work, we propose RainRemoval-GAN (RR-
GAN), the first end-to-end adversarial model that generates
realistic rain-free images using only unpaired supervision.
Our approach alleviates the paired training constraints by in-
troducing a physical-model which explicitly learns a recov-
ered images and corresponding rain-streaks from the differen-
tiable programming perspective. The proposed network con-
sists of a novel multiscale attention memory generator and a
novel multiscale deeply supervised discriminator. The multi-
scale attention memory generator uses a memory with atten-
tion mechanism to capture the latent rain streaks context at
different stages to recover the clean images. The deeply su-
pervised multiscale discriminator imposes constraints at the
recovered output in terms of local details and global appear-
ance to the clean image set. Together with the learned rain-
streaks, a reconstruction constraint is employed to ensure
the appearance consistent with the input image. Experimen-
tal results on public benchmark demonstrates our promising
performance compared with nine state-of-the-art methods in
terms of PSNR, SSIM, visual qualities and running time.

Introduction
Rain, snow, and fog are common visual artifacts which af-
fects many vision-based applications (Zhu, Vial, and Lu
2017; Zhu et al. 2016; 2018a; 2015; Zhu, Weibel, and Lu
2016), such as drone-based video surveillance and self-
driving cars. The performance of many computer vision
systems often exhibits significant drop when they are pre-
sented with images that contain these artifacts. Hence, it is
highly practical and expected to develop automatic artifacts
removal methods (Li et al. 2017; Zhang et al. 2017b). In
this paper, we mainly focus on the problem of rain streak
removal from a single image.

∗Corresponding author: Joey Tianyi Zhou
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Input (b) Ground truth (c) Our result

Figure 1: A visual illustration of single image deraining. The
target is to recover a clean image from the input rain image.
Our method produces a recovered image with faithful color
and structure without using any paired training data.

A rain image I can be modeled as an image composition
problem (Luo, Xu, and Ji 2015):

I = X +R (1)

where X and R denote the desired clean image and the rain
streaks, respectively. Single image rain-streak removal aims
to estimate the hidden X and R from a given I , which is
an unconstrained problem because we need to estimate two
unknown variables and there are infinitely solutions if no
further regularization are imposed.

To make the rain streak removal problem trackable, exist-
ing methods can be roughly grouped into two categories:
prior-based and data-driven. The prior-based methods es-
timate the rain-streak based on various priors or assump-
tions. Typical priors include but not limited to sparse-coding
prior (Luo, Xu, and Ji 2015), low-rank prior (Chang, Yan,
and Zhong 2017) and Gaussian prior (Li et al. 2016). De-
spite remarkable progress achieved by adopting these priors,
they are easily violated in practice given the rain-streak does
not strictly follow the Gaussian or sparse distribution and the
background scenes is cluttered and contains complex illumi-
nations.

In recent, the interest has shifted to data-driven ap-
proaches which utilize labeled data with paired rain image
and rain streak to learn a deep neural network (Fu et al. 2017;
Yang et al. 2017b; Zhang and Patel 2018; Li et al. 2018).
Given an input image, the rain streaks or clean image can
be regressed with given input rain image. More recently,
inspired by the huge success of generative adversarial net-
works (GAN) in image-to-image translation tasks (Goodfel-
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low et al. 2014; Isola et al. 2017), (Zhang, Sindagi, and Patel
2017) propose a GAN-based image deraining method which
employs a generator to map input image to the ground-truth
clean image. One major limitation of the method is the ne-
cessity of paired training data and it is extremely challenging
to collect paired training data given the changing environ-
ment.

However, collecting paired training data is extremely
challenging given the changing environment. One popular
solution is simulating rain in controlled environments. How-
ever, most existing simulations are usually too simplified to
depict the complexity of real-world. Another common solu-
tion is using photo editing tools to add streak to clean nat-
ural images with a various rain-density levels with different
orientations and scales, but this method limits the scale of
training data.

In fact, one could observe that it is easier to collect a large
number of rain/rain-free images from Internet despite these
images are not in pair. Thus, it is highly excepted to develop
derain model which can utilize unpaired supervision. Note
that, CycleGAN (Zhu et al. 2017a) recently has become pop-
ular to learn cross-style image translation by using bidirec-
tional constrains with adversarial learning. Although Cycle-
GAN has achieved impressive performance in style transla-
tion, it is designed for style translation problem and may not
preserve the appearance consistency in the translated result.

