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Abstract 

A major part of financial accounting involves tracking and 
organizing business transactions over and over each month 
and hence automation of this task is of significant value to 
the users of accounting software. In this paper we present a 
large-scale recommendation system that successfully rec-
ommends company specific categories for several million 
small businesses in US, UK, Australia, Canada, India and 
France and handles billions of financial transactions each 
year. Our system uses machine learning to combine frag-
ments of information from millions of users in a manner that 
allows us to accurately recommend user-specific Chart of 
Accounts categories. Accounts are handled even if named 
using abbreviations or in a foreign language. Transactions 
are handled even if a given user has never categorized a 
transaction like that before. The development of such a sys-
tem and testing it at scale over billions of transactions is a 
first in the financial industry. 

 Introduction   

A major part of financial accounting involves tracking and 

organizing of business transactions using a customizable 

filing system, which accountants call chart of accounts 

(CoA). Every business transaction must be filed into some 

suitable CoA account. This is a regular and tedious chore 

for millions of accounting software users. Assuming it 

takes a human about 3 seconds to pick the right CoA ac-

count for a typical financial transaction, last year the users 

of Intuit's accounting software would have spent well over 

a thousand man years on just this task if it were not auto-

mated by our systems.  

Assigning correct categories to financial transactions is 

important because errors on this task can lead to incorrect 

financial statements, increased audit risk, tax and other 

regulatory penalties, misinformed financial decisions and 

displeased business owners / creditors / investors. For these 

reasons the reliable automation of this task is of significant 

economic value for everyone involved: business owners, 

their accountants, vendors of accounting software, etc.  
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In this paper we present a large-scale recommendation 

system that successfully recommends company specific 

categories for several million small businesses in US, UK, 

Australia, Canada, India and France and handles billions of 

financial transactions each year. Our system uses machine 

learning to combine fragments of information from mil-

lions of users in a manner that allows us to accurately rec-

ommend user-specific Chart of Accounts categories. Ac-

counts are handled even if named using abbreviations or in 

a foreign language. Transactions are handled even if a giv-

en user has never categorized a transaction like that before. 

The development of such a system and testing it at scale 

over billions of transactions is a first in the financial indus-

try.  

The rest of this paper is organized as follows: First we 

classify the problem and identify a candidate solution from 

related prior research. Next, we discuss what was neces-

sary to adopt this solution to our specific problem in order 

to build the working system that has been serving millions 

of Intuit QuickBooks customers for well over a year. We 

then share results of experiments and our experience with 

large scale model training and deployment. Here we em-

phasize the importance of different data representations: 

one suitable for model training and another for model de-

ployment. Finally, we cover some practical aspects of 

building a large-scale production system such as dealing 

with firm real-time latency deadlines, and selecting and 

optimizing servers for model builds vs. model deployment. 

Last, we conclude with a discussion of user impact, bene-

fits and what we learned.  

Understanding the Problem 

Financial accounts track how much money was transferred 

on a given date with a certain counterparty but unlike an 

invoice or a receipt, a transaction from a bank or credit 

card account generally does not have information about 

items purchased or the services involved.  

Despite this, it is still often possible to tell what a finan-

cial account transaction is about just by the attributes that 

are available: (1) the financial institution that recorded the 

9365

The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)



transaction, (2) the financial account description, (3) the 

date and time of the transaction, (4) the monetary amount 

and (5) the counterparty with whom the transaction took 

place. While transaction counterparty is the most important 

attribute, it can be challenging to extract from financial 

account transaction descriptions. This is because these de-

scriptions are strings of unknown structure that may con-

tain a mix of (1) counterparty name, (2) transaction loca-

tion, (3) time/date, (4) payer identity, (5) transaction refer-

ence ID #s, (6) payment method and (7) other details. The 

structure and content of these descriptions may also depend 

on the specific route from the point of sale to the bank that 

issued the payment card. 

