
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Calibrated Stochastic Gradient Descent for Convolutional Neural Networks
Li’an Zhuo,1 Baochang Zhang,1∗ Chen Chen,2 Qixiang Ye,∗5 Jianzhuang Liu,4 David Doermann3

1School of Automation Science and Electrical Engineering, Beihang University, Beijing
2University of North Carolina at Charlotte, Charlotte, NC

3Department of Computer Science and Engineering University at Buffalo, Buffalo, NY
4Huawei Noah’s Ark Lab

5University of Chinese Academy of Sciences, China
{lianzhuo, bczhang}@buaa.edu.cn, chenchen870713@gmail.com

Abstract

In stochastic gradient descent (SGD) and its variants, the op-
timized gradient estimators may be as expensive to compute
as the true gradient in many scenarios. This paper introduces
a calibrated stochastic gradient descent (CSGD) algorithm for
deep neural network optimization. A theorem is developed to
prove that an unbiased estimator for the network variables
can be obtained in a probabilistic way based on the Lips-
chitz hypothesis. Our work is significantly distinct from exist-
ing gradient optimization methods, by providing a theoretical
framework for unbiased variable estimation in the deep learn-
ing paradigm to optimize the model parameter calculation.
In particular, we develop a generic gradient calibration layer
which can be easily used to build convolutional neural net-
works (CNNs). Experimental results demonstrate that CNNs
with our CSGD optimization scheme can improve the state-
of-the-art performance for natural image classification, digit
recognition, ImageNet object classification, and object detec-
tion tasks. This work opens new research directions for de-
veloping more efficient SGD updates and analyzing the back-
propagation algorithm.

Introduction
Back-propagation (BP) is one of the most popular algo-
rithms for optimization and by far the most important way to
train neural networks. The essence of BP is that the gradient
descent algorithm optimizes the neural network parameters
by calculating the minimum value of a loss function. Pre-
vious studies have focused on optimizing the gradient de-
scent algorithm to make the loss decrease faster and more
stable (Kingma and Ba 2014) (Dozat 2016) (Zeiler 2012).
These algorithms, however, are often used as black-box op-
timizers, so a theoretical explanation of their strengths and
weaknesses is hard to quantify (Bau et al. 2017).

∗The work was supported by the Natural Science Foundation
of China under Contract 61672079 and 61473086, and Shenzhen
Peacock Plan KQTD2016112515134654. This work is supported
by the Open Projects Program of National Laboratory of Pat-
tern Recognition. Baochang Zhang and Qixiang Ye are the corre-
sponding authors. Beijing Municipal Science & Technology Com-
mission under Grant Z181100008918014 and NSFC under Grant
61836012. Baochang Zhang is also with Shenzhen Academy of
Aerospace Technology, Shenzhen, China.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Many improvements have been made on the basic gra-
dient descent algorithm (Ruder 2016), including batch gra-
dient descent (BGD), stochastic gradient descent (SGD) and
mini-batch gradient descent (MBGD). MBGD takes the best
of both BGD and SGD and performs an update with ev-
ery mini-batch of training examples. It is typically the al-
gorithm of choice when training a neural network and the
term SGD is often employed when mini-batches are used
(Zhang, Choromanska, and Lecun 2015). The gradient os-
cillation of SGD, on the one hand, enables it to jump to
a new and potentially better local minimum, but this ulti-
mately complicates the convergence because it can cause
overshooting. To circumvent this problem, by slowly de-
creasing the learning rate, SGD shows similar convergence
behavior as BGD, converging close to a local or global min-
imum for non-convex and convex optimization respectively
(Dauphin et al. 2014). An unbiased gradient estimator based
on the likelihood-ratio method is introduced in (Gu et al.
2016) to estimate a stable gradient, which however is imple-
mented based on complex mean-field networks that cause
inefficiency for model calculation. In (Soudry, Hubara, and
Meir 2014), the expectation BP is introduced to optimize the
neural network calculation only when a prior distribution is
given to approximate posteriors in the Bayesian inference. In
(Zhang, Kjellström, and Stephan 2017), a mini-batch diver-
sification scheme for SGD is introduced based on a similar-
ity measure between data points. It gives lower probabilities
to mini-batches which contain redundant data, and higher
probabilities to mini-batches with more diverse data. Biased
gradient schemes (Zhang, Kjellström, and Stephan 2017)
(Qian 1999) may reduce the stochastic gradient noise or ease
the optimization problem, which could lead to faster con-
vergence. However, the biased estimators are heuristic and
difficult to enumerate the situations in which these estima-
tors will work well (Zhang, Kjellström, and Stephan 2017).
These algorithms prove to be effective in their engineer-
ing applications. However, existing methods have following
limitations: (1) they focus on unbiased or biased gradient
estimators which rely on a prior knowledge about model op-
timization or a heuristic method; (2) unbiased variable es-
timation could be used to understand CNNs better, which
is however neglected in prior arts. In this paper, we pro-
vide a theoretical framework for unbiased variable estima-
tion to optimize the CNNs model parameters in an end-to-