Based on the above observations, we propose a novel
single image deraining method called RainRemoval-GAN
(RR-GAN) which is specifically designed based on rain im-
age composition model in Eq.1. The proposed RR-GAN is
significantly different from CycleGAN and its variants in
structure and application. More specifically, we propose a
novel generator which uses an attention memory to cap-
tures the latent rain streaks contexts in a recurrent fashion
to recover clean image X . Moreover, we propose a novel
deeply-supervised multiscale discriminator to regularize the
recovered image to look as realistic as possible to the rain-
free images. Furthermore, these latent factors are compos-
ited together as in Eq.1 to reconstruct the original rain im-
age to preserve faithful color and structure, thus avoiding
the inefficient CycleGAN’s bi-directional consistency train-
ing paradigm.

The major contributions of this work are summarized as
follows:

• To the best of our knowledge, this is one of first works to
marriage CycleGAN for single image deraining, so that
makes rain-removal training with unpaired data possible.
The novel GAN consists of a novel generator and discrim-
inator which is specifically designed by incorporating the
rain image generation model with un-paired training in-
formation.

• A novel multi-scale attention memory generator is pro-
posed with an attention memory to fuse the contexts from
coarse-scale and fine-scale densely connected network to
recurrently learns the rain-streaks to recover the clean im-
age using un-paired training data.

• A novel multiscale deeply-supervised discriminator is
proposed to regularize the generated recover image as re-

alistic as possible to the target image in terms of both low-
level details and high-level structures.

• Extensive experiments on public benchmark demon-
strates our method’s efficiency and effectiveness in terms
of quantitative and qualitative performance.

Related Work
In this section, we briefly review several recent related works
on single image de-raining and generative adversarial net-
works.

Single Image De-raining
Image deraining has been a classic image restoration prob-
lem for years. Some early methods (Zhang et al. 2006;
Garg and Nayar 2007; Santhaseelan and Asari 2015; Tri-
pathi and Mukhopadhyay 2014) exploit photometric con-
sistency and temporal dynamics for rain removal. Although
these methods achieve promising performance, they are not
applicable to the single image setting.

Unlike video-based methods, prior-based methods have
been proposed to handle single image deraining problem
by assuming the rain-streaks follows certain assumption.
There are many hand-crafted priors have been proposed, e.g.
sparse coding-based prior (Luo, Xu, and Ji 2015), low-rank
prior (Chang, Yan, and Zhong 2017) and gaussian prior (Li
et al. 2018), just to name a few. One major limitation of these
methods is that the priors are easily violated which results in
over-/under-estimation of the rain-streaks (Zhang and Patel
2018).

Recently, deep learning has become popular in both high-
level and low-level vision tasks (Cai et al. 2016; Ren et al.
2016; Yang et al. 2017a), several CNN-based methods have
also been proposed for image de-raining (Fu et al. 2017;
Yang et al. 2017b; Zhang and Patel 2018; Li et al. 2018).
In these methods, the idea is to learn a mapping between
input rainy images and their corresponding rain-streaks us-
ing a CNN structure. (Yang et al. 2017b) design a deep di-
lated network to joint detect and remove rain streaks. (Li
et al. 2018) propose incorporate recurrent neural network to
the dilaeted network of Yang et al. to preserve multi-stage
contexts. (Zhang and Patel 2018) propose to use multi-scale
densely connected network trained with additional rain den-
sity classifier to predict the rain streaks. In summary, these
methods aim to learn a mapping using synthesized rain/clean
image pairs which are hard to collect in large scale.

Our methods’s generator is similar to (Zhang and Pa-
tel 2018) as we combines coarse- and fine-scale network
for feature extraction, however we introduce a novel at-
tention memory network to learn the rain-streaks automati-
cally from data in a recurrent fashion. The attention memory
network is inspired by recent work in language translation
(Gehring et al. 2017) which shows that the performance of
machine translation models could be significantly improved
by solely using an attention model instead of using addi-
tional gate in recurrent networks as in (Li et al. 2018), which
significantly improve the inference speed. Moreover, our
generator can explicitly learns two disentangled latent pa-
rameters which corresponds to clean image and rain streaks
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from data without paired information, hence significantly re-
duce the labeling efforts.