A billion transactions with about ten million unique 

counterparties yield about four hundred million unique 

transaction descriptions and after normalization (case fold-

ing, digit folding, etc.) this reduces to about one hundred 

million unique descriptions.  As a consequence the transac-

tions of a single grocery merchant (at one location) appear 

in well over 300 different formats. Fig 1 shows a few ex-

amples.  

The State of Practice  

It is possible to think of categorization of financial transac-

tions as a supervised classification problem. There are bil-

lions of transactions that have been categorized by small 

businesses in the past that can be used as labeled data and 

so a training and test set can be constructed for supervised 

learning. 

Unfortunately, learning from 10
9
 examples (categorized 

financial transactions) how to classify on the order of 10
8 

unique items (counterparties identified from transaction 

descriptions) into 10
6
 (distinct accounts) is not likely to 

result in a useful system simply because there is not nearly 

enough data.  

One could instead construct company specific classifiers 

using as a labeled set the transactions that the business 

owner has categorized in the past. Unfortunately, that also 

does not change fundamentally the fact that there is not 

enough data to achieve good coverage for future transac-

tions. Specifically, using historical data we know that on 

average about 50% of the transactions are with new coun-

terparties. This means that even if future transactions with 

the same counterparty are always categorized correctly and 

new counterparty transactions are assigned to the most 

popular account, the overall accuracy of such a classifier 

would not exceed 60% in the common case.  

Nevertheless company-specific classifiers are useful and 

that is the state of the practice today among other vendors 

of accounting software. While this simple approach solves 

the easy part of the problem it is possible to do much better 

by properly integrating the knowledge of how different 

businesses categorize transactions into their own personal-

ized CoA. 

Personalized Tag Recommendation  

A well-studied problem that has a similar structure is 

known as personalized tag recommendation (Hu, Lim, and 

Jiang 2010), (Abel et al. 2011), (Steffen et al. 2009). A 

typical use case involves users tagging a collection of re-

sources for social sharing (Jaeschke et al. 2007) such as for 

example when users collaborate to tag websites, news or 

research articles, photos, etc. (Sigurbjornsson and Van 

Zwol 2008). 

Unlike recommender systems that rely on a single 

shared vocabulary as labels for resource categories, with 

personalized tag recommendation users can have their 

own, unique vocabulary of tags with new ones created 

when necessary. 

Personalized tag recommenders answer the question: 

“Which personal tag of this user is most likely to apply to 

this resource given the set of tags that have been assigned 

to this resource by other users?” In financial account do-

main this corresponds to the question:  “Which CoA ac-

count of this user is most likely to apply to this financial 

transaction given the set of accounts to which this transac-

tion has been assigned by other users?”  

A common approach to such questions is based on nor-

malized tag co-occurrence frequencies in resource annota-

tions using for example Jaccard index over tags when ap-

plied to the same resource. 

For example, if           are two tags that have been 

applied to a number of different resources, their similarity 
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SAFEWAY STORE 00000000 

