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Abstract
Life insurance provides trillions of dollars of financial se-
curity for hundreds of millions of individuals and families
worldwide. Life insurance companies must accurately assess
individual-level mortality risk to simultaneously maintain fi-
nancial strength and price their products competitively. The
traditional underwriting process used to assess this risk is
based on manually examining an applicant’s health, behav-
ioral, and financial profile. The existence of large historical
data sets provides an unprecedented opportunity for artificial
intelligence and machine learning to transform underwriting
in the life insurance industry. We present an overview of how
a rich application data set and survival modeling were com-
bined to develop a life score that has been deployed in an al-
gorithmic underwriting system at MassMutual, an American
mutual life insurance company serving millions of clients.
Through a novel evaluation framework, we show that the life
score outperforms traditional underwriting by 6% on the ba-
sis of claims. We describe how engagement with actuaries,
medical doctors, underwriters, and reinsurers was paramount
to building an algorithmic underwriting system with a pre-
dictive model at its core. Finally, we provide details of the
deployed system and highlight its value, which includes sav-
ing millions of dollars in operational efficiency while driving
the decisions behind tens of billions of dollars of benefits.

1 Introduction
Life insurance is a critical protective financial tool for mil-
lions of households. In the United States, life insurance
companies collectively manage trillions of dollars of ben-
efits. While there are numerous types of insurance contracts,
a common component is the estimation of individual-level
mortality risk through the process of underwriting. Tradi-
tionally, this is performed manually using human judgment
and point-based systems that consider risk factors inde-
pendently. These methods are sufficient in industry but are
coarse and subject to inconsistency. As a result, traditional
underwriting limits the degree to which an insurer can esti-
mate risk from data and offer efficiently priced products.

The availability of large historical data sets provides an
opportunity for machine learning to transform underwriting
for life insurance. MassMutual, a large insurance and finan-
cial services company, has curated a data set of nearly one
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million applicants spanning 15 years and containing health,
behavioral, and financial attributes. To the best of our knowl-
edge, this is the largest and most comprehensive application
data set in the industry. Combining this data with advance-
ments in machine learning and survival modeling enables
accurate estimation of mortality risk. We develop a high-
resolution model that generates a life score and underpins
the MassMutual Mortality Score (M3S) and LifeScore360.1

Collaborating with actuaries, we design a novel evalua-
tion framework to compare historical underwriting decisions
against simulated model decisions over a 15-year period.
This empirical study demonstrates that the life score outper-
forms traditional underwriting, yielding a 6% reduction in
claims in the healthiest pool of applicants. Based on these
promising results, we engaged additional partners across
MassMutual to implement an algorithmic underwriting sys-
tem with this mortality model as its primary risk-driving en-
gine. Over the past two years, this system has reduced time
to issue by >25% and increased customer acceptance by
>30% for offers made with light manual review, while sav-
ing millions of dollars in operational efficiency and driving
the decisions behind tens of billions of dollars of benefits.

The remainder of this paper: (1) provides background
on life insurance and the mathematical frameworks used to
quantify risk in insurance; (2) describes the data set and
methodologies used to estimate mortality risk; (3) presents
performance results and deployment details; and (4) dis-
cusses the future and implications of using predictive models
as a core component of underwriting in life insurance.

2 Background
This section provides background on the traditional under-
writing process, survival modeling, and actuarial science.

2.1 Life Insurance and Underwriting
A life insurance policy is an agreement between a policy-
holder and an insurer whereby the insurer agrees to pay ben-
eficiaries a sum of money at the time of the policyholder’s
death. In return, the policyholder pays premiums over a pre-
defined period of time (Atkinson and Dallas 2000). Life in-
surance provides security to the beneficiaries by reducing

1M3S and LifeScore360 refer to branded versions of the mor-
tality model described in this work.
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the financial impact of an untimely death. Beneficiaries can
use the proceeds to pay for future expenses (e.g., daily living
expenses, college tuition, retirement) that would have other-
wise been paid for by the earnings of the insured.