Generative Adversarial Networks
Recently generative adversarial networks (Goodfellow et al.
2014; Arjovsky, Chintala, and Bottou 2017; Zhao, Mathieu,
and LeCun 2017) have achieved significant progress. The
basic idea of GANs is transforming the white noise (or other
specified prior) through a parametric model to generate can-
didate samples with the help of a discriminator and a gener-
ator. By optimizing a minimax two-player game, the gener-
ator aims to learn the training data distribution, and the dis-
criminator aims to judge that a sample comes from the train-
ing data or the generator. An image can be translated into an
output by the conditional generator, which has various appli-
cations, such as image super resolution (Ledig et al. 2017),
text2image (Zhang et al. 2017a), image2image (Yi, Zhang,
and Gong 2017). However, conditionalGAN requires paired
training images, whose ground-truth can be very difficult to
get.

This paper is inspired by the recent popular Cycle-
GAN (Zhu et al. 2017a) which can translate one image from
one domain to another domain without paired information.
However, our work is remarkably different from CycleGAN.
In brief, our architecture is specifically designed for image
deraining so that the original image’s color and structure
could be well preserved. To the best of our knowledge, this
could one of the first works to develop specific single im-
age deraining model that incorporates un-paired adversar-
ial learning. Our network is remarkably distinct from Cy-
cleGAN in following aspects. First, we proposes a novel
attention memory generator using multiscale densely con-
nected networks and attention memory in a recurrent fashion
to learn discriminative rain features and latent rain streaks
to recover the clean image. Furthermore, our network con-
tains of a novel deeply-supervised multi-scale discriminator
training regime, so that the local details to global image ap-
pearance is enforced to look realistic to the clean image set.
Furthermore, these latent factors are composited together as
in Eq.1 to reconstruct the original rain image to preserve
faithful color and structure, thus avoiding the inefficient Cy-
cleGAN’s bi-directional consistency training paradigm.

Differentiable Programming
Our work belongs to the family of differentiable program-
ming which treats a program as neural network such that
the program can be parametrized, automatically differenti-
ated and optimizable. The first well-known work of differ-
entiable programming is the Learned ISTA (LISTA) (Gregor
and LeCun 2010), which unfolds the popular l1 solver ISTA
as a simple RNN such that the number of layers corresponds
to the iteration number and the weight corresponds to dic-
tionary. The LISTA’s RNN paradigm have been applied in
a wide range of tasks, e.g. hashing (Wang, Ling, and Huang
2016), classification (Wang et al. 2016), sparse coding (Zhou
et al. 2018), image dehazing (Zhu et al. 2018b) and etc.

Different from conventional differentiable programming
using RNN with difficult-to-interpret variables, our method

reformulate the image degradation model using a feed-
forward convolutional neural network with prior knowledge.
Therefore, our formulation is more interpreatable and effi-
cient then conventional RNN based DP solver.

The Method
As shown in Fig.2, our RR-GAN consists of two networks,
namely, a multiscale attention memory generator (MAMG)
and a multiscale deeply-supervised discriminator (MDSD)
are specifically designed for single image deraining. In brief,
MAMG uses an attention memory to recurrently attend to
the rain-streak regions for the purpose of recovery of the
clean image. MDSD employs a deeply supervision to re-
cover image from the generator by enforcing it look as re-
alistic as possible to the clean image set.

Multiscale Attention Memory Network
The multiscale attention memory network consists of an at-
tentive memory network and a U-Net autoencoder with skip-
connection. The former uses a multiscale feature extractor
Gf to extract rain-relevant regions features. To achieve bet-
ter performance, Gf combines the complementary coarse-
scale and dense-scale context using recently proposed dense
connection (Huang et al. 2017). The fine-scale dense net-
work applies densely connected modular with small ker-
nels to capture fine-scale structures relevant to rain re-
gions with a structure of C(1, 3)-C(3, 3)-C(5, 3)-C(7, 3)
, where C(k1, k2) denotes the convolution with a filter of
size k1 × k1, an output channel number of k2 and a stride
of 1 with ReLu output (Krizhevsky, Sutskever, and Hinton
2012). Each layer are densely connected with other layers.
The coarse-scale branch applies a similar architecture but
with larger kernels to capture longer-range context, whose
structure is of C(7, 3)-C(9, 3)-C(11, 3)-C(1, 3). The feature
maps Xc and Xf from coarse-scale and fine-scale networks
respectively, are concatenated and fed through the attention
memory network to learn rain regions.