SAFEWAY STORE 00000000 SAN FRANCISCOCA 

SAFEWAY STORE 00000000 SAN FRANCISCO CA 

SAFEWAY STORE 00000000 SAN FRANC 

SAFEWAY STORE 00000000 SAN FRANCISCO CA 00000 US 

CHECK CRD PURCHASE 00/00 SAFEWAY STORE 00000000 SAN FRANCISCO CA 

000000XXXXXX0000 000000000000000 ?MCC=0000 00 

CHECK CRD PURCHASE 00/00 SAFEWAY STORE 00000000 SAN FRANCISCO CA 

000000XXXXXXxxxxxxxxxxxx000 ?MCC=0000 000000000DA00 

SAFEWAY STORE 00000000 SAN FRANCSAFEWAY STORE 00000000 SAN FRANCIS-

CO00000000000 000 Oct 00 @ 0:00pm 

SAFEWAY STORE 00000000 SAN FRANCISCO, CA 00.00 USD @ 0.000000 

PURCHASE<br/>SAFEWAYSTORE 00000000 SAN FRANCISCO CA 

SAFEWAY STORE 00000000 - SAN FRANCISCO, CA   Reference Num-

ber:00000000000000000000000 Merchant Name: SAFEWAY STORE 00000000 Merchant 

Information:SAN FRANCISCO CA Category:  Retail/Department Stores 

PURCHASE/ADVANCE (CHG-SAFEWAY STORE 00000000 SAN)To Principal: $00.00 

SAFEWAY STORE 00000000POS PURCHASE MERCHANT PURCHASE TERMINAL 

000000 SAFEWAY STORE 0000 0000 SAN FRANC CA 00-00-00 XXXXXXXXXXXX0000 

Figure 1: Examples of transaction description variability.  



can be expressed as the ratio between intersection of the 

corresponding resource sets to their union: 

 𝐽  = 𝐽 (  ,   ) =  
|  ∩   |

|  ∪   |
 (1) 

where      stands for the set of resources to which tag    
has been applied. Therefore, the problem of CoA account 

recommendation can be thought of as a tensor: 

       (2) 

where U stands for the users, I for set of items and T for 

the set of tags. A popular solution uses tensor factorization, 

as described for example in (Steffen et al. 2009). 

Personalized CoA Recommendation 

Personalized tag recommendation had to be adopted to the 

scale and structure of our problem domain: 

1. Domain Scale: While in a typical social tagging 

system 10
6
-10

8
 of items (resources) are tagged by 

10
5
-10

6
 users using 10

4
-10

5 
unique tags, personal-

ized transaction categorization handles 10
7
 counter-

parties (items) for 10
6
 users with 10

8
 accounts 

(tags). This 10
3
-10

4 
difference in scale requires care-

ful consideration of representation to maintain fea-

sibility of even the most effective of currently 

known approaches.  

2. Domain Structure: An important observation to be 

made is that the number of distinct accounts exceeds 

the number of distinct counterparties by a factor of 

10-10
2
. At the same time the distribution of coun-

terparties per account and distribution of accounts 

per counterparty have a definite asymmetry. See 

Fig.2 and Fig.3.  

As a result of scale difference and asymmetry of distri-

butions it is much more efficient to collect counterparty co-

occurrence statistics over accounts than account co-

occurrence statistics over counterparties. 

Account Likelihood Ranking Model 

Personalized transaction categorization assigns transaction 

   to account    according to maximum likelihood given 

company specific CoA accounts and the transactions that 

have been assigned to these CoA accounts so far. 

For users who have already categorized transactions, we 

use their previous counterparty => CoA accounts assign-

ment to guide future counterparty assignments – that is, if 

the exact counterparty had been categorized before by a 

given user, then their last used CoA account is our top rec-

ommendation. Otherwise we recommend the CoA account 

with the collection of counterparties having the highest co-

occurrence with the transaction that is being classified.  

More formally this can be described as follows. Let each 

counterparty be represented as an n-dimensional vector of 

its normalized co-occurrence with other counterparties:  

 �⃗�  = (𝐽1 , 𝐽2 , … , 𝐽  , … , 𝐽𝑛 )    (3) 

Where: 

𝑖 = 1, 2, … , 𝑛 
 

 0 ≤  𝐽  ≤ 1 

 

Then the likelihood for a counterparty to be categorized 

into an account is given by: 

 𝑃(𝒂 |𝒕 ) ∝ ∑ 𝑱𝒋𝒌 
𝑻𝑘𝒂𝑖

 (4) 

The final prediction then amounts to selecting n ac-

counts with the highest co-occurrence score. 

We tested several different measures of counterparty co-

occurrence and evaluated their performance with a valida-

tion dataset.  