Most types of life insurance require an estimate of ex-
pected lifetime of an individual at the time of application.
This is referred to as mortality risk, and the process of col-
lecting and analyzing data that describes such risk is known
as underwriting (Black and Skipper 2000). Actuaries com-
pute the cost of covering mortality risk over the lifetime
of the policy and translate it into a set of premium pay-
ments (Jordan 1967). The financial risk and general approval
of the underwriting process is agreed upon with reinsurance
companies, institutions that assume a portion of the risk and
who diversify their holdings across insurance industries.

In contrast to other types of insurance, such as auto, home,
and health, life insurance is typically purchased through a fi-
nancial advisor who connects an individual to a carrier and
helps clients identify the type and amount of insurance that
suits their needs. Advisors provide estimates of the premi-
ums, but the exact price is determined after underwriting.

Life insurance underwriting has primarily used point sys-
tems developed by doctors and underwriters. These sys-
tems calculate risk by mapping medical and behavioral
attributes—such as cholesterol, build, driving record, and
family and personal medical history—to point values that ei-
ther debit or credit an overall score (Brackenridge, Croxson,
and Mackenzie 2006). This approach resembles risk cal-
culations employed in clinical medicine (e.g., Framingham
risk scores (Wilson et al. 1998)). A life underwriter reviews
an application to calculate the net number of points, deter-
mining one of several risk classes that drive premium and
are priced according to aggregate mortality.2 Advancements
in statistics and machine learning present an opportunity to
update the traditional approach to underwriting, which pre-
dominately considers factors independently. Leveraging AI
to automate underwriting decisions is not novel in the in-
dustry (e.g., using fuzzy logic (Aggour et al. 2006)), but de-
veloping a machine learning model that outperforms human
decisions and deploying at scale is unprecedented.

2.2 Survival Modeling
The majority of predictive modeling tasks are based on clas-
sification or regression. In the context of survival analysis,
however, the outcome of interest is the duration until a bi-
nary event may occur for a particular record. The objective
of survival analysis is to approximate the survival function,
S(t) = Pr(T > t), which describes the probability that an
event, occurring at random variable time T , occurs later than
some given time t. The hazard rate,

λ(t) = lim
dt→0

Pr(t ≤ T < t+ dt)

dt · S(t)
, (1)

2MassMutual uses the following risk classes: ultra-preferred
(UPNT), select-preferred (SPNT), and standard (NT) non-tobacco
and select-preferred (SPT) and standard (T) tobacco, in order of
increasing risk. Substandard non-tobacco and tobacco classes ex-
ist for specific medical impairments, and a small fraction may be
declined for various financial and medical reasons.

is the rate of the event at time t conditioned on having sur-
vived until time t. In actuarial science, the hazard is often
denoted as µ and describes the mortality rate for a given at-
tained age. The cumulative hazard function, defined as

Λ(t) =

∫ t

0

λ(u)du, (2)

is related to the survival function as Λ(t) = − logS(t).
Nonparametric estimators, namely the Kaplan-Meier (Ka-
plan and Meier 1958) and Nelson-Aalen estimators, com-
pute these quantities directly from observed survival data.

The primary goal of predictive modeling in the survival
context—termed survival modeling—is to develop estimates
of the survival, hazard, or cumulative hazard functions with
respect to a set of observed covariates. In the underwriting-
for-mortality setting, the covariates are medical and behav-
ioral attributes of life insurance applicants and the event is
mortality. The techniques used to estimate these functions
fundamentally require a different set of statistics as the time-
to-event of mortality is unknown for most individuals. This
is referred to as right-censored data because the date of birth
is known, but the date of death is unobserved for a large set
of individuals. Missing survival information is a key charac-
teristic of survival analysis, in which the data may be cen-
sored at the beginning, end, or even middle of study periods.

There is a well-established set of methods employed by
academic and industrial practitioners of survival analysis.
The Cox proportional hazards model is the most widely used
statistical technique for estimating individual risk in studies
of survival (Cox 1972). This is a semi-parametric regres-
sion model that assumes a linear functional form and pro-
portional hazards for any two strata over time. In machine
learning, random forests (Breiman 2001) have been adapted
by Ishwaran (2008) to handle right-censored survival out-
comes (called random survival forests, or RSF) and efficient
implementations exist (Wright and Ziegler 2017). As a non-
parametric, adaptive model, RSF captures interactions and
non-linear dependencies that are more subtle and complex
than can be reflected by a linear model. The extension to
survival data includes setting the splitting criterion to maxi-
mize survival difference, as measured by a log-rank test, and
the terminal nodes directly estimate the cumulative hazard
function via an ensemble of Nelson-Aalen estimators.