Visual attention models are adopted to localize relevant
regions in an image so that the task-specific features are ob-
tained. In this paper, we introduce visual attention to learn
where the rain-regions should be focused on. As shown in
our architecture in Fig. 2, we present an attention memory
network which is inspired by recent convolutional sequence-
to-sequence learning task in machine translation (Gehring et
al. 2017). Our attention memory network sequentially uses
attention to replace the recurrent networks and the attention
map is iteratively refined given the accumulated context. At
each time stamp t, our attention memory network concate-
nates Xc, Xf , Mt−1, and St−1, where Xc is the input from
coarse-scale network, Xf is from fine-scale network, Mt−1
is the rain streak mask at the previous stage t − 1, and St

denotes the state memory in previous stage. Note that, the
initial M0 and S0 are set to zero. The detailed updating rule
is as follows:

at = σ(W1[Xc, Xf ,Mt−1, St−1] + b1)

St = at · St−1

Mt = tanh(W2 ∗ St + b2)

(2)
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Figure 2: The pipeline of our method. Our RR-GAN consists of a multi-scale attention memory generator and a multiscale
deeply-supervised discriminator. The generator uses un-paired rain and clean images to train an attention memory to aggregate
the latent rain streak context from different stages. The rain image together with the latent rain-streak imasks are used as an
input to the U-Net to generate the recovered image. This recovered image is regularized by a deeply-supervised multiscale
discriminator so that its appearance is as close as possible to the clean images used for training in terms of both low-level
details and global-level structures.

where W1 and b1 are the weight and bias of a convolutional
layer with 3 × 3 kernels of one neuron, σ denotes the sig-
moid function σ(x) = 1

1+exp(−x) . W2 and b2 are the weight
and bias of a deconvolutional layer with 3 × 3 kernels of
one neuron, which are used to output the rain-streak mask.
In Fig.2, one can observe that the rain mask is recurrently
improved by using the contexts from the previous stages.
The input image together the final attention map are con-
catenated to feed into the U-Net auto-encoder for generat-
ing the rain-free image. Our deep autoencoder includes 16
convolutional (relu) blocks, which adopts skip connections
to prevent blurred outputs. To show the effectiveness of our
method, Fig. 3 shows the visual results of different gener-
ators, the one which combines attention memory and skip
U-Net auto-encoder yielded best visual result.

Multiscale Deeply-Supervised Discriminator
The function of discriminator is to regularize the output from
the generator so that the generated image looks as realistic as
possible to the target set clean images. Recently, a shallowly-
supervised discriminator with discriminator with supervi-
sion at the last layer has become popular in recent popular
gan architecrtures (e.g CycleGAN (Zhu et al. 2017b) and

ConditionalGAN (Isola et al. 2017)) which achieves good
image translation performance. However, such shallowly-
supervised discriminator overlooks the low-level details and
global structures which are useful for image enhancement
tasks.

To overcome the above disadvantage, we propose a novel
deeply-supervised discriminator which consists of four con-
volutional layers, which is with the structure of C(3, 64)-
C(3, 128)-C(3, 256)-C(3, 512), where each convolutional
layer has a stride of two. Each convolutional feature map
will be passed through an instance normalization layer with
Leaky-ReLu activations and then be fed into the next con-
volutional layer. Moreover, each side-output follows by an
additional convolution layer of C(1, 1) with sigmoid to out-
put the probability of each patch to the clean images. Hence
we will have four predictions which provide multiple level
supervision to provide regularization at to make the gener-
ated image as realistic as the ground-truth image in terms of
low-level details and high-level structures.

Objective Function
To stabilize the training of discriminator D, we minimize an
objective function Ld that consists of two terms LDreal

and
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Figure 3: A visual comparison on the effectiveness of dif-
ferent generators. (a) Input; (b) the result of using context
auto-encoder alone; (c) the result of our generator without
using attention memory; (d) the result of our multiscale at-
tention memory generator.