9348

GClayer

Forward propagation

Backward propagation

1

2

3

4

i

()
= i

i

f R
R

Branch 1

Branch 2

Branch 3

Branch 4

1R

2R

3R

4R

(a) The CSGD procedure (i = 1,...,4 in this example).

Input
1×4×32×32

Output
1×4×30×30

gradient
caliboration

conv

GClayer
4×4×3×3

(b) Gradient calibration convolution

Figure 1: The illustration of the CSGD procedure and gradient calibration convolution in our CCNNs. We can see that the num-
bers of input and output channels in our convolution are the same, which is used to build gradient calibration layer (GClayer)
that is generic and easily implemented by simply replicating the same module at each layer. R is shared within each GClayer,
and thus the new layer can be implemented in low complexity.

end manner. In particular, we do not impose any restriction
on the gradient estimator (i.e., biased or unbiased) nor any
prior knowledge on the model parameters, which makes our
framework more general and thus the performance in prac-
tice could be guaranteed.

In this paper, we introduce an calibrated SGD (CSGD) al-
gorithm for stable and efficient training of CNNs. We first
develop a theory showing that an unbiased variable estima-
tor can be achieved in a probabilistic way in SGD, which
provides a guarantee on the performance in practice and also
poses a new direction to analyze the BP algorithm. In partic-
ular, we compute the gradient based on a statistic analysis on
the importance of each branch of the gradient among train-
ing samples. The statistic can be done in the BP framework
by designing a generic gradient calibration layer (GClayer),
which can be easily incorporated into any CNNs architec-
tures without bells and whistles. We refer to the CNNs based
on our CSGD as CCNNs in the following.

Distinctions between this work and prior art. In
(Soudry, Hubara, and Meir 2014), based on the expectation
propagation, the posterior of the weights given the data is
approximated using a “mean-field” factorized distribution
in an online setting. Differently, ours is automatically cal-
culated in the BP framework. Unlike an analytical approx-
imation to the Bayes update of this posterior, we develop a
theory aiming to understand SGD in terms of unbiased esti-
mator. Our work is also different from (Gu et al. 2016) which
designs stochastic neural networks based on unbiased BP,
only when the distribution is given, i.e., based on Bernoulli
and multinomial distributions. Ours is more flexible, with-
out a prior hypothesis on the distribution, which provides a
generic convolutional layer to optimise the kernel weights of
CNNs. The main contributions of this work are three-fold.
• A theorem is developed to reveal that an unbiased variable

estimator can be obtained in a probabilistic way based on
a Lipschitz assumption, leading to a calibrated SGD algo-
rithm (CSGD) for optimizing the kernel weights of CNNs.

• We develop a generic gradient calibration layer (GClayer)
to achieve the proposed unbiased variable estimation,
which can be easily applied to existing CNN archi-
tectures, such as AlexNet, ResNets and Wide-ResNet
(WRN).

• Experimental results have demonstrated that popular
CNN architectures optimised by the proposed CSGD al-
gorithm, dubbed as CCNNs, yield state-of-the-art perfor-
mance for a variety of tasks such as digit recognition, Im-
ageNet classification and object detection.