Survival models can be evaluated with concordance, a
pairwise ranking statistic similar in interpretation to area un-
der the receiver operating characteristic curve (AUC) com-
monly used in classification. The next section provides back-
ground on a more relevant metric for an actuarial setting.

2.3 Actuarial Mathematics
Actuaries evaluate mortality risk and its financial impact
when developing life insurance products. Pricing and cash
flow simulations require assumptions about expected mor-
tality rates. These are derived from a combination of ob-
served mortality experience within a company and industry-
wide life tables. The Society of Actuaries publishes a series
of Valuation Basic Tables (VBTs) that aggregate mortality
experience within the insured population across many carri-
ers. The most recent tables, published in 2015, compile data
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from over 50 life insurers and facet mortality rates by stan-
dard factors: age, gender, duration, and smoking status.

VBTs are often used as a standard baseline because they
reflect a much larger population than that of a single car-
rier. Actuaries compare their observed mortality experience
against the expected mortality rates in the VBTs using a met-
ric referred to as the actual-to-expected (A/E) ratio. The
A/E ratio is computed by summing all observed deaths di-
vided by the accumulated hazard corresponding to each in-
dividual policy year on record:

A/E =

∑
event indicator∑

accumulated hazard
. (3)

When the A/E is less than 100%, this indicates that the
actual mortality experience is better than expected. In this
work, we rely onA/E ratios to compare model performance
against underwriters using the 2015 VBT expected basis.

3 Modeling Mortality
With an understanding of traditional underwriting for life in-
surance, this section demonstrates how historical underwrit-
ing data can be leveraged to train models of mortality.

3.1 Data
Life insurance carriers track policies over a potentially long
period of time to maintain records of financial exposure.
Minimally, this requires demographics, policy details, and
post-issue events (e.g., status changes). However, to build a
model that predicts mortality risk, it is critical to retain data
used for underwriting. MassMutual has a consolidated, dig-
ital record of nearly one million applications for which a lab
test was ordered during 1999–2014. After removing applica-
tions with a high degree of missing values, typically incom-
plete or withdrawn applications, this reduces to 908k records
with 9.16M exposure years and 15.7k observed deaths.

To develop a general-purpose model for life underwrit-
ing, mortality outcomes on all applicants are crucial. Inter-
nal records are limited to death benefit claims, which ex-
cludes applicants that never became policyholders or termi-
nated their policies prior to a claim. MassMutual obtained
and periodically refreshes ground-truth mortality data from
internal and third-party sources on historical applicants.

Aside from demographics, labs, and mortality, the data set
covers attributes drawn from a lengthy health history ques-
tionnaire that accompanies the application process. Addi-
tional data sources are widely used in underwriting, such as
prescription drug histories and motor vehicle records, but at
present, we do not have adequate historical coverage to di-
rectly tie to mortality. Below we review select statistics on
the primary attributes contained in the overall data set.

Demographics Over a 15-year period, the data set pro-
vides broad coverage of demographics. Males are generally
older than their female counterparts at time of application,
as shown in Figure 1. Males account for more than twice the
number of deaths, which is a function of an older age distri-
bution, a higher proportion in earlier application years, and
a higher mortality rate in general (see Figure 2). Addition-
ally, the applicant data exhibit expected survival dependence
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Figure 1: The age distribution of the application population
stratified by sex.
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Figure 2: Survival probabilities by age ≤ 50 and sex are
consistent with general population statistics.

on age and sex (e.g., females tend to outlive males (Kalben
2000) and survival probability decreases with age).

Lab Tests Life insurance underwriting typically includes a
de facto set of laboratory tests on blood and urine specimens.
A vast medical and actuarial literature ties various tests di-
rectly with all-cause or specific causes of mortality, such
as albumin (Goldwasser and Feldman 1997) and cholesterol
(Kronmal et al. 1993). The lab test data provide broad expo-
sure to a range of values and includes biophysical measure-
ments (e.g., build, blood pressure), lipids (e.g., cholesterol),
liver function tests (e.g., gamma-glutamyltransferase), kid-
ney function tests (e.g., creatinine), blood proteins (e.g., al-
bumin, globulin), urine proteins (e.g., microalbumin), blood
sugars (e.g., fructosamine, hemoglobin A1C), and several
indicators (e.g., cocaine, HIV).