LDfake
as in (Mao et al. 2017):

Ld(G,D) =LDreal
+ LDfake

=
1

2K

K∑
i=1

{Ey(1−Di(x, y))
2+

Ex(Di(G(x))
2}

(3)

which aims to train the discriminator Di so that it can try to
differentiate the fake examples G(x) from generator G and
the real clean image y, where Ex is the expectation of x and
Di∈{1,2,...,K} is the classifier at ith level side-output.

On the other hand, when we train the generator G, we
optimize an objective function Lg which consists of a MSE
loss Lr (Ren et al. 2016) and an adversarial learning loss
Ladv:

Lg = Lr + γLadv (4)
These three terms are designed for minimizing the recon-
struction error and improving the perceptual quality, re-
spectively. γ is a trade-off factors set according to cross-
validation.

The MSE Loss Lm encourages the network to enforce
the appearance consistency between the recovered image
X and input image Il using the estimated rain mask R by
minimizing the discrepancy between the composite image
It = X +R and the input image Il:

Lr =
1

C ×W ×H

W∑
i=1

H∑
j=1

C∑
c=1

‖Ii,j,ct − Ii,j,cl ‖2 (5)

TheW ,H , andC are the width, height, and channel number
of the input image It.

The Adversarial Loss Ladv encourages the generator G
to recover image G(x) as realistic as the ground-truth image

y by assigning a real label 1 to recovered example G(x):

Ladv(G,D) =
1

K

K∑
i=1

Ex(1−Di(G(x)))
2 (6)

where K is the layer number of discriminator, Di is i-th
level classifier to classify whether an image is from the clean
image or generator G(x). The term penalizes the details of
recovered image that looks different from clean images.

Training Details
During training, a 286 × 286 image is randomly cropped
from the input image (or its horizontal flip) of size 256×256.
Adam is used as optimization algorithm with a mini-batch
size of 1. The learning rate starts from 0.001. The models
are trained for up to 10 epochs to ensure convergence. We
use a weight decay of 0.0001 and a momentum of 0.9. The
entire network is trained using the Pytorch framework. Dur-
ing training, we set γ = 1. All the parameters are defined
via cross-validation using the validation set.

Experiments
We evaluate our method on public benchmark. We quan-
titatively evaluate the rain-removal performance using two
commonly used metrics, including peak signal to noise ratio
(PSNR) (Huynh-Thu and Ghanbari 2008) and structure sim-
ilarity index (SSIM) (Wang et al. 2004) for evaluation. We
also provide ablation study of each component proposed to
demonstrate their effectiveness.

We use Rain800 (Zhang and Patel 2018) for benchmark-
ing. The Rain800 dataset contains 700 synthesized images
for training and 100 images for testing using randomly sam-
pled outdoor images.

Comparing Methods We compare our proposed ap-
proach with 7 state-of-the-art methods, including image de-
composition (ID) (Kang, Lin, and Fu 2012), discriminative
sparse coding (DSC) (Luo, Xu, and Ji 2015), layer priors and
(LP) (Li et al. 2016), DetailsNet (Fu et al. 2017), and joint
rain detection and removal (JORDER) (Yang et al. 2017b)
and RESCAN (Li et al. 2018).

Results on Synthetic Datasets Table 1 shows quantita-
tive results on the Rain800. One can observe that our RR-
GAN considerably achieves promising results in terms of
both PSNR and SSIM on Rain800.

From Table 1, data-driven methods, especially the deep
learning based methods (Fu et al. 2017; Yang et al. 2017b;
Zhang and Patel 2018; Li et al. 2018) significantly outper-
form the prior-based methods (Kang, Lin, and Fu 2012;
Luo, Xu, and Ji 2015; Li et al. 2016). The comparison
demonstrates that the features learned by the deep neural
networks is much helpful for the rain-removal task.

On the one hand, the proposed RR-GAN is trained with
unpaired training data, which outperform the JORDER
method on the Rain800 dataset. Note that, JORDER is
trained using the paired supervised data. In other words, it
utilizes a stronger supervisor than our method does. The re-
sult demonstrates that it is feasible and promising to develop
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deraining model using unpaired data which could be easily
accessed in practice.