Calibrated Stochastic Gradient Descent
Gradient descent is based on the observation that if a func-
tion f(w) is defined and differentiable in a neighborhood of
a point, then f(w) decreases fastest if one goes from a given
position in the direction of the negative gradient of f(w). It
follows that:

wt+1 = wt − θδ,

where θ is the learning rate and δ is the gradient vector. The
popular gradient descent method, SGD, performs frequent
updates with a high variance that causes the loss to fluctuate
widely during training. To aovid this, we project the gradi-
ents onto a subspace, which calibrates the objective to obtain
a stable solution. The gradient vector δ is calculated based
on the expectation method as:

δ =

K∑
i

Ri ∗ δi, (1)

9349

where ∗ is the Schur product, an element-wise multiplica-
tion operator, and δi spans a subspace Ω = {δ1, δ2, ..., δK}
also denoting K branches of gradients. Each element of Ri

denotes the probability of its corresponding element in δi,
which measures δi’s importance or contribution to the final
δ. The challenge is how to build Ω and we do so with a new
and efficient method. As mentioned,Ri is the measure of the
importance of each element in Ω. We further use it to weigh
w, which means that the more important Ri is, the larger
corresponding weight is imposed on w. We then define:

δi =
∂f(Ri ∗ w)

∂w
,

where δi is a flow (or branch) of the gradient δ corresponding
to Ri as shown in Fig. 1. The derivative of Eq. 1 is finally
obtained by:

δ =

K∑
i

Ri
∂f(Ri ∗ w)

∂w
. (2)

That is, by using f(Ri ∗w), we efficiently solve both w and
Ω in the same framework, which will be elaborated in the
following. By designing a new and generic layer, Gradient
Calibration layer (GClayer), the gradient calculation men-
tioned above can be easily implemented in the BP process.
To better estimate the gradient we can add a Gaussian func-
tion N(0, σ) of 0 mean and variance σ as the residual, which
also makes the theoretical analysis an easier task.

Implementation of the gradient calibration layer

We set Hi = Ri ∗ w , i = 1, ...,K, and H = (H1, ...,HK),
as the convolutional kernels. We implement f(Ri ∗w) based
on a new layer, which is generic and can be independently
used for any network, e.g., CNNs.

F l+1 = GClayer(F l, H), (3)

where F l stands for the feature map for the lth layer. Note
here we omit the layer index (i.e., superscript) forH for sim-
plicity.GClayer denotes the convolutional operation imple-
mented as a new layer or module. A simple example of the
forward process is shown in Fig. 1. In the GC convolution,
channels of one output feature map are generated as follows:

F l+1
k = F l

k ⊗Hk, (4)

where k ∈ {1, ...,K}. Let the size of the input feature map
be 4 × 32 × 32 with K = 4, where a duplication process
is only performed by K times on the one channel of in-
put gray-level images. The size of the output feature map
is 4× 30× 30. We can see that the number of input and out-
put channels in every feature map are the same as shown in
Fig. 1 (b), so that GClayer can be easily implemented by
simply replicating the same module at each layer. Note that
Eq. 1 can then be automatically implemented in BP based
on GClayer by estimating Ri elaborated in the following.

Updating Ri

We update Rt+1
i based on Rt

i and δ̂i = ∂f(Ri∗w)
∂Ri

. We
assume the elements of Ri are probabilities ∈ [0, 1] and∑

iRi = 1, where 1 denotes a vector with all elements
equal to 1. We update Ri during BP as:

Rt+1
i = |Rt

i + `δ̂i|.

We further normalize Ri such that
∑

iRi = 1. We note that
Ri is shared within each layer, i.e., adding only K × 3 × 3
parameters to each layer, whose index is drop for ease of
presentation. This means the number of the additional pa-
rameters is much smaller than that in the original filters, and
thus GClayer can be implemented in low complexity. Our
CSGD algorithm is summarized in Alg. 1. It is based on
the BP framework, but unlike conventional methods, ours is
initially based on the expectation of gradient and ultimately
obtains an unbiased variable estimator as discussed below. It
poses a new direction to analyze the BP algorithm. To obtain
a better understanding of learning algorithms, the Lipschitz
distribution is widely used for a theoretical analysis of neu-
ral networks. For instance, in CNNs (Zou, Balan, and Singh
2018), the Lipschitz bound is important in the study of the
stability and the computation of the Lipschitz bound is used
for generative networks. In (Zou, Balan, and Singh 2018) the
authors give a general framework for CNNs and prove that
the Lipschitz bound of a CNN can be determined by solving
a linear program with a more explicit expression for a sub-
optimal bound. In light of this, we theoretically show that an
unbiased variable estimator can be achieved in CSGD with
a Lipschitz assumption in a probabilistic way.