Health History Questionnaires Lab tests are a point-in-
time view into an individual’s health that yield substan-
tial protective value for risk selection. The application pro-
cess also solicits information related to personal and family
health history, as well as behavioral risk through an exten-
sive questionnaire. Partnering with a vendor specializing in
handwriting recognition, we digitized the vast majority of
MassMutual’s paper and imaged archive. This endeavor was
challenging due to a manual element of standardizing ques-
tions phrased differently across time, states, and product of-
ferings. Despite the acquisition costs, this data enable a con-
sistent mapping with the current application. The training
data include variables that align to major medical impair-
ments (e.g., cardiovascular disease) derived from Boolean
responses and keyword extraction on open-text fields.
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Figure 3: Grouping by 4-year bands, the distribution of
cholesterol trends lower over time.

Health Trends across Time Given the 15-year time pe-
riod of our data, we observe trends in the distribution of cer-
tain lab values. For example, recent applicants exhibit lower
levels of cholesterol compared to those in earlier years, as
shown in Figure 3. This is consistent with medical research
reporting similar trends over the same time period (Rosinger
et al. 2017). A variable that trends over time is referred to as
covariate shift or non-stationarity, which presents a model-
ing challenge due to the temporal association with predic-
tive variables (Sugiyama and Kawanabe 2012). We apply a
statistical adjustment that translates and controls for these
temporal differences in distributions. With recent research
discovering worsening mortality trends on specific subpop-
ulations (Case and Deaton 2015) (albeit stemming from un-
certain factors), it will be imperative to capture the changing
dependence of lab tests and mortality risk.

3.2 Modeling
This valuable data asset enables survival modeling. Below,
we outline the strategy for selecting relevant features and
refining the mortality model, and we demonstrate that the
predictions appropriately stratify health factors.

Feature Selection Feature selection was heavily influ-
enced by medical and actuarial experts and validated with
standard machine learning techniques. A model intended to
be used for an embedded and central process to the business
cannot solely be optimized for predictive accuracy. It is criti-
cal to consider the operational impact of each prediction, in-
cluding reconciling with complementary underwriting data
sources and transparent communication to customers.

Through close partnership with the MassMutual’s medi-
cal team, we constructed an intuitive and medically relevant
mortality model. Given their recommendations, we reviewed
the historical coverage of each variable as procedures for fil-
ing and testing have changed across time and underwriting
requirements vary by demographics and policy features. We
also assessed the statistical dependence with mortality inher-
ent to each variable. For example, Figure 4 shows how A/E
ratios vary by 5-point bands of body mass index (BMI), ex-
hibiting elevated mortality risk for low BMI and steadily in-
creasing mortality risk for higher values of BMI.

The deployed mortality model relies on nearly sixty in-
puts, including internally generated features (e.g., BMI as a
function of height and weight). The main inputs are captured
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Figure 4: Trends in aggregate mortality risk, measured by
A/E, as a function of 5-point bands of BMI.

in biophysical measurements, blood and urine specimens,
and applicant health history questionnaires.

Experiments Research on survival methods has made ad-
vances over the past decade. The most widely studied ma-
chine learning models for survival data are tree-based meth-
ods, such as the random survival forest. Emerging research
aims to apply advanced statistical models, such as gradient
boosting and generalized additive models to discrete-time
survival analysis (Chen and Guestrin 2016; Wood 2006),
as well as survival extensions of deep learning (Katzman et
al. 2016; Ranganath et al. 2016). However, scalable imple-
mentations are limited, with the most comprehensively de-
veloped survival suite existing in the R environment. Thus,
we focused our modeling on the Cox proportional hazards
model (COX) and random survival forest (RSF). Experiments
iterated on findings drawn from our collaborative feature se-
lection process, in addition to improvements through vari-
able transformation, hyperparameter tuning, and sampling
techniques. Each experiment performed 10-fold cross val-
idation and held-out predictions were used to produce a
suite of statistical, actuarial, and business-relevant evalua-
tion metrics. The RSF model consistently yields a substantial
improvement over traditional underwriting and COX.