One measure for counterparty co-occurrence is Kulczyn-

ski similarity index: 

 𝐽  =
1

2
 (
|  ∩   |

    
  
|  ∩   |

|  |
) (5) 
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Another is Jaccard index: 

 𝐽  = 
|  ∩   |

|  ∪   |
 =  

|  ∩   |

     |  | − |  ∩   |
 (6) 

where      is the number of accounts that have transac-

tions with counterparty    ; |  ∩   | is the number of ac-

counts that have transactions with both counterparty    and 

   ; |  ∪   | is the number of accounts that have transac-

tions with either counterparty    or   . 
Jaccard index being not null invariant is affected strong-

ly by asymmetry in frequencies of counterparties. That is, 

the Jaccard similarity of a common counterparty with an 

infrequent counterparty approaches 0 even though the two 

counterparties are very likely to co-occur in the same ac-

count. In other words, Jaccard index loses information 

from and for common counterparties.  

The Kulczynski similarity index on the other hand is 

null-invariant and preserves information even in the case of 

asymmetric counterparty frequencies. In our experiments 

however, we found that using Jaccard index gave us a 

slightly better categorization accuracy. One explanation is 

that our strategy gives preference to accounts that already 

contain transactions with the given counterparty. If the user 

has already categorized a given counterparty before, that 

previous account assignment will be re-used as the predic-

tion when this counterparty needs to be categorized again.  

That is for each user 𝑘,  

 𝐽  = {
1,             𝑘                      

0,             
 (7) 

This strategy likely applies to transactions with a com-

mon counterparty thus masking the lack of null-invariance 

of the Jaccard index. 

Though the counterparty co-occurrence matrix 

(�⃗� 1, �⃗� 2, … , �⃗� 𝑛)
   could be in the order of 10

7 
x 10

7
, it is very 

sparse and can be efficiently reduced to fewer than 10
9
 

non-zero elements, making real time account scoring rela-

tively efficient.  

In the real-time prediction, given a transaction   from 

user 𝑘, for every account    which had transaction history, 

we can calculate: 

  

𝐽𝑎𝑖 = ∑ 𝑗�̂�𝑚
𝑚≠𝑡

 

 

 

(8) 

where  𝑗�̂�𝑚 is the Jaccard index between counterparty   
and   (  denotes all other counterparties that are coupled 

with counterparty  ). And finally choose the account as: 

  

 =    m x
𝑎𝑖

( 𝐽𝑎𝑖) 
 

 

(9) 

 

Figure 4: Distribution of precision and recall at individual ac-

count level for transaction categorization. 

Figure 5: Categorization accuracy vs. overall model confidence. 

Larger dots represent more transactions at given confidence. 

Results from Experiments 

Experiments were carried out using a sample of 10
9
 finan-

cial account transactions matched with their user assigned 

CoA accounts.  

Datasets were selected by full calendar month:   

1. Training: 12 months of transactions were used to 

generate the counterparty co-occurrence matrix  

2. Validation: the month of transactions right after 

training was used to calibrate model confidence 

predictions.  

3. Test: the month of transactions right after validation 

was used to measure model performance. 

Three metrics were tracked:  

1. Accuracy: automatically categorized transactions 

accepted by users without changes divided by the 

total number of transactions imported by the users 

from financial accounts.  

2. Precision: number of transactions being categorized 

correctly divided by the total number of predicted 

transactions in a given user’s account.  

3. Recall: number of transactions being categorized 

correctly divided by the actual total number of 

transactions in a given user’s account.  
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As shown in Fig. 4 we care about the distribution of pre-

cision and recall, rather than just precision / recall as a sin-

gle number. Measured on the test set the model performs 

consistently with accuracy above 70% having both high 

precision and recall across users’ CoA accounts.  

Model Confidence Prediction 

Communicating prediction confidence to our users through 

the UI allows them to build trust in the CoA account rec-

ommendations they review.  The idea being that when us-

ers witness that high confidence predictions are almost 

never wrong, their review of these transactions can be 

quick and more of their time can be invested reviewing and 

correcting just those transactions with low confidence CoA 

recommendations. 