Algorithm 1: The CSGD algorithm
1: Set t = 0
2: Initialize wt and Rt

i , i = 1, 2, ...,K
3: Initialize the learning rates θ and `.
4: repeat
5: t = t+ 1;
6: Updatewt+1 = wt−θ

∑
iR

t
i
∂f(Rti∗w

t)

∂wt
+N(0, σ);

7: Update Rt+1
i = |Rt

i + `
∂f(Rti∗w

t)

∂Rti
|;

8: Normalize R;
9: until convergence

Theoretical analysis
Until now, we have developed a new BP algorithm that in-
troduces the expectation of gradient into the learning pro-
cess, which ultimately leads to an unbiased variable esti-
mator. In the following, we show that our proposed CSGD
can lead the average of the input to the expectation, that is,
an unbiased estimator. More specifically, our theorem shows
that an unbiased estimator can be obtained in a probabilistic
way based on the Lipschitz hypothesis, if a convergence is
achieved during training. Such a proof would be very useful
to guide a new gradient descent algorithm design in various
practical applications, since the exploration of the unbiased
variable estimation provides a different investigation into the

9350

BP algorithm from conventional methods. We address how
our theorem can be used in the learning stage.

Definition 1: Let x1, x2, ..., xn be c-Lipschitz. Then we
have:

|xi−1 − xi| ≤ ci−1, (5)

where xi is a 1D random variable and c = (c0, c1, ..., cn−1).
Lemma 1: For any vector A, it follows that:

P (

n∑
i=1

|Ai| ≥
∑
i=1

λi) ≤ P (
⋃
i=1

|Ai| ≥ λi) ≤
∑
i

P (|Ai| ≥ λi).

(6)
where P stands for probability. Lemma 1 is obvious. Next,
we introduce Lemma 2 and its proof, which will be used in
the proof of our theorem.

Lemma 2: For a batch set, we first define a loss function
based on the N input samples as:

f(w) =
1

N

N∑
n=1

fn(w). (7)

Based on gradient descent, we have:

E(wt+1) = E(wt)− θ5 f(wt). (8)

Proof:
We begin to prove Lemma 2 by a distribution (Û , e.g.,

uniform in SGD) hypothesis on the input data. We have:

En∼Û [5fn(w)] = 5En∼Û [fn(w)]

= 5
N∑
i=1

Û(n = i)fi(w)

= 5f(w).

(9)

In particular for SGD with a uniform distribution, we have
5f(w) = 5 1

N

∑N
i=1 fi(w).

Then, a random sample point n ∼ Û is chosen to update
the weights based on gradient descent:

wt+1 = wt − θ5 fn(wt), (10)

and we obtain:

E(wt+1) = E(wt)− θE(5fn(wt)). (11)

Based on Eq. 9, we have

E(wt+1) = E(wt)− θ5 f(wt). (12)

Thus, Lemma 2 is proved. �

Lemma 3: If x1, x2, ..., xn satisfies Definition 1, then:

P (|x̄− E(x̄)| ≥ λ

n
) ≤ 2e

−λ2∑n
i=1

c2
i , (13)

where x is a 1D variable updated via gradient descent
(Gaussian noise) to minimize f(x) with 5f(x) = 0 when
converging, x̄ is the average of x1, x2, ..., xn, and ci is
predefined based the c-Lipschitz hypothesis. The proof of
Lemma 3 can refer to our technical report which will be in
https://github.com/bczhangbczhang/.