Developing the Life Score The RSF mortality model di-
rectly estimates the cumulative hazard function, Λ(t), across
the duration of exposure years in the training data. From this
vector of cumulative hazards, we derive a single, standard-
ized life score that can be used to rank individuals for under-
writing. Specifically, we select Λ(10), the cumulative haz-
ard at t = 10, corresponding to the median exposure of our
data. The life score has a range of 0–100, ranging from high-
est to lowest risk. The score reflects the relative risk among
5-year age band, sex, and smoker cohorts—primary factors
in actuarial mortality studies. Conditioned on cohort, the life
score is the integer-valued quantiles of the empirical distri-
bution of all 10-year cumulative hazard values. Figure 5(a)
demonstrates that, as expected, the proportion of each cohort
is represented consistently across the range of life scores.
Example: If Carlos is a 55-year-old non-smoking male with
a life score of 87, he can be compared directly against and
has lower mortality risk than Barry, another 55-year-old non-
smoking male with a score of 53. However, if Amy is a 35-
year-old non-smoking female with a score of 87, she does
not necessarily present the same mortality risk as Carlos.
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Figure 5: (a) The proportion of individuals in each decile of the score is consistent across 5-year age and sex bands. (b) Incidence
of heart condition as a function of life score. The proportion ranges from 14.4% in the first decile to 0.3% in the tenth decile,
gradually decreasing in between. (c) Distribution of BMI as a function of life score. The highest scores have a greater proportion
of healthy-range BMI. As the score decreases, the proportion of upper and lower BMI extremes gradually increases.

We can also demonstrate how medical impairments are
stratified across the life score. Figures 5(b) and 5(c) display
the proportion of heart condition incidence and BMI bands
within each score decile. This highlights the effect that BMI
and heart condition have on mortality risk. Each variable
exhibits different stratification structures depending on its
mortality dependence (e.g., U - or J-shaped mortality curves
(Chokshi, El-Sayed, and Stine 2015; Cox et al. 2008)).

4 Validation
Analyses of correlations among the life score and health fac-
tors are useful, but business-related metrics are critical to
understand the expected performance of a deployed system.

4.1 Simulation Method
In collaboration with actuaries, we designed a novel al-
gorithm that generates a synthetic, model-assigned book
of business to compare against historical underwriting risk
class offers. The algorithm ensures that the number of sim-
ulated offers for each issue year, risk class, 5-year age band,
sex, and smoking status cohort are identical to those offered
historically. This effectively controls for all actuarial factors
and is consistent with how the life score is normalized. With-
out controlling for these factors, the algorithm would dispro-
portionately assign, for example, young females to the best
risk classes as they present lower mortality risk.

Algorithm 1: AssignRiskClasses(D,M)

1 Dassign ← ∅
2 for Year y, Age a, Sex s, Smoking Status t do
3 Dcohort ← D[Y = y,A = a, S = s, T = t][:]
4 offer counts ← count(Dcohort)
5 Dcohort [:][LS]← predict(Dcohort ,M)
6 Dcohort ← sort(Dcohort [:][LS])
7 idx ← 1
8 for ordered Risk Class r do
9 Dcohort [idx : offer counts[r]][rmodel ]← r

10 idx + = offer counts[r]
11 Dcohort [idx :][rmodel ]← decline
12 Dassign ∪ = Dcohort

13 return Dassigned

Table 1:A/E confusion matrices for (a) non-tobacco classes
relative to UPNT and (b) tobacco classes relative to SPT.
(rows - model; columns - underwriters)

(a)

UPNT SPNT NT <NT Marginal
UPNT 84 85 109 177 93
SPNT 100 120 143 256 127

NT 126 143 174 247 163
<NT 226 306 340 653 432

Marginal 100 126 174 381

(b)