Our model’s confidence is predicted in two ways: 

1. For counterparties previously categorized, we 

predict confidence using a linear function of the du-

ration since the last time a transaction with the same 

counterparty was categorized by this same user. The 

intuition being that the more recently a given user 

categorized a given counterparty the more likely 

they are to do it the same way again. For our da-

tasets a simple linear function fits our validation re-

sults reasonably well. 

2. For counterparties not previously categorized 

model confidence is predicted using the ratio of the 

likelihood of most appropriate account vs. alterna-

tive accounts.  

Fig. 5 shows that the confidence of our recommenda-

tions is highly correlated with the accuracy of recommen-

dations measured from user feedback. As intended, better 

recommendations have higher predicted confidence and 

users can indeed trust them more. 

Figure 6: Stages of financial transaction processing. 

How the Model is Used 

QuickBooks offers users the ability to connect their finan-

cial accounts (banks / credit unions / investment / etc.) to 

download transactions. What happens next is illustrated in 

Fig 6. Upon download, each transaction undergoes analysis 

to understand what it represents (withdrawal/deposit, pur-

chase/income, loan payment or disbursement, money trans-

fer, fee, etc.) and who the transaction is with (who the 

counter-party is). Next our account likelihood ranking 

model is applied and transactions are tentatively filed (au-

to-categorized) with respect to each user’s CoA filing sys-

tem
1
. In the final step users get an opportunity to ac-

cept/correct how their transactions have been filed and 

their corrections are used to update the account likelihood 

ranking model next time it is rebuilt. 

Figure 7: Model Build Environment. 

How the Model is Built 

To keep production models fresh (and EU GDPR compli-

ant) we regularly rebuild them. This process has three main 

steps as shown in Fig 7.  

Data Extraction  

Model builds start with extraction of just the table columns 

that pertain to financial account transactions and CoA ac-

counts. From a data warehouse these columns are trans-

ferred to Vertica (Fig 7 step A) where additional projec-

                                                 
1 Although accounting standards apply to CoAs, in practice what each 
business tracks for accounting varies. Many users have distinct accounts 
for their various business locations, rental properties, business vehicles, 
etc. Consider how different a flower shop is from a law office from a 
cement factory.  CoAs also vary because what users are legally required 
to track for government reporting varies between jurisdictions (county / 
state / country – QuickBooks has users worldwide), and even in the same 
jurisdiction CoAs can be impacted by new laws. For example, when tax 
law changes what is and isn’t deductible, impacted business may have 
accounts in their CoA that need to be split or new ones created. 
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tions are added so that our model build data access patterns 

are sequential (Knowledge Representation section explains 

why this is important).  

Model Build  

The model build (computing the counterparty co-

occurrence sparse matrix – from here on also called the 

coupling table) is carried out in Vertica as controlled by a 

Python orchestration service. Once model tables are creat-

ed they are transferred from Vertica to Postgres (Fig 7 step 

B) – in this step our knowledge representation is switched 

from column store to row store. (See Knowledge Represen-

tation section).  

Model Acceptance Testing 

After model data is in Postgres an instance of the build 

time model service is started, and a model service client 

simulator is launched for model acceptance testing – it 

replays a month of transactions. Model coverage and accu-

racy metrics are tracked and the model build is halted un-

less these metrics have acceptable values. On successful 

test completion the model is compressed into RPM pack-

age files for distribution (Fig 7 Step C). The final step is to 

install the RPMs on a node having hardware matching 

what is used in production and to again launch the client 

simulator to replay transaction history this time however 

for model latency acceptance testing. Model acceptance 

testing is split like this for two reasons:  

1. Latency tests are not reliable unless they are per-

formed using OS and hardware matching production 

runtime environment. (Further explained in Firm 

Real-Rime Deadlines section.) 

2. Model coverage and accuracy tests do not need pro-

duction hardware so these tests are launched right 

away. If there is a model accuracy or coverage drop 

(due to for example a change in some upstream sys-

tem that we do not control) automated tests catch 

this early. 