Theorem Let Y be a vector random variable updated
based on gradient descent to minimize f(Y). For a set of
samples Y1, Y2, ..., Yn satisfying Definition 1, if 5f(Y) =
0, then an unbiased estimator is achieved by Eq. 2 in a prob-
abilistic way, that is:

P (|Ȳ − E(Ȳ)| ≥
∑
i

λi) ≤
n∑

i=1

ai, (14)

where Ȳ is the mean vector, λ = (λ1, λ2, ..., λn) with λi ≤

1, and ai = 2e

−λ2i
2
∑n
j=1

C2(i,j−1) for a matrix C.
Proof: our theorem means that the expectation of Ȳ is
achieved in a probabilistic way, given that Ȳ is a variable
updated based on the CSGD algorithm. Before proving the
theorem, we introduce the Lipschitz assumption on the ith
dimension of Yj that:

||Y i
j − Y i

j−1|| ≤ C(i, j − 1), (15)

which could be easily satisfied in the learning process.
According to Lemma 3, Eq. 2 and Eq. 15, we have:

P (|Zi| ≥ λi) ≤ 2e

−λ2i
2
∑n
j=1

C2(i,j−1) , (16)

where Z = Ȳ − E(Ȳ). Let ai = 2e

−λ2i
2
∑n
j=1

C2(i,j−1) . Based
on Lemma 1 we have:

P (|Ȳ − E(Ȳ)| ≥
n∑

i=1

λi) ≤
n∑

i=1

ai. (17)

Thus, our theorem is proved. �

We note that 5f(Y) = 0 could be satisfied when the al-
gorithm converges. Thus, our theorem does not require that
the gradient estimator is unbiased or not, which make it more
general.

Implementation and Experiments
In this section, we evaluate our CSGD algorithm for
CNNs on several benchmark datasets including CIFAR-10,
CIFAR-100 (Krizhevsky 2009). In addition, PASCAL VOC
2007 is also used to validate the effectiveness of our net-
work optimization approach on the object detection task.
The network architectures we used for evaluation include
Wide ResNets (WRN), ResNets and AlexNets.

Backbone network architectures. ResNets are intro-
duced to ease the training of networks that are substan-
tially deeper than those used previously. The ResNets ar-
chitecture utilizes skip connections or short-cuts to jump
over some layers, which can partially avoid the gradient
vanishing problem. WRN is a network structure similar to
ResNets, and it introduces a novel architecture by decreas-
ing the depth and increasing the width of residual networks.
We follow the same layer settings detailed in (Zagoruyko
and Komodakis 2016). AlexNet is one of the most famous
CNNs, which is used as the backbone of our method for
the object detection task. It contains eight layers: the first

9351

five are convolutional layers, and the last three are fully
connected layers. Based on these network architectures, we
build our CNNs using the proposed CSGD algorithm (de-
noted as CCNNs). Their performances are extensively vali-
dated in the following experiments.

Experiments on natural image classification
For the natural image classification task, we use the CIFAR-
10 and CIFAR-100 datasets (Krizhevsky 2009) which con-
sist of 60,000 color images of size 32x32 in 10 or 100
classes, with 600 or 6,000 images per class. There are 50,000
training images and 10,000 test images.

We first evaluate K on the performance of our CCNNs on
CIFAR-10 by replacing the convolution layers of ResNets-
18 with our GClayers. The results show that the performance
becomes better when increasingK as shown in Table 1. σ in
Eq. 2 is also tested and the results in the same table show that
the performance becomes better when decreasing σ, e.g.,
7.61% vs. 7.68% when σ = 0.0001 vs. σ = 0.001. We
choose K = 4 and σ = 0.0001 in all the following experi-
ments, considering that it already achieves much better per-
formance than ResNet-18 with Gaussian noise ((Neelakan-
tan et al. 2015)). Moreover, compared with σ = 0 denoting
the original ResNets, Gaussian noise benefits the final per-
formance in terms of the error rate. We also plot the training
and testing error curves of CCNNs-18 in Fig. 2, which show
that our CCNNs achieve more stable and better training and
test results with a slight faster convergence speed than the
original ResNet-18.