SPT T <T Marginal
SPT 68 79 156 80

T 107 148 149 130
<T 287 274 409 329

Marginal 100 142 253

The steps to equitably generate historical offers for a pool
of applicants is shown in Algorithm 1. Using the historical
data D, the algorithm first computes the number of offered
policies by risk class within each cohort. Then, the mortal-
ity model M predicts a life score LS for each individual in
Dcohort . For each risk class r in order, assign r to the next
offer counts[r] lowest-risk individuals that have yet to be
assigned a model risk class, rmodel . Assign a worse-than-
standard rating to the remaining individuals.
Example: Consider a cohort of 35-year-old, non-smoking
females in 2005. Assume 100 applications were submitted,
and underwriters offered 50 UPNT, 15 SPNT, 30 NT, and de-
clined coverage for 5 cases. Order the cases by life score and
assign the 50 applicants with the highest life score to UPNT,
the next 15, 30, and 5 to SPNT, NT, and decline, respectively.
Each 35-year-old, non-smoking female who applied in 2005
now has a model- and underwriter-assigned risk class.

4.2 Simulation Results
The model-assigned risk classes produced from Algorithm 1
enable the calculation of useful statistics, including the dif-
ference in deaths and A/E ratios compared to underwriters.
We applied this simulation to historical life insurance ap-
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Figure 6: Cumulative percent difference in deaths in UPNT
across policy duration, where 0 indicates equivalent counts.

plications submitted 2000–2014 and assume policies remain
active until death, ignoring lapse. This amounts to roughly
650k applications and 7k deaths.

Recall from Section 2.1, risk classes determine premiums
based on expected mortality rates. The UPNT class corre-
sponds to the lowest mortality rate and premium; thus, an
effective model must assign those lowest-risk individuals to
UPNT to maintain profitability. The model should also strat-
ify high-risk individuals into the appropriate classes.

Using the output of Algorithm 1, we compute the differ-
ence in death counts for the RSF mortality model, as well
as COX and a random scoring process. Figure 6 displays the
cumulative percent difference in UPNT deaths for the three
methods compared to underwriters. Underwriters are experts
at risk selection, yet the results show that after a 15-year du-
ration, RSF would have formed an offer pool with 6% fewer
deaths. COX and the random process produce 8% and 57%
more deaths than underwriters, respectively. The results ag-
gregated across all risk classes are qualitatively similar.

To measure performance of the RSF model with an ac-
tuarial lens, we perform an A/E analysis. Tables 1a and 1b
display confusion matrices ofA/E ratios for the risk classes
formed by RSF and underwriters. All A/Es are normalized
by the marginal of the underwriter-assigned best risk class
(UPNT and SPT, respectively) so that values can be inter-
preted relative to underwriter performance. The RSF model
consistently produces lower mortality rates in each risk
class and is substantially higher in the <NT and <T pools.
The joint A/Es indicate that the model effectively dis-
perses mortality risk in desired directions throughout the risk
classes. Combined with underwriter decisions, there is po-
tential for improved risk selection. For example, where they
agree on UPNT, the mortality risk is 84% of the marginal.

The mortality model leverages fewer data sources than
underwriters, who review additional requirements such as
prescription drug histories, motor vehicle records, and finan-
cial data. As such, these results are conservative. An algo-
rithmic underwriting system combining the mortality model,
a comprehensive rules environment, and controlled manual
oversight will generate even better mortality results.

5 Deployment
The simulation study illustrates the value of the mortality
model, but it is a non-trivial undertaking to promote a model

from a research environment to a real-time decision-making
system. Below, we describe the approach to developing, re-
leasing, and monitoring an algorithmic underwriting system.