Firm Real-Time Deadlines  

Some transactions involve merchants coupled to a small 

number of other merchants. These are quick to classify 

especially when the merchants involved are popular. Other 

transactions involve merchants weakly coupled to hun-

dreds of merchants or to merchants which are relatively 

rare. Such transactions take longer to classify because each 

extra merchant requires a new b-tree index search and the 

more obscure the merchant, the lower down in the cache 

hierarchy the coupling table entries for that merchant are 

likely to be.  

On busy production servers popular merchants are likely 

cached in RAM or even CPU, obscure merchants however 

may be in parts of the index not cached. For this reason 

some transactions can take 10
2 

times longer to categorize 

than others.  

Due to this variability models must be latency tuned to 

operate under firm real time deadlines. Deadlines are firm 

because failing to show users their transactions on time is 

far worse than if these transactions are missing account 

recommendations. 

Model Latency Tuning  

Latency tuning involves pruning those entries from the 

model tables which are least likely to influence recommen-

dations. Values that are tiny for example are unlikely to 

make a difference.  

With coupling tables smaller, fewer b-tree search steps 

are needed and a larger portion of the coupling table b-tree 

index can be cached so index searches are shorter and fast-

er. Yet small coupling tables contain less information and 

as coupling table size is reduced model coverage and mod-

el accuracy both suffer.  

During latency tuning we adjust this tradeoff between 

model latency (due to coupling table size) and model cov-

erage/accuracy. Our goal in latency tuning is to make sure 

models rarely if ever exceed firm real-time latency dead-

lines. If a deadline is missed, account predictions are late 

they cannot be used; late predictions – even if correct – are 

always counted as being incorrect.  

Tuning coupling table sizes for latency also requires that 

the tuning process sends transaction requests that are repre-

sentative of what happens in production: 

1. transaction counterparties must be as diverse  

2. counterparty order should be representative  

Latency tuning with just a few transaction counterparties 

is misleading because after the first hit the coupling table 

entries associated with these are now high up the cache 

hierarchy. A similar cache effect occurs even if you use all 

possible counterparties but fail to mix up their order. To 

avoid both of these problems, we tune models by using a 

sequence of requests that plays back actual production 

model usage from history.  

Build vs. Runtime Servers 

Our model is regularly refreshed to reflect changes in the 

real world and comply with regulations such as GDPR. To 

enable regular and timely model updates the build process 

has to be performance optimized as well. However, the 

characteristic patterns of data access during model training 

are quite different from the interactive context at runtime: 

1. Model build servers are selected and optimized for 

sequential large IO throughput. These have RAID10 

with small chunks and wide stripes (~12 HDDs 

work in parallel). Filesystems are created with large 

records and OS scheduler policies are set to favor 
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throughput over latency. Four+ CPU socket servers 

with NUMA work well. 

2. Model runtime servers are selected and configured 

to maximize number of small IO operations per se-

cond (IOPS). RAM is maximized and SSDs are 

used for model data storage. The file system holding 

the model is created with small records, and OS 

scheduler policies are set to favor latency over 

throughput. We avoid NUMA due to RAM latency 

overheads it can impose. 

Model runtime servers are dedicated for just one task, so 

no other process competes for IO or cache. Virtual memory 

/ swap are either disabled or model process memory is 

locked to prevent being swapped out. This is all done so 

that once a classifier node is running model response laten-

cies stay low and predictable.  

Knowledge Representation 

We represent knowledge differently when building models 

vs. when using them:  

1. During model builds knowledge is represented in-

side a column store database (Vertica) using projec-

tions in a de-normalized format with the same data 

stored in various sort orders so access is sequential, 

cache friendly and takes advantage of efficient col-

umn-wise compression boosting effective IO 

throughput. 

2. For model deployment knowledge is represented us-

ing tables in a row store database (Postgres). Here 

tables are stored clustered on their primary key and 

additional b-tree indexes are built such that the need 

to access data beyond what is indexed is rare (“in-

dex only scans”).  