We further use WRNs to test CCNNs on the datasets. We
replace the convolution layers with our GClayers and set up
40-layer and 28-layer networks with the same basic blocks
and hyper-parameters as WRNs. The network stages are 16-
32-64-128 and 64-64-128-256. The details of the CCNNs
architecture are presented in Table 2. We use a weight decay
of 0.0001 and momentum of 0.9. These models are trained
on 4 GPUs (Titan XP) with a mini-batch size of 128. The
training procedure is terminated at 64k iterations, which is
determined based on a 45k/5k train/validation split. We fol-
low the same data augmentation strategy in (Zou, Balan, and
Singh 2018) for training. Horizontal flipping is adopted, and
a 32× 32 crop is sampled randomly from the image padded
with 4 pixels on each side. For testing, we only evaluate the
single view of the original 32× 32 image.

We conduct the experiments to compare CCNNs with
the state-of-the-art networks (i.e. NIN (Boureau, Ponce, and
LeCun 2010), VGG (Simonyan and Zisserman 2014), and
ResNet (He et al. 2015) in terms of error rate and the amount
of parameters. On CIFAR-10, Table 2 shows that CCNNs
consistently improve the performance regardless of the num-
ber of parameters or kernels as compared with the baseline
ResNet. We further compare CCNNs with the Wide Residue
network (WRN) (Zagoruyko and Komodakis 2016), and
again CCNNs achieve a better result (3.81% vs. 4% error
rate). Our model is also half the size of WRN, providing a
significant advantage in terms of model efficiency.

Similar to CIFAR-10, one can also observe the perfor-
mance improvement on CIFAR-100, with similar parameter
sizes.

Table 1: Results (error rate (%) on CIFAR-10). CCNNs are
based on ResNets-18, which has a smaller network stage
(16-16-32-64). * denotes ResNet with Gaussian Noise (Nee-
lakantan et al. 2015)).

Model K 1 2 4 8

CCNNs
σ = 0 9.68 8.52 7.82 7.63

σ = 0.001 9.60 8.49 7.68 7.54
σ = 0.0001 9.48 8.32 7.61 7.42

ResNet-18* σ = 0.001 - - 9.72 -

Large-scale image classification: ImageNet
To show the effectiveness of CCNNs on larger images, we
evaluate the network on the ImageNet (Deng et al. 2009)
dataset. ImageNet consists of images with a much higher
resolution. In addition, the images usually contain more than
one attribute per image, which may have a large impact on
the classification accuracy.

For the ImageNet experiment, we train 18-layer CCNNs
based on ResNets-18. CCNNs and ResNet are trained with
120 epochs. The learning rate is initialized as 0.1 and de-
creased to 1/10 of the previous size every 15 epochs. Top-1
and Top-5 errors are used as evaluation metrics. The results
are shown in Table 3. Compared to the baseline ResNet-
18, our CCNNs achieve better classification performances
(i.e., Top-1 error: 29.2% vs. 30.7%, and Top-5 error: 10.3%
vs. 10.8%) , which further validates the effectiveness of our
method.

Experiments on object detection
Object detection is one of the fundamental problems in com-
puter vision, which aims to detect all instances of objects
from known classes, such as people and cars in images. It
has various real-world applications, ranging from robotics,
autonomous car, to video surveillance and image retrieval. It
is very challenging due to the severe scale variation, view-
point change, intra-class variation, shape variation, and oc-
clusion of objects, as well as background clutters.

PASCAL VOC 2007 dataset. It consists of 2, 501 train-
ing, 2, 510 validation, and 4, 092 test images with bounding
box annotations for 20 categories (Everingham 2007). We
use both training and validation sets for training and evalu-
ate the detection performance on the test set in terms of the
mean average precision (mAP) following the standard PAS-
CAL VOC protocol, which reports average precision (AP)
at 50% intersection-over-union (IoU) of the detected boxes
with the ground-truth.