5.1 The Algorithmic Underwriting System
A well-designed algorithmic underwriting system should
capture digitally structured data and enable a simple inter-
face and decision process for underwriter interaction. At
MassMutual, a prospective life insurance customer com-
pletes a digital application and submits laboratory tests, gen-
erally through a paramedic visit. To predict a life score, the
mortality model requires inputs from these lab test results
and responses within the health questionnaire portion of the
application. Additional information required for underwrit-
ing, such as motor vehicle records and prescription drug his-
tory, is obtained via vendor-supplied API calls. This infor-
mation is not included in the model as historical coverage of
this data is currently limited. The same data are collected on
applicants undergoing algorithmic and traditional underwrit-
ing, yet the overall processes are fundamentally different.
Some of the technical and business challenges include (1)
generating discrete risk class recommendations from contin-
uous life scores; (2) serving real-time scores in a robust en-
vironment; (3) integrating the model recommendations with
medical and financial underwriting guidelines; and (4) em-
powering underwriters with explanations of the factors be-
hind individual life scores to enable communication with ad-
visors and customers.
Calibrating score thresholds. The mortality model supports
a flexible framework that can recommend risk classes based
on different objectives. For example, because the life score
measures mortality risk, actuaries could adjust offers to
achieve desired levels of mortality. However, the current ap-
proach sets thresholds that yield offer rates consistent with
historical rates as those form the basis of pricing assump-
tions. This aligns with the design of the simulation study
from Section 4.1 and its corresponding metrics.
Predicting in real time. Real-time risk class recommenda-
tions are accessed via an internally developed REST API
that hosts the mortality model. Once the full set of require-
ments are received for an application, the algorithmic un-
derwriting system sends a formatted request to the API to
receive the life score and suggested risk class. The API is
highly scalable and responds within seconds, where the la-
tency is driven by the complexity of the model prediction.
Integration with underwriting guidelines. Thousands of au-
tomated rules encompassing health, behavioral, and finan-
cial attributes serve as guardrails for the risk class recom-
mendations generated by the model. The rules reflect a com-
prehensive set of medical and underwriting guidelines de-
veloped by experts in underwriting and insurance medicine.
Each rule determines the best available risk class in the pres-
ence of certain values in the application. For example, a high
BMI would preclude an applicant from receiving a preferred
offer. When a rule is triggered, underwriters can focus on
pertinent details of the application and use domain exper-
tise to (1) override the rule, allowing the case to continue
through the automated process, (2) decide if additional in-
formation is required for further review, or (3) confirm the
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rule and proceed with the suggested risk class. Ultimately,
the life score drives the final offer, but the rules may lead to
a worse rating. This approach to underwriting has led to new
analyst positions and revised workflows for underwriters.
Interpreting model predictions. With a complex model driv-
ing risk class decisions, it is imperative that analysts and
underwriters can effectively explain why an individual ap-
plicant received a given offer. Model interpretability is an
active area of research as machine learning models be-
come increasingly opaque, despite evidence that even linear
models can present a challenge in its interpretation (Lipton
2016). We developed a model-agnostic approach to generat-
ing interpretable, approximate factors that contribute to the
life score at an individual prediction level. The methodol-
ogy is similar to recent research, including Shapley values
and LIME (Lundberg and Lee 2017; Ribeiro, Singh, and
Guestrin 2016). The contribution factors are returned with
the life score and displayed to underwriters.

5.2 Rolling out the System
We systematically and gradually transitioned the exclusively
human process of underwriting to an algorithmic frame-
work. As a proof-of-concept, we conducted a pilot of the
system on 1,000 cases in parallel to traditional underwrit-
ing. This enabled observation of risk class offer rates and
agreement between the two systems. Following a successful
pilot, algorithmic underwriting began issuing UPNT offers
on all life products up to $1M benefits for applicants aged
17–40. This was followed by an expansion to $3M and ap-
plicant ages up to 59, and finally for all standard-and-above
risk classes. At present for these parameters, algorithmic un-
derwriting is applied to 90% of applications.

5.3 System Maintenance
Collaboration across several teams supports the monitoring,
refreshing, and updating of the mortality model. A critical
component to an algorithmic underwriting system, or any
machine learning system (Sculley et al. 2015), is to contin-
uously monitor the model inputs and outputs. Distributional
drift, such as deteriorating offer rates, or sudden outliers,
such as a lab test changing units, could manifest in the sys-
tem, affecting the quality of the decisions. We implement a
monitoring protocol that reports on daily batches of requests
to the mortality model and use web-based dashboards to vi-
sualize and track trends across time. In the future, we plan
to establish automated monitoring to detect anomalies and
structural changes to model inputs and risk class offer rates.