In terms of running time, our method is also much faster
than other deep learning methods and achieve a running time
of 0.03s per image, which demonstrates our method’s real-
time performance.

Dataset R800 Time (s)
Measure PSNR SSIM

ID 18.88 0.5832 120s
DSC 18.56 0.5996 189.3s
LP 20.46 0.7297 674.8s

DetailNet 21.16 0.7320 0.3s
JORDER 22.24 0.7763 1.5s
RESCAN 24.09 0.8410 0.4s
RR-GAN 23.51 0.7566 0.03s

Table 1: Quantitative experiments on Rain800. Best results
are marked in bold and the second best results are under-
lined.

Analysis of RR-GAN To demonstrate the effectiveness of
our generator used in RR-GAN, we compare it with other
network architectures. The first baseline is dense connec-
tion. To be specific, we replace the dense block with resid-
ual block (ResNet) and fix other blocks in our model. One
could find that the performance was dropped significantly
from 23.51/0.7566 (PSNR/SSIM) to 22.82/0.6991.

Besides the ablation study in generator, we also test the
effectiveness of our deeply supervised multiscale discrim-
inator. To the end, we adopt a new discriminator which
only enforces the supervision at the last layer (shallowly-
supervised discriminator). One could see that the perfor-
mance is dropped to 21.43/0.7254.

Component Baseline PSNR SSIM
Generator ResNet 22.82 0.6991

Discriminator Shallow-supervision 21.43 0.7254
Our Method RR-GAN 23.51 0.7566

Table 2: Ablation study on RR-GAN.

Analysis of Training Paradigm We analyze how the
presence of corresponding rain/rain-free scenes in the train-
ing samples can aeffect the model training. We first ran-
domly split the Rain100H dataset into two halves (split 1 and
2). We use different combinations of the images for model
training, and then test the model on the rain images in split
2. Specifically, we train under 2 settings: the rain and clean
image are paired from split1 (setting 1), the clean images are
randomly drawn from split 1 (setting 2), whose testing per-
formance on split 2’s rain images can be observed in Table.3.

From the table, one can observe that the best deraining
results can be obtain when both corresponding rain and rain-
free images are used for training. However, other settings
can still achieve comparable perfor- mance. This implies that
it is not necessary to have paired rain and rain-free scenes
during training (see setting 2).

Setting Pair(P)/
UnPair(U) PSNR SSIM

1 P 23.79 0.7951
2 U 23.51 0.7566

Table 3: Analysis of Training Paradigm.

Analysis of Loss Function To better demonstrate the ef-
fectiveness of our objective function, we conduct an abla-
tion study by considering the combinations of the proposed
MSE loss Lr and the adversarial loss Ladv . Figure 5 and Ta-
ble 4 demonstrate qualitative and quantitative results on an
sample image, respectively. One can observe that by using
MSE loss alone without regularization from the adversarial
loss, the quality of the recover image is very poor due to that
there is not sufficient infomation to allow generator to learn
what makes the clean image. Using adversarial loss alone
can significantly improve the visual quality as the informa-
tion from clean image set help the generator lean use cues
to recover clean image, however the tone recovered image is
bit yellowish as there is no consistency constraint between
the recover image and the input image. By combining these
two terms together, our method can produce recovered im-
ages with realistic color and structures.

Metrics Lr Ladv Lr + Ladv

PSNR 17.08 21.33 23.51
SSIM 0.3760 0.7328 0.7566

Table 4: Quantitative studies on different losses.

Conclusion
This paper proposed a novel RR-GAN for end-to-end single
image deraining without using paired training data. The pro-
posed method includes a novel multiscale attention memory
network and a novel deeply supervied multiscale discrim-
inator. The attention memory network uses a state mem-
ory to learn a latent rain-streak mask in a recurrent fash-
ion to aggreate the rain context information from diffrent
stages. Together with the input image, the generator will try
to generate the recovered image by iusing un-paired rain and
clean images training data. The proposed deeply supervised
multiscale discriminator can effectively regularize the out-
put from the generator to look as realistic as possible to the
clean image sets in terms of local details and global struc-
tures. Extensive experiments have demonstrated the promis-
ing performance of our method in terms of PSNR, SSIM,
running time and visual quality.
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