We incorporate our CCNNs into two-stage Faster R-CNN
(Ren et al. 2015) which is implemented based on the Caffe2
platform. In CCNNs, AlexNet (Krizhevsky, Sutskever, and
Hinton 2012) or ResNet-18 is used as the backbone network
that is first pre-trained on the ILSVRC CLS-LOC dataset
(Russakovsky et al. 2015). We train Faster R-CNN using the
approximate joint training method with the effective mini-
batch size of 4. For anchors, we use 4 scales with box areas
of 64 × 64, 128 × 128, 256 × 256, and 512 × 512 pixels,
and 3 aspect ratios of 1 : 1, 1 : 2, and 2 : 1. 256 anchors

9352

epoch
0 20 40 60 80 100 120 140 160 180 200

T
ra

in
 E

rr
or

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Train Error on CIFAR-10

CCNN-18
ResNet-18

(a) Training error on CIFAR-10
epoch

0 20 40 60 80 100 120 140 160 180 200

T
es

t E
rr

or

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Test Error on CIFAR-10

CCNN-18
ResNet-18

(b) Test error on CIFAR-10

Figure 2: Training error and test error curves on CIFAR-10 dataset. Compared with the baseline, CCNNs achieve a slight faster
convergence speed and lower training and testing errors.

Table 2: Comparison results on CIFAR-10 and CIFAR-100 datasets. R is neglected when counting the parameter size of CC-
NNs. CCNNs are based on WRNs.

Method error rate(%)
CIFAR-10 CIFAR-100

NIN 8.81 35.67
VGG 6.32 28.49

network stage kernels # params

ResNet-110 16-16-32-64 1.7M 6.43 25.16
ResNet-1202 16-16-32-64 10.2M 7.83 27.82
WRN-40 64-64-128-256 8.9M 4.53 21.18
WRN-28 160-160-320-640 36.5M 4.00 19.25
CCNNs2-40 16-64-128-256 17.9M 4.62 21.67
CCNNs3-28 64-64-128-256 17.6M 3.81 19.11

Table 3: Results on ImageNet dataset. CCNNs are based on
ResNets K = 2.

Models accuracy (%)
Top-1 Top-5

ResNet-18 69.3 89.2
CCNNs-18 70.8 89.7

are then randomly sampled in an image to compute the loss
function of the region proposal network (RPN). We re-scale
the images such that their shorter side is 600 pixels. A learn-
ing rate of 0.004 for 12.5k mini-batches, and 0.0004 for the
next 5k mini-batches, a momentum of 0.9 and a weight de-
cay of 0.0005 are used.

With the mAP measure in Table 4, the results clearly
show that AlexNet-CCNNs achieve a better performance
(1.1%) than the original Faster RCNN. On ResNet-18, we
can observe a similar phenomenon where ResNet-CCNNs
outperform the baseline ResNet. Considering that ResNets
are widely used in various real-world applications, our CC-

NNs are able to further boost thier performance, demonstrat-
ing the superiority of the proposed CSGD algorithm. Both
CCNNs achieve much better performance than the backbone
networks on aero, bus, tv, etc. In Fig. 3, we provide some de-
tection examples based on ResNet-CCNNs, e.g., tvmonitor,
bus, bird, and person. They demonstrate that CCNNs are ef-
fective for detection even though they could be misled by
noisy background for localization.

Conclusion
In this paper, an calibrated SGD (CSGD) algorithm for deep
neural network optimization has been proposed by provid-
ing a theoretical investigation to an unbiased variable esti-
mator based on a Lipschitz assumption. CSGD is of high
efficiency based on a mini-batch of samples as SGD. We fur-
ther develop a generic gradient calibration layer, which can
be easily incorporated into any deep neural networks, e.g.,
CNNs, with only a small fraction of the network parame-
ters added. Extensive experiments and comparisons on the
commonly used benchmarks show that the proposed CSGD
algorithm can effectively improve the performance of the

9353

Table 4: Comparison to the state-of-the-art methods on PASCAL VOC 2007 in terms of mAP (%) on the test set.

method bbone mAP aero bic bir boa bot bus car cat cha cow dta dog hor mbi per pln she sof tra tv

F. R-CNN Alex 51.5 56.4 63.6 47.2 34.3 31.3 54.0 69.4 60.6 31.0 56.3 47.4 56.2 68.6 62.2 60.0 26.5 50.6 40.0 59.6 54.4
CCNNs 52.6 58.4 61.0 48.7 34.3 28.2 57.6 69.4 61.3 31.5 59.9 51.0 54.7 69.8 65.9 61.3 28.2 48.9 40.8 66.0 55.7