The model is retrained periodically to incorporate re-
freshed data and performance enhancements. Updates to
data include refreshed death information and additional
cases that have been underwritten. Collaborating with a team
of MDs, enhancements to the model address concerns iden-
tified upon individual case reviews. To date, new versions
have focused on improving the accuracy of risk class recom-
mendations for individual cases and specific medical impair-
ments rather than aggregate performance. Prior to deploying
a new version, we conduct a retroactive pilot to ensure no un-
expected outcomes occur. The data science team generates
new model outcomes for the past several months of cases,

reports aggregate statistics, and the medical team analyzes
individual model decisions before approval. Any change to
the expected distribution of offers requires further approval
from an actuarial team. Final deployment of a new version
requires collaboration between data science and IT develop-
ers, who maintain the production system. The cadence for
new model versions occurs on an as-needed basis, roughly
biannually, rather than a scheduled frequency.

5.4 Regulation
The use of predictive modeling in life insurance under-
writing raises legal, regulatory, and ethical questions re-
lated to transparency and fairness. In 2017, the New York
Department of Financial Services requested that life insur-
ers provide details of their use of algorithmic underwrit-
ing, including data sources, choice of model inputs, and the
available mechanisms for disputing model-based risk deci-
sions (Scism 2017). Further, the National Association of In-
surance Commissioner’s Model Rating Law requires under-
writing inputs to be actuarially justified (i.e., demonstrate
correlation with risk). Increasingly, insurers are being chal-
lenged to provide details around the inner workings of their
underwriting models to provide both applicants and regula-
tors a sense of which factors drive individual ratings.

A growing interest in consumer protection also manifests
through concerns around fairness and the impact predictive
models have on protected classes. The use of a wide variety
of model inputs related to an applicant’s personhood (e.g.,
age, gender, income) makes life underwriting models vul-
nerable to persisting societal biases that exist without the
benefit of human manipulation to counteract its negative im-
pacts on protected classes. In an effort to combat undesired
biases, models and risk ratings are conditioned on certain
protected classes, such as age and gender. In addition, pur-
poseful omission of ethnicity and geography partially miti-
gates the risk related to fairness and disparate impact from
use of algorithms in life insurance underwriting.

6 Business Value
The implementation of predictive modeling in life insurance
underwriting has favorable implications for a firm’s prof-
itability and its customer experience. At MassMutual, the
use of the mortality model and algorithmic underwriting has
resulted in greatly improved operational efficiency—time to
policy issuance has decreased by >25% for certain appli-
cants. This improvement has had material impact on cus-
tomer experience as indicated by a >30% increase of ap-
plicants opting to purchase their policies when the decision
was made by the model compared to traditional underwrit-
ing within the best class. Further, the automation of under-
writing decisions at the company has amounted to labor and
time savings of millions of dollars in 2 years on a growing
portfolio of policies that is valued in the tens of billions of
dollars. Despite these operational financial gains, there is yet
more profitability to be derived from the increased accuracy
of the decisions when driven by the mortality model. That
is, the retrospective simulation study detailed in Section 4.1
suggests a long-term benefit of reduced claims experience.
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7 Conclusion and Future Directions
Pairing machine learning capabilities with historical data
provides an unprecedented opportunity in the life insurance
industry to transform the underwriting status quo. Leverag-
ing 15 years of applications at MassMutual, we developed a
mortality model and life score that can consistently compare
applicants relative to their demographic cohorts. We demon-
strated that embedding such an approach has profound im-
plications for profitability and customer experience.

Deploying a machine learning model and transforming a
central business process has demonstrated the need to en-
gage and collaborate with various partners beyond a data
science team. Medical and underwriting have been crucial
to improving the mortality model and its integration with the
algorithmic underwriting system; actuarial and reinsurance
stakeholders have vetted and approved a business-relevant
evaluation framework; and legal partners have ensured that
the process remains equitable in its treatment of applicants.

There are many avenues for future directions that span
data, methods, and insurance innovation. The currently de-
ployed mortality model does not consider all traditional un-
derwriting data sources, such as prescription drugs or mo-
tor vehicle records, and there are non-traditional sources,
such as financial data, public records, and wearable sensors,
that may improve accuracy or enable alternative underwrit-
ing mechanisms. The general framework of producing high-
resolution estimates of individual-level mortality risk can
lead to actuarial and product innovation. Finally, trends in
machine learning research on survival models may improve
risk selection, and topics related to fairness and transparency
of complex models are equally crucial to study.
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