The reason for this difference is twofold:  

1. During model builds the data access patterns are 

known in advance so in-memory and on-disk lay-

outs of data can be optimized for cache hierarchy 

locality. However, when the model runs in produc-

tion we do not know in advance which users, ac-

counts and counterparties will be involved in any 

incoming request hence our knowledge representa-

tion must be optimized to answer any request quick-

ly. 

2. When the model runs in production there is a firm 

real time latency deadline -- requests must be han-

dled in milliseconds because users are waiting; la-

tency concerns dominate over throughput concerns. 

On the other hand, when a new model is being built 

users are not waiting so latency is not a concern and 

instead throughput concerns dominate because they 

drive model refresh cost. 

Model Deployment  

Our model operates as a web service API deployed using a 

cluster of identical classifier nodes all behind a load bal-

ancer as illustrated in Fig 8. Incoming requests first go to 

the load balancer which then forwards the request to an 

available classifier node. If the continuous load on the least 

busy classifier node is too high, additional classifier nodes 

are added. If the continuous load on the busiest classifier 

node falls, the oldest classifier node is removed from the 

load balancer pool and stopped. If a classifier node mal-

functions (e.g. timeouts on requests) the load balancer au-

tomatically replaces it with a new node thus healing the 

service. This healing functionality is also used for zero 

downtime upgrades such as when fresh models are de-

ployed – old classifier nodes are purposefully killed one at 

a time and the load balancer replaces them with upgraded 

versions.  

Figure 8: Model Runtime Environment. 

We use a shared nothing architecture because it makes 

service deployment and scaling straightforward. For exam-

ple, when the number of incoming requests doubles the 

number of running classifier instances is doubled. When 

the number of incoming requests drops in half the number 

of running classifier nodes is dropped in half. The ratio is 

not quite exact because classifier node startup takes several 

minutes so a number of classifiers nodes are always kept 

around to handle spikes in demand while new nodes are 

created. 

User Impact and Benefits 

The described ML-based categorization service was first 

deployed to production for English language QuickBooks 

(USA, Canada, UK:  2+ million users) in November 2016. 
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Non-English global regions (France, India, etc.) were add-

ed in August 2017. Compared to the legacy systems that it 

replaced, the new ML service classifies more transactions 

(even those that are hard to classify) and at the same time it 

does so at a higher accuracy.   

Specifically, in direct A/B comparison tests the ML ser-

vice results in 56% fewer uncategorized transactions and 

28% fewer errors. This represents a remarkable reduction 

in the number of errors that must be corrected and in the 

amount of manual work millions of QuickBooks users 

have to do to file their financial transactions.  

For a sense of scale, if – without automation – it takes 3 

seconds to choose the right account for a financial transac-

tion then last year the users of Intuit's accounting software 

would have spent well over 1,000 man years on this task. 

Conclusions 

We have presented a new method for automatic categoriza-

tion of financial transactions for small business accounting.  

We shared lessons learnt with respect to differences in 

data access patterns during model training and runtime 

production deployment. We explained how these differ-

ences can be effectively supported by adopting column-

oriented data store for model training and row-oriented 

store for runtime deployment. 

We also discussed the requirements related to real-time 

constraints on model runtime performance and suggested 

ways to satisfy such constraints. 

Our system has been deployed at scale and it handles 

billions of financial transactions for millions of small busi-

nesses each year. Our solution combines fragments of in-

formation from millions of users in a manner that allows us 

to accurately recommend user-specific Chart of Accounts 

categories. Accounts are handled even if named using ab-

breviations or in a foreign language. Transactions are han-

dled even if a given user has never categorized a transac-

tion like that before. The development of such a system 

and testing it at scale over billions of transactions is a first 

in the financial industry. 

Our work greatly benefited from research in machine 

learning for personalized tag recommendations and tensor 

factorization. 

Our ability to scale the system relies heavily on training 

and deploying the model on top of mature database tech-

nology that also supports efficient regular model updates 

necessary to adapt to new merchants, new small businesses 

and constant change in business and accounting practices. 
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