F. R-CNN Res18 68.3 69.2 79.3 65.8 54.0 47.4 77.7 79.0 78.5 52.3 73.3 63.4 73.7 80.0 74.8 77.4 45.1 64.6 69.6 75.1 65.8
CCNNs 68.71 71.5 78.5 63.3 54.7 47.9 78.1 80.3 75.8 52.8 73.1 63.5 73.7 81.2 74.4 77.1 43.6 63.9 68.9 76.4 67.5

Figure 3: Examples of Faster RCNN using CCNNs (ResNets as the backbone) on the VOC2007 dataset.

popular CNNs, e.g. ResNets, leading to new state-of-the-art
results on the benchmarks.

References
Bau, D.; Zhou, B.; Khosla, A.; Oliva, A.; and Torralba, A.
2017. Network dissection: Quantifying interpretability of
deep visual representations. In Computer Vision and Pattern
Recognition, 3319–3327.
Boureau, Y.-L.; Ponce, J.; and LeCun, Y. 2010. A theoret-
ical analysis of feature pooling in visual recognition. Inter-
national Conference on Machine Learning 111–118.
Dauphin, Y. N.; Pascanu, R.; Gulcehre, C.; Cho, K.; Gan-
guli, S.; and Bengio, Y. 2014. Identifying and attacking the
saddle point problem in high-dimensional non-convex opti-
mization. In International Conference on Neural Informa-
tion Processing Systems, 2933–2941.
Deng, J.; Dong, W.; Socher, R.; Li, L. J.; Li, K.; and Li, F. F.
2009. Imagenet: A large-scale hierarchical image database.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 248–255.
Dozat, T. 2016. Incorporating nesterov momentum into
adam. In International Conference on Learning Represen-
tations, 1–8.

Everingham, M. 2007. The pascal visual object classes chal-
lenge, (voc2007) results. http://pascallin.ecs.soton.ac.uk/
challenges/VOC/voc2007/index.html. 111(1):98–136.
Gu, S.; Levine, S.; Sutskever, I.; and Mnih, A. 2016.
Muprop: Unbiased backpropagation for stochastic neural
networks. In ICLR, 1861–1869.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep
residual learning for image recognition. arXiv preprint
arXiv:1512.03385 770–778.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. Computer Science.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In International Conference on Neural Information
Processing Systems, 1097–1105.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Tech Report.
Neelakantan, A.; Vilnis, L.; Le, Q. V.; Sutskever, I.; Kaiser,
L.; Kurach, K.; and Martens, J. 2015. Adding gradient noise
improves learning for very deep networks. Computer Sci-
ence.
Qian, N. 1999. Qian, n.: On the momentum term in gradient
descent learning algorithms. Neural Networks 12(1):145–
151.

9354

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-
cnn: Towards real-time object detection with region proposal
networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–
1149.
Ruder, S. 2016. An overview of gradient descent optimiza-
tion algorithms. arXiv preprint arXiv:1609.04747.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh,
S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bern-
stein, M.; et al. 2015. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision
115(3):211–252.
Simonyan, K., and Zisserman, A. 2014. Very deep convolu-
tional networks for large-scale image recognition. Computer
Science.
Soudry, D.; Hubara, I.; and Meir, R. 2014. Expectation
backpropagation: parameter-free training of multilayer neu-
ral networks with continuous or discrete weights. In Inter-
national Conference on Neural Information Processing Sys-
tems, 963–971.
Zagoruyko, S., and Komodakis, N. 2016. Wide residual
networks. British Machine Vision Conference.
Zeiler, M. D. 2012. Adadelta: An adaptive learning rate
method. arXiv preprint.
Zhang, S.; Choromanska, A.; and Lecun, Y. 2015. Deep
learning with elastic averaging sgd. In Advances in Neural
Information Processing Systems, 685–693.
Zhang, C.; Kjellström, H.; and Stephan, M. 2017. Deter-
minantal point processes for mini-batch diversification. In
In the proceedings of Uncertainty in Artificial Intelligence
(UAI), 1–8.
Zou, D.; Balan, R.; and Singh, M. 2018. On lipschitz bounds
of general convolutional neural networks. arXiv preprint
arXiv:1808.01415.

9355

